简单分数应用题的解题方法和步骤

合集下载

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧分数乘除法应用题解题步骤与技巧分数百分数应用题是五、六年级数学中的重点和难点,也是进一步学习初中数学的重要基础。

但是有相当多的学生遇到分数应用题就感到困难。

以下是店铺整理的关于分数乘除法应用题解题步骤与技巧,希望大家认真阅读!解答分数应用题的步骤概括的说是:一找、二转、三画、四列、五算、六查这六个环节。

一找:找单位“1”的量。

找单位“1”的量是解答分数应用题的前提,靠“是”谁、“比”谁、“占”谁,“相当于”谁就把谁看做单位“1”的'量,靠生搬硬套仅能解决一部分分数应用题。

例如:甲的2/5比乙多3/8米,比乙就把乙看作单位“1”是错误的,正确的是要分析2/5是谁的,就把谁看作单位“1”。

分析应用题句子中的分率是分谁就把谁看作单位“1”是最可靠的找单位“1”的方法。

二转:转化单位“1”在分数应用题中,如果题中只有一个单位“1”,那么再难也难不到哪里去了。

只有一个单位“1”的题,可以直接进入下一步,画线段图。

如果题中有多个单位“1”就需要先转化单位“1”再画线段图。

转化单位“1”也是有技巧的,例如:甲是乙的3/5可以转化成乙是甲的5/3、甲比乙少2/5、乙比甲多2/3、甲是甲乙之和的3/8等13种不同的情况,在单位“1”统一后,才能进行下一步,画线段图来解答。

三画:画线段图很多复杂的分数应用题,不画线段图是无法找到数量、分率之间的关系的。

只有学会画线段图,才能找到解答分数应用题的钥匙。

要把线段图画的准,应先画应用题中含有分率的句子,再画既有分率又有数量的句子,第三画含有数量的句子,最后画问题。

把分率画在线段的上方、数量画在线段的下方,可以避免学生把分率和数量相加,也方便清晰的找到数量和分率的对应关系。

四列:看图列式画完线段图,要学会看图,根据分数应用题数量关系列式。

单位“1”的量×所求问题的对应分率=所求问题对应量÷对应分率=单位“1”的量对应量÷单位“1”的量=对应分率五算:准确计算六查:认真检查把计算结果代入到原题中,能够推导回去或者用不同的解题方法得到同一个结果,可以验证,这道题解答正确。

(完整)简单分数应用题的解题方法和步骤

(完整)简单分数应用题的解题方法和步骤

简单分数应用题的解题方法和步骤及练习题一、解题步骤1、找准单位“1”的量。

2、判断单位“1”的量是否是已知条件,如果是,用乘法计算,如果不是,用除法计算。

3、列式计算;4、检验:顺着题目的意思在计算一遍;5、作答.二、单位“1”的判断方法“的”字在前,“比”、“是”在后,意思是在一般情况下,“的”字前面所对应的量和“比"、“是"字后面所对应的量就是单位“1”的量。

一般单位“1”的量都是带单位的。

三、练习(一)、填空1、一个数的是25,单位“1"是(),已知还是未知(),量是( ),分率是( ),用( )计算,列式为( )。

2、米的是多少?单位“1”是( ),已知还是未知( ),量是(),分率是(),用( )计算,列式为().3、一段路长450米,每天修,单位“1"是( ),已知还是未知( ),量是( ),分率是( ),用()计算,列式为()。

4、我们班男生比女生多,男生有30人。

单位“1"是(),已知还是未知( ),量是( ),分率是(),用()计算,列式为( )。

5、我们班男生比女生多,女生有30人。

单位“1”是(),已知还是未知( ),量是(),分率是( ),用( )计算,列式为()。

(二)、解决问题。

1、在一次“献爱心”活动中,都会小学的学生共捐款4000元。

①、一年级捐的是总数的,一年级捐了多少元?②、一年级捐的是二年级的,二年级捐了多少元?③、二年级捐的是三年级的,三年级捐了多少元?④、二年级捐的是四年级的,四年级捐了多少元?⑤、五年级捐的是二年级的,五年级捐了多少元?⑥、五年级捐的是六年级的,六年级捐了多少元?2、按思路分析下题,并列式解答。

小芳读一本小说,5天读了125页,占这本书的,读完这本书要多少天?分析:①、单位“1”是(),单位“1"是( ),已知还是未知(),量是(),分率是( ),用()计算,计算总页数列式为( )。

