替代蓄电池的超级电容储能模块设计
蓄电池超级电容混合储能系统研究

202电力电子Power Electronic电子技术与软件工程Electronic Technology & Software Engineering目前正是“十四五”开局之年,我国也迈入到全面建设现代化国家的关键阶段,能源行业也进入到了转型的关键时期,比如可再生能源并网、智慧电网的直流系统等都进行了改造升级。
而混合储能可以将蓄电池与超级电容的优点进行联合使用,可以最大的发挥储能的技术性能,适应时代的发展。
1 混合储能系统结构与控制方式锂电池与超级电容所构成的混合储能系统其组成的阵列是由储能单体进行串并联所组成的,并通过储能变流器以及单体串并联构成的。
储能变流器是通过必要的电子设备所构成,其最主要的作用是通过对开关的开通与关闭来进行储能系统的充电与放电,并且利用系统的滤波功能来实现外部因素对于混合储能系统的一些影响。
1.1 超级电容储能系统的控制超级电容是功率型的储能,其具有相应速度快、循环寿命长的优点,并且可以用来响应外界的高频率波动。
其一般是通过PQ 的控制方式来对外界中频繁变动的功率的波动进行吸收。
因为超级电容的能量密度相对较小,其电压的范围又相对较广,一般情况下应该选择三重化双向的DC/DC 以及双向的DC/AC 的变流器作为超级电容储能系列的控制接收。
对于远程运行过程中蓄电池超级电容储能系统的控制主要是分为两个部分,双向的变向器主要采用的是跟踪有功功率的控制方式,通过并网变流器的使用,对直流母线电压进行更好的控制。
对于开关而言,其需要在时序上面相差120°,从而减小电流文波,不断的将动态性能进行改善,并起到一定的备用作用,从而大幅度的减少波动频繁而导致的功能需求不足。
1.2 蓄电池储能的系统控制蓄电池是较为常用的能量型的储能方式,其可以用来制定功率进行充电或者是放电,从而将其作为整个系统中的一个平衡点,对系统功率的平衡以及整体稳定的频率进行调节,满足功能平稳的需求。
超级电容供电电路

超级电容供电电路简介超级电容供电电路是一种利用超级电容器作为能量储存元件的电路,用于供电和储存电能。
超级电容器是一种高能量密度、高功率密度的电容器,具有快速充放电、长寿命和广泛的工作温度范围等特点,因此在许多领域具有广泛的应用前景。
本文将介绍超级电容供电电路的原理、应用和优势,并对其在未来的发展进行展望。
原理超级电容供电电路的核心元件是超级电容器,它采用高表面积的电极材料和离子导体,通过电荷的吸附和离子的迁移来存储能量。
与传统电容器相比,超级电容器具有更高的电容量和更低的内阻,能够在短时间内快速充放电。
超级电容供电电路通常由超级电容器、电源管理模块和负载组成。
电源管理模块负责对超级电容器进行充放电控制和电压稳定,以满足负载的需求。
负载可以是各种电子设备,如无线传感器、电动汽车、可穿戴设备等。
应用超级电容供电电路在许多领域都有广泛的应用。
1. 新能源领域超级电容器可以作为储能装置,用于电动汽车、混合动力车辆和可再生能源发电系统等的能量回收和储存。
由于超级电容器具有快速充放电的特点,可以提高能量回收效率和系统响应速度,减少能量损耗和环境污染。
2. 电子设备领域超级电容器可以作为备份电源,用于保护电子设备在突发断电时的正常运行。
由于超级电容器具有长寿命和高可靠性,可以替代传统的电池作为备用电源,提高设备的可用性和稳定性。
3. 工业自动化领域超级电容器可以作为储能装置,用于平衡工业自动化系统中的能量供需不平衡。
在工业自动化系统中,存在能量峰值和谷值的差异,超级电容器可以在能量需求较低时充电,在能量需求较高时放电,以平衡系统的能量供需。
4. 无线通信领域超级电容器可以作为能量储存装置,用于供电无线传感器网络和物联网设备。
由于超级电容器具有快速充放电的特点,可以满足无线传感器网络和物联网设备对瞬态能量的需求,提高系统的稳定性和可靠性。
优势超级电容供电电路相比传统供电电路具有以下优势:1.快速充放电:超级电容器具有快速充放电的特点,可以在短时间内提供大量的能量,满足瞬态能量需求。
超级电容原理及应用

超级电容原理及应用摘要随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。
在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。
电池技术的缺陷Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。
