平面几何知识点总结.
七年级平面几何知识点

七年级平面几何知识点平面几何是初中数学中的重要内容,也是中考数学的重要考点之一。
七年级的平面几何知识点主要包括以下几个方面:一、角与角的关系角是平面几何中的基本概念之一,角的大小用度或弧度来表示。
七年级学生需要掌握以下与角相关的知识点:1. 角的概念和记法:角是由两条射线共同确定的图形,其中一条射线为角的边,另一条射线为角的始边。
用∠ABC表示角,其中A为角的顶点,B为角的始边,C为角的边。
2. 直角、钝角和锐角:直角的度数为90度,钝角的度数大于90度,锐角的度数小于90度。
3. 补角和余角:两个角的和为补角,两个角的差为余角。
4. 邻角和对角线的关系:邻角是公共边相邻的两个角,对角线是图形的两个不相邻顶点的线段。
对角线相交于一点的四边形的邻角互补,即对角线切分的两个三角形的内角之和为180度。
二、三角形的基本性质三角形是平面几何中的重要图形,七年级学生需要掌握以下与三角形相关的知识点:1. 三角形的定义和记法:三角形是由三条线段组成的图形,用△ABC表示三角形,其中A、B、C为三角形的三个顶点,AB、BC、CA为三角形的三条边。
2. 三角形的分类:按照角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;按照边长,三角形可以分为等边三角形、等腰三角形和普通三角形。
3. 三角形内角和的性质:三角形内角和等于180度,即△ABC中∠A+∠B+∠C=180度。
4. 直角三角形的性质:直角三角形中,斜边平方等于两直角边平方之和,即c²=a²+b²。
5. 等腰三角形的性质:等腰三角形的底边中点到顶点的距离等于底边的一半,等腰三角形的顶角等于底角。
三、四边形的基本性质四边形是平面几何中的常见图形,七年级学生需要掌握以下与四边形相关的知识点:1. 四边形的定义和记法:四边形是由四条线段组成的图形,用ABCD表示四边形,其中A、B、C、D为四边形的顶点,AB、BC、CD、DA为四边形的四条边。
平面几何知识点总结

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
★28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
★29、塞瓦定理的逆定理:(略)
★30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
★31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
★6、三角形各边的垂直平分线交于一点。
★7、从三角形的各顶点向其对边所作的三条垂线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
ቤተ መጻሕፍቲ ባይዱ
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
高中平面解析几何知识点总结

高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
初中平面几何知识点汇总

初中平面几何知识点汇总
1.平面直角坐标系和点的坐标
2.向量的定义和运算:向量加减、数乘
3. 向量点积和向量夹角的定义
4.线段、射线、直线的定义和区别
5.直线方程的表示:点斜式、截距式、两点式
6.平行和垂直的概念和性质
7.相交线和平行线之间的性质
8.三角形和四边形的定义和性质
9.三角形的内角和、外角和、内切圆、外接圆,三角形的相似性质
10.正方形、长方形、菱形、平行四边形的定义和性质
11.圆的基本概念:圆心、半径、直径、弧长、圆周、面积
12.圆的切线和切点,切线和半径的关系,切线和弦的关系
13.圆的相交和相切的性质和方法
14. 圆的内接和外接多边形的性质
15.三角形中垂线、中线、角平分线和高的概念和性质
16.正多边形的概念和性质,正多边形内角和、外角和
17.相似三角形和全等三角形的定义和性质,相似三角形的判定
18.三角形的勾股定理和解题方法
19.平面镜像和旋转的基本概念和性质
20.平面几何综合题的解答方法
以上就是初中平面几何的所有知识点,希望对您的学习有所帮助。
高中数学竞赛基础平面几何知识点总结

