初一数学上册总复习知识点汇总复习课程

合集下载

初一七年级上册数学知识点总结完整版

初一七年级上册数学知识点总结完整版

初一七年级上册数学知识点总结完整
版.txt
初一七年级上册数学知识点总结
本文档总结了初一七年级上册数学的主要知识点,旨在帮助同学们复和掌握这一阶段的数学内容。

以下为知识点概述:
1. 整数
- 自然数、零与负数的认识和比较
- 整数的加减法运算及其性质
- 整数的乘除法运算及其性质
2. 分数
- 分数的基本概念与简化
- 分数的加减法运算及其性质
- 分数的乘除法运算及其性质
3. 小数
- 小数的认识和读法
- 小数的加减法运算及其性质
- 小数的乘除法运算及其性质
4. 代数与方程
- 代数运算中的字母表示及常见运算法则- 一元一次方程的解法
- 实际问题中的代数模型与方程解法
5. 数据与概率
- 统计图表的制作与分析
- 样本调查及其与总体的关系
- 事件、概率与概率计算
6. 几何
- 点、线、线段、射线、角和面的认识- 平面图形的基本性质和特征
- 空间图形的基本认识和分类
7. 函数
- 函数的基本概念与函数关系的图象
- 一元一次函数的认识和性质
- 函数的应用和解决实际问题
这些是初一七年级上册数学的主要知识点概览,同学们应该根据教材的具体内容进行详细研究和复。

祝同学们取得好成绩!。

初一数学上册知识点复习

初一数学上册知识点复习

初一数学上册知识点复习
初一数学上册主要包括以下知识点的复习:
1. 数的除法:整除、余数及其性质、整数的分解因式
2. 有理数的加减乘除:有理数的加法、减法、乘法、除法和混合运算
3. 分数的加减乘除:分数的加法、减法、乘法、除法和混合运算、分数的约简和化简
4. 无理数:无理数的概念、无理数之间的大小比较
5. 数的整除与倍数:倍数的概念、公倍数与最小公倍数、约数的概念、公因数与最大公因数
6. 计算与估计:乘法公式、除法公式、整数和分数的混合运算、用除法求商与余、合理估算与控制误差
7. 排列与组合:排列的概念、排列的个数计算、组合的概念、组合的个数计算
8. 几何图形的认识:点、直线和线段、角的概念、图形的分类、平行线与垂直线、图形的变换
9. 长方体、正方体和圆柱的体积和表面积计算
10. 数据的整理与分析:频数与频率、统计图表的制作与分析
以上是初一数学上册的主要知识点,建议你按照教材的顺序进行复习,并结合做一些相关的练习题,加深对知识点的理解和掌握。

初一数学上册知识点汇总

初一数学上册知识点汇总

初一数学上册知识点汇总(一)有理数及其运算复习一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数.2、有理数的分类:(1)按定义分类:(2)按性质符号分类:3、数轴数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等. 5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:(3)两个负数比较大小,绝对值大的反而小.二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.(2)有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数.(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5、有理数的乘法(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n 乘以a,乘方的结果叫做幂.(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减复习(3)一元一次方程复习一、方程的有关概念1、方程的概念:(1)含有未知数的等式叫方程.(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.2、等式的基本性质:(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或a – c = b – c .(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或(3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a.(4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换.二、解方程1、移项的有关概念:把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.2、解一元一次方程的步骤:(1)去分母等式的性质2注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.(2)去括号去括号法则、乘法分配律严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.(3)移项等式的性质1越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面(4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变.(5)系数化为1 等式的性质2两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒.(6)检验二、列方程解应用题1、列方程解应用题的一般步骤:(1)将实际问题抽象成数学问题;(2)分析问题中的已知量和未知量,找出等量关系;(3)设未知数,列出方程;(4)解方程;(5)检验并作答.2、一些实际问题中的规律和等量关系:(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围. (2)几种常用的面积公式:长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S = a2,a为边长,S为面积;梯形面积公式:S = ,a,b为上下底边长,h为梯形的高,S为梯形面积;圆形的面积公式:,r为圆的半径,S为圆的面积;三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积.(3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长.(4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.(5)打折销售这类题型的等量关系是:利润=售价–成本.(6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系. (7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系. (8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程.(9)关于储蓄中的一些概念:本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.(4)图形初步认识总复习(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM. 6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向1.1 正数与负数1.2 有理数1.3 有理数的加减法第一章1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

2024年初一数学上册知识点总结归纳(2篇)

2024年初一数学上册知识点总结归纳(2篇)