分数乘除法应用题解题方法总结汇总

分数乘除法应用题解题方法总结汇总

分数乘除法应用题解题方法总结汇总在小学数学中,分数乘除法应用题是一个重点和难点。

很多同学在面对这类题目时,常常感到困惑,不知道如何下手。

其实,只要掌握了正确的解题方法和思路,这类问题就能迎刃而解。

接下来,我将为大家详细总结分数乘除法应用题的解题方法。

一、分数乘法应用题1、求一个数的几分之几是多少这是分数乘法应用题中最常见的类型。

例如:“小明有 120 元零花钱,花去了 1/3,花了多少钱?”解题思路:单位“1”的量×分率=对应量在这个例子中,单位“1”的量是小明原有的 120 元零花钱,分率是1/3,所以用 120×1/3 = 40(元),即小明花了 40 元。

2、连续求一个数的几分之几是多少例如:“果园里有苹果树 180 棵,梨树的棵数是苹果树的 2/3,桃树的棵数是梨树的 3/4,桃树有多少棵?”解题思路:先求出梨树的棵数,即 180×2/3 = 120(棵),再求出桃树的棵数,120×3/4 = 90(棵)。

二、分数除法应用题1、已知一个数的几分之几是多少,求这个数例如:“一本书,已经看了 1/4,正好是 50 页,这本书共有多少页?”解题思路:对应量÷分率=单位“1”的量在这里,对应量是 50 页,分率是 1/4,所以用 50÷1/4 = 200(页),即这本书共有 200 页。

2、已知比一个数多(或少)几分之几的数是多少,求这个数例如:“一件衣服,现价 120 元,比原价降低了 1/5,原价是多少元?”解题思路:如果单位“1”的量未知,设单位“1”的量为 x,根据数量关系列出方程求解。

设原价为 x 元,则(1 1/5)x = 120,解得 x = 150 元。

三、解题关键1、找准单位“1”单位“1”是分数乘除法应用题中的关键。

通常情况下,“是”“比”“占”后面的量就是单位“1”。

例如“男生人数是女生人数的3/4”,这里女生人数就是单位“1”。

六年级下册数学常见分数应用题的解题方法

六年级下册数学常见分数应用题的解题方法

常见的分数应用题的结构和解题方法一、求一个数 是 另一个数的几分之几(或百分之几)是多少 ( 用除法计算 ) ↓ ↓(已知) (单位“1” )→已知↓ ↓具体数量 具体数量【方法: 甲÷乙(乙≠0)=乙甲】 如:甲数是5,乙数是4,甲是乙的几分之几(或百分之几)?(单位“1”)5÷4=411 或【5÷4×100%=1.25×100%=125%】 甲数是5,乙数是4,乙是甲的几分之几(或百分之几)?(单位“1”)4÷5=54 或【4÷5×100%=0.8×100%=80%】 甲数是5,乙数是4,甲比乙多几分之几(或百分之几)?(单位“1”)(5-4)÷4=41 或【(5-4)÷4×100%=0.25×100%=25% 】 甲数是5,乙数是4,乙比甲少几分之几(或百分之几)?(单位“1”)(5-4)÷5=51 或【(5-4)÷5×100%=0.2×100%=20%】二、求 一个数 的 几分之几(或百分之几)是多少 (用乘法计算) (单位“1”) (已知)↓ ↓具体数量(已知) 分率【方法: 单位“1”对应数量×几几(或百几)=几几(或百几)对应数量】 如:甲数是5,乙数是甲数的54(或80%),乙数是多少? (单位“1”)5×54=4 或 【5×80%=4】 甲数是5,乙数比甲数多51(或20%),乙数是多少? (单位“1”)5+5×51=6 或5+5×20%=6 5×(1+51)=6 5×(1+20%)=6甲数是5,乙数比甲数少51(或20%),乙数是多少? 5-5×51=4 或5-5×20%=4 5×(1-51)=4 5×(1-20%)=4 如:一本书共120页,第一天看了全书的51(或20%),第二天看了全书的41(或25%),还剩多少页未看?120-120×51-120×41 或 120×(1-51-41) 120-120×20%-120×25% 或 120×(1-20%-25%)三、已知一个数 的 几分之几 (或百分之几)是多少 (用除法计算) ↓ ↓(单位“1”) (分率)↓ ↓具体数量(未知) (已知) 【方法:几几(或百几)对应数量÷几几(或百几)=单位“1”对应数量】 甲数是5,是乙数的54(或80%),乙数是多少?解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷54(80%)=6.25 ⅹ×54(80%)=5 甲数是5,比乙数多41(或25%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1+41【25%】)=4 ⅹ+41ⅹ【25%ⅹ】=5ⅹ×(1+41【25%】)=5 甲数是5,比乙数少51(或20%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1-51【20%】)=6.25 ⅹ-ⅹ×51(20% )=5 ⅹ×(1-51【20%】)=5如:一本故事书,小王看了20页,是小勇的41(25%),小勇是小刚的51(20%),小刚看了多少页?方程解:设小刚看了ⅹ页,算术方法解: ⅹ×51×41=20 20÷41÷51 ⅹ×25%×20%=20 20÷25%÷20% 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),正好看了200页,这本书共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ+51ⅹ=200 200÷(41+51) 25%ⅹ+20%ⅹ=200 200÷(25%+20%) 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),第二天比第一天少看10页,这本书一共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ-51ⅹ=10 10÷(41-51) 25%ⅹ-20%ⅹ=10 10÷(25%-20%)四、工程问题(行程问题)工作总量=工作时间×工效 工作效率=工作总量÷工作时间工作时间=工作总量÷工效如:一件工程,甲独做8天完成,乙独做10天完成,丙独做12天完成。