众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。
同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。
超级电容器的特点和优势超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。
同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。
除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。
所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。
因此,必须采用恒流或恒压充电器。
10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。
在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。
关键词电子技术;超级电容器;综述;原理;应用AbstractAlong with society economy of development, people for green energy and ecosystem environment more and more concern, the super capacitor be 1 kind to newly keep ability spare part, because it have no can act for of the superiority be more and more valued by people.In some demand the Gao the design of the power, high-efficiency solution, engineer already beginning adoption super capacitor to replace tradition of battery.The blemish of battery techniqueThe new battery of the Li ion, NiMH etc. can provide the energy of a credibility storage project, and already extensive in a lot of realm usage.Know to all, the chemistry battery pass electricity chemical reaction, creation the farad electric charge transfer to storage electric charge of, the service life be shorter, and be subjected to temperature influence bigger, this also similarly adoption the lead sour battery(storage battery) of design face of difficulty.In the meantime, big electric current would direct influence the life span of thesebatteries, therefore, for request longevity life, Gao credibility of some application, these show according to the battery of chemical reaction various shortage.The characteristics and advantage of super capacitorThe principle not new technique of super capacitor, familiar super capacitor mostly is double electricity layer structure, compared with the electrolysis capacitor, this kind of super density and power density of the capacitor energy all very Gao.Together tradition of the capacitor and two battery compare, super capacitor storage electric charge of ability ratio common capacitor Gao, and have to refresh and discharge speed quick, efficiency Gao, free from pollution to environment, circulation life span long, usage temperature scope breadth, the safety Gao Deng3's characteristics.In addition to fast charge with turn on electricity, the another main characteristics of super capacitor be a low resistance.So, when a super capacitor drive all turn on electricity, it performance small electric resistance characteristic, if there is no restriction, it would the Ye take possibility of source electric current.Therefore, have to the adoption Heng flow or constant pressure charger.10 year ago, super capacitor every year can sell go to seldom of amount,and price cost a lot, about USD 1~2/method pull, now, super capacitor alreadyBe standard product large quantity quantity supply market, the price alsoconsumedly lower, average USD 0.01~0.02/method pull.In the last few years in,the super capacitor have already started get into a lot of application realm,such as consume realms such as electronics, industry and transportation industryetc..KEY WORD electron technology;supercapacitors;review;principles;applications目录第一章绪言 (1)第二章超级电容器的原理及结构 (1)第一节超级电容器结构 (1)第二节工作原理及超级电容器储能系统...... (3)第三节主要特点 (4)第三章超级电容器特性 (5)第一节额定容量 (5)第二节额定电压 (5)第三节额定电流 (6)第四节最大存储能量 (6)第五节能量密度 (6)第六节功率密度 (6)第七节等效串联电阻 (6)第八节阻抗频率特性 (7)第九节工作与存储温度 (7)第十节漏电流 (7)第十一节寿命 (7)第十二节循环寿命 (7)第十三节发热 (8)第四章等效电路模型 (8)第五章超级电容器使用实例 (11)第六章超级电容器使用注意事项...... (18)第七章如何选择超级电容器超级电容器的两个主要应用...... .. (18)第八章结论 (20)谢辞 (21)参考文献 (22)第一章绪言电能是当代社会不可或缺的重要资源,而储能设备的优劣直接影响着电力设备的充分应用。
超级电容应用电路

超级电容应用电路超级电容(Super Capacitor)是一种具有高能量密度和高功率密度的电容器,它可以在电子设备,汽车系统,工业设备等领域广泛应用。
本文将重点介绍超级电容的应用电路。