⾼中数学竞赛基础平⾯⼏何知识点总结⾼中数学竞赛平⾯⼏何知识点基础1、相似三⾓形的判定及性质相似三⾓形的判定:(1)平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似;(2)如果⼀个三⾓形的两条边和另⼀个三⾓形的两条边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似(简叙为:两边对应成⽐例且夹⾓相等,两个三⾓形相似.);(3)如果⼀个三⾓形的三条边与另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似(简叙为:三边对应成⽐例,两个三⾓形相似.);(4)如果两个三⾓形的两个⾓分别对应相等(或三个⾓分别对应相等),则有两个三⾓形相似(简叙为两⾓对应相等,两个三⾓形相似.).直⾓三⾓形相似的判定定理:(1)直⾓三⾓形被斜边上的⾼分成两个直⾓三⾓形和原三⾓形相似;(2)如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似.常见模型:相似三⾓形的性质:(1)相似三⾓形对应⾓相等(2)相似三⾓形对应边的⽐值相等,都等于相似⽐(3)相似三⾓形对应边上的⾼、⾓平分线、中线的⽐值都等于相似⽐(4)相似三⾓形的周长⽐等于相似⽐(5)相似三⾓形的⾯积⽐等于相似⽐的平⽅2、内、外⾓平分线定理及其逆定理内⾓平分线定理及其逆定理:三⾓形⼀个⾓的平分线与其对边所成的两条线段与这个⾓的两边对应成⽐例。
如图所⽰,若AM平分∠BAC,则该命题有逆定理:如果三⾓形⼀边上的某个点与这条边所成的两条线段与这条边的对⾓的两边对应成⽐例,那么该点与对⾓顶点的连线是三⾓形的⼀条⾓平分线外⾓平分线定理:三⾓形任⼀外⾓平分线外分对边成两线段,这两条线段和夹相应的内⾓的两边成⽐例。
如图所⽰,AD平分△ABC的外⾓∠CAE,则其逆定理也成⽴:若D是△ABC的BC边延长线上的⼀点,且满⾜,则AD是∠A的外⾓的平分线内外⾓平分线定理相结合:如图所⽰,AD平分∠BAC,AE平分∠BAC的外⾓∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的⾼,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于⼀般三⾓形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当⼀对相似三⾓形有公共定点且其边不重合时,则会产⽣另⼀对相似三⾓形,寻找⽅法:连接对应点,找对应点连线和⼀组对应边所成的三⾓形,可以得到⼀组⾓相等和⼀组对应边成⽐例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张⾓定理在△ABC中D为BC边上⼀点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关⾓度的定理圆周⾓定理及其推论:(1)圆周⾓定理指的是⼀条弧所对圆周⾓等于它所对圆⼼⾓的⼀半(2)同弧所对的圆周⾓相等(3)直径所对的圆周⾓是直⾓,直⾓所对的弦是直径(4)圆内接四边形对⾓互补(5)圆内接四边形的外⾓等于其内对⾓弦切⾓定理:顶点在圆上,⼀边和圆相交,另⼀边和圆相切的⾓叫做弦切⾓。
平面几何知识点总结(已整理)

平面几何知识点总结(已整理)本文档旨在总结和概述平面几何的主要知识点,为读者提供一个简明扼要的参考。
以下为平面几何的重要知识点:1. 点和线- 点:平面几何中最基本的元素,不占据空间,没有大小和形状,用大写字母表示,如A、B、C等。
- 直线:由无限个相连的点构成,没有宽度和长度,用小写字母表示,如ab、cd等。
- 线段:由两个点确定的部分,有特定的长度,用AB、CD表示。
2. 角- 角度:由两条射线构成的图形,以一个为顶点,另两条为腿,用大写字母表示顶点,如∠ABC。
- 直角:角度为90度的角。
- 锐角:角度小于90度的角。
- 钝角:角度大于90度但小于180度的角。
3. 三角形- 三角形是由三条线段组成的图形。
- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
- 根据角度,三角形可以分为直角三角形、锐角三角形和钝角三角形。
- 根据边与角的关系,三角形可以分为正弦三角形、余弦三角形和正切三角形。
4. 四边形- 四边形是由四条线段组成的图形。
- 根据边的属性,四边形可以分为平行四边形、矩形、菱形和正方形。
- 根据角度,四边形可以分为梯形、直角梯形和平行梯形。
5. 圆- 圆是由一条曲线构成的图形,所有点到圆心的距离相等。
- 圆的重要元素有半径、直径和周长。
6. 同位角和内错角- 同位角:两条直线被一条直线切割时,在同一边的两个对应角。
- 内错角:两条平行线被一条直线切割时,在两条直线之间的内部所成的对应角。
以上为平面几何的主要知识点总结。
希望本文档能对读者理解平面几何有所帮助。
平面几何知识点归纳 高中