分数应用题的解题技巧

分数应用题的解题技巧

分数应用题的解题技巧较复杂的分数应用题,题型广博,变化多端,那么该怎么解题呢?下面是小编为大家找到的分数应用题的解题技巧,我们一起来看看吧!分数应用题的解题技巧一、从确定对应入手找出解题方法分数应用题中有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地确定“量率对应”是解题的关键。

我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法。

例:小冬看一本故事书,第一天看了总页数的1/6,第二天看了总页数的1/3,还剩78页没有看,这本故事书共有多少页?把这本故事书的总页数看作单位“1”,要求这本故事书共有多少页,就要求出剩下的78页的对应分率。

根据已知条件,第一、二天看了总页数的(1/6+1/3),还剩下78页的对应分率是(1-1/6-1/3),求这本故事书共有多少页,就是已知单位“1”的(1-1/6-1/3)是78页,求单位“1”。

于是列式为:78÷(1-1/6-1/3)=156(页)二、通过统一标准量找出解题方法在一道分数应用题中,如果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某一个量为标准量,将其余量的对应分率统一到这个标准量上来,才可列式解答。

例:果园里有苹果树和梨树共420棵,苹果树棵数的1/3等于梨树的4/9,问这两种果树各有多少棵?题中的1/3是以苹果树为标准量,4/9是以梨树为标准量,解题时必须统一成一个标准量。

若以苹果树为单位“1”,则有1×1/3=梨树×4/9,那么梨树就相当于单位“1”的1/3÷4/9,两种果树的总棵数就相当于单位“1”的(1+1/3÷4/9),于是列式为:420÷(1+1/3÷4/9)=240(棵)……苹果树240÷(1/3÷4/9)=180(棵)……梨树也可以把梨树看作单位“1”,或把两种果树的总棵数,或者相差棵数看作单位“1”。

分数应用题的解题方法和技巧

分数应用题的解题方法和技巧

分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。

2、分析题意,找出各个信息所对应的量。

并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。

3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。

总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。

分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。

“1”,就是单位“1”,也就是“标准量”。

如: 我班女生人数是男生人数的32。

这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。

女生人数是比较量,32
是女生所对应的分率。

如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。

五年级分数应用题解题技巧

五年级分数应用题解题技巧

五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。

1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。

- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。

2. 已知单位“1”,求部分量。

- 技巧:用单位“1”的量乘以部分量对应的分率。

- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。

3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。

- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。

4. 分数的加、减法应用题。

- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。

- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。

5. 比较两个量的分率关系。

- 技巧:先求出两个量分别对应的分率,然后进行比较。

- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。

人教版小学六年级数学上册 分数应用题解题技巧方法及练习题

人教版小学六年级数学上册 分数应用题解题技巧方法及练习题

人教版小学六年级数学上册分数应用题解题技巧方法及练习题方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。