一、超级电容概述超级电容是一种储能元件,它与传统电容器不同的地方在于具有很高的电容和电压特性。
超级电容通常由活性碳电极和电解质组成,其内部结构增大了电极表面积,从而提高了电容量。
超级电容的电压范围通常从数伏到数百伏不等,能够提供高功率输出和高循环寿命。
二、超级电容应用电路1. 能量回收电路超级电容常常用于能量回收系统中,将由制动、减速等工况释放的能量存储起来,以便在需要时向车辆提供功率。
一般而言,这类电路包括一个超级电容充电电路和一个由超级电容输出功率的电路。
充电电路可以通过直流-直流转换器或者其他能量转换电路实现,而输出功率的电路则可以与电机或者其他负载相连接。
2. 缓冲电路在一些高功率负载需要瞬时提供电源的场合,可以使用超级电容作为能量缓冲器。
典型的应用包括电动汽车的起动系统、电力工具的启动系统等。
这类电路中,一般需要与传统电池或者电源并联,以满足整个系统的功率需求并提供长时间的电源支持。
3. 灯光应用电路在需要提供高亮度照明且对瞬时功率要求高的场合,超级电容也可以发挥作用。
用于需要瞬间提供大功率的汽车大灯、舞台灯光等场合。
这类电路通常需要设计相应的充电和输出控制电路,以保证超级电容的合理使用和保护。
4. 闪光电路在一些需要提供高功率瞬间放电的应用中,超级电容也是一个理想的选择。
用于摄影闪光灯、激光器、雷达等领域。
这类电路中,超级电容需要与充电电路和放电电路相匹配,以确保稳定可靠的运行。
5. 可再生能源系统超级电容可以与太阳能电池板、风能发电机等可再生能源设备相结合,构建储能系统。
这种系统可以在夜晚或低风速时提供稳定的能源供应,同时也可以通过超级电容对电网进行功率平衡和电压调节。
6. 电子设备在需要瞬时提供大功率的电子设备中,超级电容也有一定的应用。
《蓄电池-超级电容混合储能系统效率提升方法研究》范文

《蓄电池-超级电容混合储能系统效率提升方法研究》篇一一、引言随着现代能源技术的飞速发展,蓄电池与超级电容混合储能系统因其高效率、高功率密度以及在能量储存与释放上的优异性能,已成为多种电力系统和可再生能源系统中重要的能量存储设备。
然而,目前对于这一系统的研究还面临效率的瓶颈,亟待解决。
本论文针对这一问题,展开对蓄电池-超级电容混合储能系统效率提升方法的研究。
二、混合储能系统概述蓄电池和超级电容是混合储能系统的两个主要组成部分。
其中,蓄电池以长期、稳定的方式储存能量,而超级电容则具有高功率密度、快速充放电的特点。
这一系统主要用于电网负荷平抑、电力系统调度优化等场合。
但由于电力设备之间的运行参数不同、操作复杂性高、内部损失和外部环境的影响等问题,如何有效提高系统的效率,是一个急需解决的课题。
三、混合储能系统效率提升方法针对混合储能系统存在的问题,我们提出了以下几种效率提升方法:(一)优化电源管理策略优化电源管理策略是实现系统高效运行的重要方法之一。
包括合理的能源调度算法、合理的电池与超级电容间的功率分配算法等。
对于复杂且不稳定的能源管理系统,需要通过模型预测控制和数据挖掘等方法进行深入研究。
我们应合理设置参数和条件,优化能量管理和充放电过程,减少系统的能源浪费。
(二)硬件设计与改良对于硬件设备的改进,可以着眼于减少电阻损失和改进材料。
比如对电池进行新型材料的改进和升级,增强其性能并减少能量损失;同时优化超级电容的内部结构,提高其功率密度和充放电效率。
此外,对于电池和超级电容的连接方式、散热设计等也需要进行合理设计,以提高整体效率。
(三)控制算法优化在控制算法方面,可以通过智能控制策略的引入和应用来提高系统的运行效率。
例如采用智能的神经网络控制和自适应控制技术,可以根据不同情况和实际需要动态调整参数和控制策略,从而提高系统对环境变化的适应性,提升效率。
四、实例分析与应用以下我们通过实际项目对提出的几种效率提升方法进行实例分析和应用验证。
《蓄电池-超级电容混合储能系统效率提升方法研究》

《蓄电池-超级电容混合储能系统效率提升方法研究》篇一一、引言随着能源危机和环境污染问题的日益严重,新能源汽车、可再生能源并网等领域的快速发展,对储能系统的性能要求也越来越高。
蓄电池与超级电容组成的混合储能系统因其具有快速响应、高能量密度、高功率密度等优点,被广泛应用于电动汽车、风力发电、太阳能发电等领域。
然而,如何提高混合储能系统的效率一直是研究的热点和难点。
本文旨在研究蓄电池-超级电容混合储能系统效率提升的方法,以期为相关领域的研究和应用提供理论支持和实践指导。