平面几何知识点归纳高中高中平面几何知识点归纳平面几何是数学中的一门基础学科,它研究的是平面上的点、线、角、面等几何图形及其性质和相互关系。
在高中阶段,平面几何是数学课程的重要组成部分,它包含了许多重要的知识点。
下面将对高中平面几何的知识点进行归纳和总结。
1. 点、线、面的基本概念在平面几何中,点是最基本的概念,它没有大小和形状。
线是由无数个点连在一起形成的,它没有宽度和厚度。
面是由无数个线连在一起形成的,它有长度和宽度。
在平面几何中,点、线和面是最基本的图形,其他的图形都是由它们组成的。
2. 直线和射线的性质直线是由无数个点连在一起形成的,它没有起点和终点。
射线是由一个起点和一个方向确定的,它有一个起点但没有终点。
直线上的任意两点可以确定一条直线,而射线上的任意两点可以确定一条射线。
直线和射线的性质包括平行、垂直和夹角等。
3. 角的概念和性质角是由两条射线共享一个端点形成的,它是用来度量两条射线之间的旋转程度。
角的度量单位是度或弧度。
角的性质包括角的大小、角的类型(锐角、直角、钝角)以及角的和等于360度等。
4. 三角形的性质三角形是由三条线段组成的闭合图形,它是平面几何中最基本的多边形。
三角形的性质包括内角和为180度、三边的关系(边长关系、角度关系)、三角形的分类(等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形)等。
5. 直角三角形的勾股定理和正弦定理、余弦定理直角三角形是一种特殊的三角形,其中一个角是直角(90度)。
直角三角形的勾股定理是一个重要的几何定理,它描述了直角三角形中两个直角边的平方和等于斜边的平方。
正弦定理和余弦定理是用来求解任意三角形的边长和角度的重要公式。
6. 平行线和平行四边形的性质平行线是在同一个平面内永远不相交的直线,它们的斜率相等。
平行四边形是具有两对平行边的四边形。
平行线和平行四边形的性质包括平行线的判定条件、平行四边形的性质(对边平等、对角线互相平分)等。
高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何知识点总结
4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组
对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:
1
PC BP R Q P AB CA BC ABC ABC l .1=⋅⋅∆∆RB
AR
QA CQ ,则、、长线分别交于或它们的延
、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线;
、、,则,这时若
或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=⋅⋅∆∆RB
AR
QA CQ 1
:.3=⋅⋅∆RB
AR
QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、
、的分别是、、塞瓦定理:设M
Q
R
A
C
P
B
;
内接于圆,则有:
设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅;
内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD
AC BC AD CD AB ABCD ⋅≥⋅+⋅三点共线;
、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ∆.5的外接圆上;
在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ∆∆)(.6
;
,则、
于分别交和,连接和弦任意引
的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ;
2.8GH
OG H G O H G O ABC =∆且三点共线,
、、,则、、分别为的外心、重心、垂心欧拉定理:设
三线共点。
、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ∆︒
三角形。
,此三角形称为拿破仑中心组成一个正三角形,则此三角形的边为边作三个正三角形三角形的外面,各以三拿破仑三角形:在任意.10
的莫莱恩线。
为三点共线。
这条直线称、、,则、、长线交于的延、、别和作其外接圆的切线,分、、三个顶点莫莱恩线:过ABC F E D F E D AB CA BC C B A ABC ∆∆.11
三点共线。
、、,则、、的中点分别是以及线段、,对角线延长线交于的、,另一组对边的延长线交于、的一组对边牛顿定理:设四边形Z Y X Z Y X EF
BD AC F BC AD E CD BA ABCD .12
共线。
、、的交点和、和、和三边对边求是凸的不要边形巴斯卡定理:圆内接六N M L BC EF FA CD DE AB ABCDEF )(.13
共点。
、、的三条对角线六边形卜利安香定理:圆外切CF BE AD ABCDEF .14
15.到三角形三顶点距离之和最小的点――费马点 到三角形顶点距离的平方和最小的点――重心 三角形内到三边距离之和最大的点――重心
16.等周问题:
在周长一定的n边形的集合中,正n边形的面积最大;
在周长一定的简单闭合曲线的集合中,圆的面积最大;
在面积一定的n边形的集合中,正n边形的周长最小;
在面积一定的简单闭合曲线的集合中,圆的周长最小;。