例如,假设读了一本故事书,第一天读了全书的5分之1,第二天读了余下的4分之1.那么第二天读了全书的13分之1,全书还剩87分之1.方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。

例如,如果甲数是乙数的4分之9,那么乙数就是甲数的9分之4.方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。

例如,如果四年级人数比五年级人数少4分之1,那么五年级人数比四年级人数多3分之1.方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。

例如,如果甲数的23分之34等于乙数的23分之34,那么甲数是乙数的23分之34,乙数是甲数的23分之34.方法五:甲数是乙数的几分之几转化为甲数是甲乙两数和的几分之几。

例如,如果甲数是乙数的1分之2,那么甲数是甲乙两数和的1分之3.方法六:假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。

但是通过假定某个条件或现象成立,往往可以找到解答的途径。

例如,如果有两筐苹果共重220千克,从甲筐取出,从乙筐取出共重50千克。

那么甲筐原来有130千克苹果,乙筐原来有90千克苹果。

方法七:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。

例如,“一批煤用去了24吨。

这批煤共有多少吨?”在这个问题中,“24吨”与“”表示的同一个数量,都是用去的煤的数量。

一个是具体的量,一个是分数量,这里把“”叫做“24吨”所对应的分率,解题时用“24÷”得到的就是单位“1”的量,在本题中也就是煤的总量。

工程问题:基本数量关系式:工作总量是单位“1”;工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间。

例如,___单独完成需要10天,乙队单独完成需要15天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单分数应用题的解题方法和步骤及练习题
一、解题步骤
1、 找准单位“1”的量。

2、 判断单位“1”的量是否是已知条件,如果是,用乘法计算,如果不是,用除法计算。

3、 列式计算;
4、 检验:顺着题目的意思在计算一遍;
5、 作答。

二、单位“1”的判断方法
“的”字在前,“比”、“是”在后,意思是在一般情况下,“的”字前面所对应的量和“比”、“是”字后面所对应的量就是单位“1”的量。

一般单位“1”的量都是带单位的。

三、练习
(一)、填空
1、一个数的56是25,单位“1”是( ),已知还是未知( ),量是( ),分率是( ),用( )计算,列式为( )。

2、45米的13是多少?单位“1”是( ),已知还是未知( ),量是( ),分率是( ),用( )计算,列式为( )。

3、一段路长450米,每天修19,单位“1”是( ),已知还是未知( ),量是( ),分率是( ),用( )计算,列式为( )。

4、我们班男生比女生多110,男生有30人。

单位“1”是( ),已知还是未知( ),量是( ),分率是( ),用( )计算,列式为( )。

5、我们班男生比女生多110,女生有30人。

单位“1”是( ),已
知还是未知(),量是(),分率是(),用()计算,列式为()。

(二)、解决问题。

1、在一次“献爱心”活动中,都会小学的学生共捐款4000元。

①、一年级捐的是总数的1
,一年级捐了多少元?
5
,二年级捐了多少元?
②、一年级捐的是二年级的4
5
,三年级捐了多少元?
③、二年级捐的是三年级的5
3
,四年级捐了多少元?
④、二年级捐的是四年级的10
7
,五年级捐了多少元?
⑤、五年级捐的是二年级的2
5
⑥、五年级捐的是六年级的4
,六年级捐了多少元?
5
2、按思路分析下题,并列式解答。

,读完这本书要多少天?小芳读一本小说,5天读了125页,占这本书的2
5
分析:①、单位“1”是(),单位“1”是(),已知还是未知(),量是(),分率是(),用()计算,计算总页数列式为()。

②、小芳读了()天,读了()页,平均每天读多少页?列式为()
③、要计算读完这本书要多少天,用()÷()
④、列综合算式解答:
你还有其他解法吗?请写下来:
3、解下列应用题
,这车煤够用多少天?
①、食堂运来一车煤,如果每次用去1
8
,还有多少页没看?
②、一本书有40页,小明看了这本书的2
5
③、一条公路长100km ,修路队第一天修了15,第二天修了310,还有多少千米没修?
④、一件衣服,原价360元,现价比原价降低了110,现价多少元?
⑤、工厂做一批零件,实际做了360个,比计划做的多15,计划做多少个?
⑥、小明有明信片96张,小丽的明信片比小明的少18,小丽有多少张明信片?
⑦、王师傅加工一批零件,47小时加工了32个,那么他一小时加工多少个零件?。

相关文档
最新文档