二、混合储能系统概述混合储能系统主要由蓄电池和超级电容两部分组成。
蓄电池具有高能量密度、长寿命等优点,适合为系统提供持续的能量支持;而超级电容具有高功率密度、快速充放电等优点,适合为系统提供瞬时大功率支持。
二者相互补充,共同构成了高效的混合储能系统。
三、混合储能系统效率提升的必要性混合储能系统效率的提升对于提高整个系统的性能具有重要意义。
首先,提高效率可以降低系统运行过程中的能量损耗,提高能量的利用率;其次,提高效率可以延长蓄电池和超级电容的使用寿命,降低维护成本;最后,提高效率可以更好地满足系统对快速响应和高能量密度的需求,从而提高系统的整体性能。
四、蓄电池-超级电容混合储能系统效率提升方法(一)优化控制策略通过优化控制策略,实现蓄电池和超级电容之间的协同工作,以达到最佳的工作效果。
具体包括:根据系统的实际需求,合理分配蓄电池和超级电容的充放电功率;采用先进的控制算法,如模糊控制、神经网络控制等,实现系统的智能控制;通过实时监测系统的运行状态,调整控制策略,以适应不同的工作场景。
(二)改进材料技术通过改进蓄电池和超级电容的材料技术,提高其性能,从而提升混合储能系统的效率。
例如,开发高能量密度、长寿命的蓄电池材料;研究具有高比电容、高循环稳定性的超级电容材料;通过纳米技术、表面改性等技术手段,提高材料的性能。
(三)系统集成与优化通过优化系统的集成设计,提高混合储能系统的整体性能。
超级电容器的储能原理

超级电容器的储能原理超级电容器(Supercapacitor),也被称为电化学电容器(Electrochemical Capacitor),是一种新型的电化学储能装置。
相比传统的电池,超级电容器能够实现高功率输出、长周期的循环使用以及快速的充电和放电速度。
超级电容器的储能原理主要基于电化学双电层和赝电容效应。
在电化学双电层效应中,超级电容器通过在两个电极之间的电导电解质中形成一个电化学双层,从而实现能量的储存。
电极表面的电解质柱能够吸附电解质离子,形成一个电荷层,与电解质中的电荷相互作用形成双电层。
这个双电层对静电电荷极化,导致电荷的分离,使电池两端的电位差增加。
另外,超级电容器还利用赝电容效应来储存能量。
赝电容效应是指在电极的表面,利用氧化物或者有机金属化合物的氧化还原反应实现储能的效应。
当电池充电时,电压升高,氧化物离子还原生成氧化物。
当电池放电时,氧化物氧化生成氧化物离子,从而实现能量的释放。
通过控制电极表面的赝电容材料,可以调节超级电容器的电容量和储能效率。
超级电容器的构造主要由电极、电解质和隔膜三个部分组成。
电极是实现电化学反应的部分,一般由高表面积的材料制成,如活性炭、碳纳米管等。
电解质是连接两个电极的介质,它能够帮助形成电极表面的电化学双层,并且传递离子进行反应。
常见的电解质有气态和液态两种,如硫酸、磷酸等。
隔膜是分隔两个电极的部分,能够阻止电流直接通过两个电极之间的短路。
超级电容器具有许多优点。
首先,它具有高的功率密度和能量密度,能够快速充放电,实现高功率输出。
其次,超级电容器的寿命长,可以进行几十万次甚至百万次的循环使用,不会像传统电池一样有明显的容量衰减。
此外,超级电容器具有良好的低温性能,可以在较低温度下正常工作。
最后,超级电容器对环境友好,不含有重金属等有毒物质,不会对环境造成污染。
超级电容器在众多领域中有着广泛的应用前景。
由于其高功率输出和长寿命的特点,超级电容器可以用于电动车、电动自行车等交通工具的能量回收和储能系统。
蓄电池超级电容混合储能双重解耦控制策略

蓄电池超级电容混合储能双重解耦控制策略最近,许多研究者已研发出一种利用蓄电池超级电容混合储能双重解耦控制策略的方案,用于优化现有的控制策略,提高发电系统的稳定性和可靠性。
一、混合储能系统的结构混合储能系统的结构分为五个部分:主驱动器、超级电容(SC)、蓄电池(BES)、混合控制层和经济优化层。
主驱动器是系统的主要输出,可以根据用户的需求下发命令。
同时,将实时用电量和系统运行状态反馈给混合控制层。
超级电容是一种高品质的超级储能装置,能够快速释放能量,以调节系统的电力和供应量。
蓄电池储能系统,通过调节电池的充放电,从而确保系统稳定的电力输出和经济的功耗。
混合控制层负责实时地监控系统的运行状况,按照经济优化层的指令,调节主驱动器、超级电容和蓄电池的运行状态,以确保发电系统的稳定性和可靠性。
二、蓄电池超级电容混合储能双重解耦控制借助于混合储能系统的结构,可以使用蓄电池超级电容混合储能双重解耦控制来优化控制策略。