2024年初一数学上册知识点总结归纳一、数的认识与运算1.自然数和整数:1.1 自然数的概念1.2 整数的概念1.3 自然数和整数的加减法运算1.4 自然数和整数的乘除法运算2.分数:2.1 分数的概念2.2 分数的相等、比较和化简2.3 分数的加减法运算2.4 分数的乘除法运算3.小数:3.1 小数的概念3.2 小数的相等、比较和化简3.3 小数的加减法运算3.4 小数的乘除法运算4.百分数:4.1 百分数的概念4.2 百分数与分数、小数的相互转化4.3 百分数的加减法运算4.4 百分数的乘除法运算5.算术运算与解决实际问题:5.1 运算顺序5.2 运算法则和策略5.3 算术运算与解决实际问题的应用二、数的测量与几何1.长度:1.1 长度的概念1.2 长度的常用单位1.3 长度的单位换算2.质量:2.1 质量的概念2.2 质量的常用单位2.3 质量的单位换算3.时间和钟表:3.1 时间的概念3.2 时间的读写方法3.3 时间的计算4.面积:4.1 面积的概念4.2 面积的计算5.体积与容量:5.1 体积和容量的概念5.2 体积和容量的计算6.几何图形:6.1 点、线、线段、射线和角的概念6.2 三角形、四边形和圆的概念6.3 几何图形的分类和特征7.图形的计算:7.1 图形的周长计算7.2 图形的面积计算三、数据与统计1.数据的收集与整理:1.1 数据的搜集和整理方法1.2 数据的统计和展示方式2.统计图表的应用:2.1 条形统计图2.2 饼状统计图3.平均数的计算:3.1 简单平均数和加权平均数的计算4.概率与可能性:4.1 概率的概念4.2 事件的概念4.3 概率的计算方法四、综合应用1.数学应用题:1.1 数学应用题的解题步骤1.2 数学应用题的解题技巧2.实际问题的解决:2.1 实际问题的解读和转化2.2 实际问题的解决方法以上是____年初一数学上册的知识点总结归纳。

了解并掌握这些知识点将有助于学生在初一数学学习中的顺利推进和提高。

人教版七年级数学上册知识点归纳上课讲义

人教版七年级数学上册知识点归纳上课讲义

1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。

初一上学期数学知识点总复习

初一上学期数学知识点总复习

初一上学期数学知识点总复习
1. 整数
- 正整数、零、负整数的概念
- 整数的加减法、乘除法
- 判断一个数的正负性
2. 分数
- 分数的概念和表示方法
- 分数的四则运算
- 分数与整数的相互转换
3. 小数
- 小数的概念和表示方法
- 小数的四则运算
- 小数与分数的相互转换
4. 百分数
- 百分数的概念和表示方法
- 百分数的换算
- 百分数与小数、分数的相互转换
5. 数据统计
- 数据的收集、整理和展示
- 平均数、中位数、众数的计算- 折线图、柱形图的绘制和分析
6. 几何图形
- 几何图形的概念和基本要素
- 直线、线段、射线的认识和绘制- 不同类型几何图形的性质和特点
7. 方程与不等式
- 方程的概念和解的意义
- 一元一次方程的解法
- 不等式的概念和解的意义
- 一元一次不等式的解法
8. 几何运动
- 直线运动与曲线运动的概念
- 单位速度、位移与时间的关系
- 运动图像的绘制和分析
9. 数据的处理
- 数据的分类和整理
- 求出简单统计指标
- 制作直方图和折线图
10. 三角形
- 三角形的概念和分类
- 三角形的性质和判定
- 三角形内角和外角的性质
以上是初一上学期数学的主要知识点总结,希望能对你的复有所帮助。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。

希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。

加油!。

人教版初一数学上册知识点归纳总结

人教版初一数学上册知识点归纳总结

人教版七年级数学上册期末总复习第一章有理数1.有理数:(1) 凡能写成q(p,q为整数且p 0)形式的数,都是有理数,整数和分数统称有理数.P注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类正有理数①有理数零正整数正分数②有理数正整数整数零负负有理数负整数负分数正分数负分数(3)注意:有理数中, 1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;⑷自然数0和正整数; a >0 a是正数; a v0 a是负数;a>0 a是正数或0 a是非负数; a < 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素) 的一条直线.3 •相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;的相反数还是0; (2)注意:a-b+c的相反数是-(a-b+c)二-a+b-c ;a-b的相反数是b-a ;a+b的相反数是-a-b ;⑶相反数的和为0 a+b=0 a、b互为相反数.⑷相反数的商为-1.(5)相反数的绝对值相等w w w .x k b o m4.绝对值:(1) 正数的绝对值 等于它本身,0的绝对值是0,负数的绝对值 等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离幵原点的a (a 0)⑵绝对值可表示为:a 0 (a 0)或a (a 0)(3) — 1 a 0 ;—1 a 0 ;aa⑷|a|是重要的非负数,即|a| > 0,非负性;5. 有理数比大小:(1) 正数永远比0大,负数永远比0小; (2) 正数大于一切负数;(3) 两个负数比较,绝对值大的反而小;(4) 数轴上的两个数,右边的数总比左边的数大; (5) -1,-2,+1,+4,,以上数据表示与标准质量的差6. 倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和 0 平方等于本身的数:0,1 立方等于本身的数:0,1 , -1. 7. 有理数加法法则:距离;a (a 0)a (a 0),绝对值越小,越接近标(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)—个数与0相加,仍得这个数.8. 有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+c).9. 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b)10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册总复习知识点汇总收集于网络,如有侵权请联系管理员删除初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a 3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数1.有理数:收集于网络,如有侵权请联系管理员删除(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=.收集于网络,如有侵权请联系管理员删除5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;收集于网络,如有侵权请联系管理员删除(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.收集于网络,如有侵权请联系管理员删除3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 . 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.收集于网络,如有侵权请联系管理员删除7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程的最简形式: ax=b (x 是未知数,a 、b 是已知数,且a ≠0).9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率;收集于网络,如有侵权请联系管理员删除(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h. 12图形认识初步1 多姿多彩的图形几何体也简称体(solid)。

相关文档
最新文档