首先,混合控制层根据实时用电量和系统状态,计算出优化之后的控制命令,即超级电容的充放电电流和蓄电池的充放电电流;其次,经济优化层根据全局情况,计算出最佳的充放电电流;最终,混合控制层根据控制命令和经济优化层的结果,调节相应的储能装置,实现系统的稳定运行。
三、优点应用蓄电池超级电容混合储能双重解耦控制策略,可以实现发电系统的可靠性和经济性。
首先,储能装置可以有效缓冲输入和负荷需求之间的不确定性,确保系统的稳定性和当量可靠性;其次,采用可移动电池作为储能装置的主要组成部分,可以节约动力系统的价格,提高发电系统的整体经济性。
四、缺点然而,蓄电池超级电容混合储能双重解耦控制的核心在于经济优化,仍需完善。
针对以上问题,未来研究者将针对不确定和复杂的用电环境,改进和完善混合储能双重解耦控制策略,以期实现更具有经济价值的发电系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
替代蓄电池的超级电容储能模块设计
引言
电能是当代社会不可或缺的重要资源,而储能设备的优劣直接影响着电力设备的充分应用。
近年来随着便携式设备、不间断电源系统以及电动车的大量开发使用,蓄电池的使用量日益增加。
可充电蓄电池,特别是铅酸蓄电池凭借其价格低廉、性能稳定、没有记忆功能等卓越特点普遍应用在各行各业。
但蓄电池受其先天条件的制约,存在着循环寿命差、高低温性能差、充放电过程敏感、深度放电性能容量恢复困难、环境污染的问题,传统蓄电池已经越来越无法满足人们对储能系统的要求。
超级电容是近几年才批量生产的一种新型电力储能器件,也称为电化学电容。
它既具有静电电容器的高放电功率优势又像电池一样具有较大电荷储存能力[1,2],单体的容量目前已经做到万法拉级。
同时,超级电容还具有循环寿命长、功率密度大、充放电速度快、高温性能好、容量配置灵活、环境友好免维护等优点。
自1957年美国人Becker发表第一篇关于超级电容的专利以来,超级电容的应用范围越来越广:在直流电气化铁路供电、UPS等应用方向进行研究,目前已开发出了50kVA和80kVA的实验样机[3];利用超级电容器配合蓄电池作为辅助动力源,促进汽车的能源回收,提高能源利用率[4],并出现了超级电容混合动力汽车[5]。
随着超级电容性能的提升,它将有望在小功耗电子设备、新能源利用以及其他一些领域中部分取代传统蓄电池。
本文介绍了一种基于超级电容设计的用以替代12V蓄电池的超级电容模块,通过计算分析得出模块的组合结构、最佳充电电流范围、充电时间以及总的输出能量。
该模块具有寿命长,不造成污染,功率和能量密度大等优点,具有很好的开发应用前景。
一、超级电容储能模块的设计
由于超级电容的放电不完全,存在最低工作电压,所以单体超级电容的能量为
,其中C为超级电容的单体电容量,为单体超级电容充电
完成的电压值。
超级电容器单体储存能量有限且耐压不高,需要通过相应的串连并联方法扩容,扩大超级电容的使用范围。
而通过相应的DC-DC芯片可以提高超级电容的最低工作电压。
假设超级电容以m个串联,n组并联的方式构成。
则每个超级电容的能量输出为
(1)
其中,为芯片的最低启动电压。
故超级电容阵列的能量总输出为,为超级电容的总能量。
本文采用SU2400P-0027V-1RA超级电容,具有较高的功率比、能量比和较低的等效串联电阻(ESR(DC)=1mΩ)。
为了构成替代12V蓄电池的超级电容模块,我们采用8
个2400F/2.7V的电容构成模块,采用4个超级电容单体串联,两
组并联的方式构成,如图1所示。
超级电容器的特性,如功率密度、能量密度、储能效率、循环
寿命等,取决于器件内部的材料、结构和工艺,器件并联或串联不
会影响其特性[6]。
其等效串联内阻
(2)
其中,为串联器件数,为并联支路数。
超级电容器组的等效电容为:
(3)
故超级电容阵列的等效内阻和等效电容为,
将超级电容模块的容量与蓄电池的容量参数的比较,由
(4)
得到对应于蓄电池安时数的超级电容阵列容量为,其中Umin为相应
的芯片的最低启动电压。
三、相关电路的设计
电路的总体构图如图3所示,它包括充电电路、超级电容储能模块和工作放电电路等部分组成,其设计流程图如图2所示。
图2 电路设计流程
3.1 充电电路
把超级电容等效为一个理想电容器C;与一个较小阻值的电阻(等效串联阻抗,)相串联,同时与一个较大阻值的电阻(等效并联阻抗,)相并联的结构。
如图3所示[7]。
超级电容可以进行大电流充电,但是由于串联等效电阻的存在,采用过大电流充电时,超级电容的充电效率会有一定程度的降低,因此需要考虑充电电流对超级电容的工作效率的影响。
采用恒流充电时,如图3所示,Is为恒流充电电流值,则
(5)
u(t)表示超级电容器端电压,表示超级电容器内储存电荷所决定的电容电压
(6)
其中=0V,为超级电容的初电压,表示在等效串联电阻Res上的压降。
充电过程中消耗的总电能为
(7)
超级电容器存储的能量为
(8)
由能量守恒公式,等式成立,理想情况下,超级电容器的恒流充电效率表示为:
(9)
采用matlab对超级电容的充电电流和工作效率进行模拟,并采用origin软件对结果进行处理,结果如下:
图4 充电电流与充电效率η的关系
由图4可知,超级电容单体在充电电流为3A~8A时保持比较高的充电效率,之后,随着电流强度的增大,损耗在相应电阻上的功率也随之增大,充电效率逐渐下降。
根据上面的结果,我们采用L4970A芯片构成相关的充电电路对超级电容进行充电,如图5所示,该电路可以提供10A的恒流充电电流,其输出电压由电阻R7和R9确定。
L4970A是ST公司推出的第二代单片开关稳压器,具有输出电流大,输入电压范围宽,开关频率高等特点,具有很高的充电效率。
市电220V通过整流滤波之后输出35V的直流电压,随后通过图5所示电路。
如图所示,C1和C2为输入端滤波电容,C3、C4分别为驱动级启动端和Vref端的滤波电容。
R1和R2构成复位输入端的电阻分压器,C5为软启动电容,C6为复位延迟电容。
C8和R3构成误差放大器的频率补偿网络,C7则用于高频补偿。
R4和C9分别为定时电阻和定时电容。
C10为自举电容。
续流二极管VD采用MBR2080型(20A/80V)的肖特基二极管。
C11和R5构成吸收网络,R6为复位输出端的内部晶体管的集电极电阻。
C12~C14为输出端滤波电容,并联三只相同的220μF/40V的电解电容以降低其等效电感。
L4970A芯片的输出电压设定为10.8V,其输出电阻R7由下式确定:
,其中R9=4.7K,令Uo=10.8V,则R7=5.25K,取标称值5.1K。
超级电容的充电的时间根据公式,其中C为超级电容的额定容量,dv为
超级电容的电压变化,I为超级电容的充电电流,t为充电时间。
故超级电容阵列的充电时间为(充电电流为10A的情况下)
3.2 稳压输出电路
由于代替的蓄电池模块的输出电压为12V,而超级电容的电压为10.8V,且随着超级电容工作不断放电,其两端的电压将不断降低,当超级电容释放储能的50%的能量时, 其端电
压将下降到初始电压的70%。
因此需要相应的升压控制电路避免由于超级电容阵列电压的降低影响负载的正常运行,提高超级电容储能的利用率。
图6 稳压输出电路
我们采用MAXIM公司的升压型dc/dc芯片MAX668。
MAX668具有很宽的输入输出电压范围,它可以将3~12V的输入电压升高到12V输出,同时,由于其采用了低至100mV 的电流检测电压和MAXIM公司特有的空闲模式,转换效率高达90%以上,具有最高1A的电流输出能力,升压电路如图6所示。
MAX668为固定频率,电流反馈型PWM控制器,内部采用双极型CMOS多输入比较器,可同时处理输出误差信号、电流检测信号和斜率补偿信号,由于省去了传统的误差放大器,从而抑制了由误差放大产生的相移。
MAX668能够驱动多种类型的N沟道MOSFET,这里选择的是FDS6680。
由于芯片工作在100 kHz 以上的高频状态,所以二极管D1应选取可高速关断的肖基特二极管,本文选择的是MBR5340T3。
超级电容以4个串联,2组并联的方式构成。
每个超级电容的能量输出为
其中,为芯片的最低启动电压。
故超级电容阵列的能量总输出为,超级电容阵
列的容量为
本超级电容替代模块的容量为10Ah,最大输出电流为1A,若要扩大其应用范围只需要改变超级电容的串并联数量和相应的芯片即可。
四、总结
由于容量的限制, 电容的作用一直被限制在滤波、耦合、谐振等方面。
随着超级电容的发展,其应用范围得到不断拓宽。
本文介绍了一种替代蓄电池的超级电容储能模块,通过合理地设计充电和稳压电路,该模块的能量输出可达到59200J,具有稳定性好,转换效率高等特点。
通过matlab软件计算本文充电电路的电流与效率之间关系,并确定最佳的充电电流范围。
随着超级电容耐压的提升、容量的扩大和价格的降低,相应的小功率储能模块具有很好的应用前景。