第06章 生活史对策
6·生活史对策2012

(2) “两面下注”(“bet—hedging”)理论: 根据对生活史不同组分(出生率、幼体死亡率、成体死 亡率等)的影响来比较不同生境。
如果成体死亡率与幼体死亡率相比相对稳定,可预期成 体会“保卫其赌注”,在很长一段时期内生产后代(多 次生殖), 如果幼体死亡率低于成体,则其分配给繁殖的能量就应 该高.后代一次全部产出(单次生殖)。
但晚期表达的有害基因可能会在种群中更持久的保持, 因为年龄较大时才对表性产生影响的突变基因对个体的 适合度贡献已经很小。
拮抗性多效模型:那些对早期繁殖有利,却对生命晚期 有恶劣影响的基因 马鹿 提早繁殖和高繁殖力有关的基因就与低存活力有 关。
其它:科学家发现奇特鱼类每年树上栖息数个月
花溪鳉 弗罗里达、拉丁美洲和加 勒比海红树湿地中的泥塘和有水洞 穴中。
3、生境分类
(1)将生境划分为导致高繁殖付出(高-CR)的生境和导 致低繁殖付出(低-CR) 的生境。
高-CR生境:竞争剧烈,或对小型成体捕食严重。任 何由于繁殖而导致的生长下降都会使未来繁殖付出高 代价。 可预期:在高-CR生境中生活的物种,其繁殖会在达 到一个适度的身体大小以后才开始。 低-CR生境:竞争弱,大型个体处在较强的捕食压力 下,或死亡率很高而且是随机的,推迟繁殖没有任何 优势。
能量分配与权衡: 泛指任何形式的生活史性状之间的负相关关系。 任何一个生物都不可能在同一时间内把每一件事 情都做到最好,因为可用于生长、维持和繁殖 的能量总是有限的。生物必须在这些相互冲突 的需求中进行有效的资源分配以寻找一个最佳 的解决方案
一个理想的具高度适应性的假定生物体应该具 备可使繁殖力达到最大的一切特征:在出生后 短期内达到大型的成体大小,生产许多大个体 后代并长寿-达尔文魔鬼
生活史对策概述

生活史对策概述大气基地贺园园1111700026生活史与生活史对策:生活史(life history)意为生物从其出生到死亡所经历的全部过程,也叫生活周期(life cycle)。
生活史性状包括出生时个体大小;生长形式;成熟年龄;成熟时个体大小;后代的数量、大小、性比;特定年龄和大小的繁殖投入;特定年龄和大小的死亡规律;寿命等。
生活史对策(life history strategy)是指生物在生存斗争中获得的生存对策,也称生态对策(bionomic strategy )或进化对策,例如生殖对策、取食对策、迁移对策、体型大小对策等主要内容:任何生物做出的任何一种生活史对策,都意味着能量的合理分配,并通过这种能量使用的协调,来促进自身的有效生存和繁殖。
每个生物具有生长、维持生存和繁殖三大基本功能,生物必须采取一定的策略配置能够获得的有限资源,其核心主要强调在特定环境中提高生殖、生存和生长能力的组合方式.1)生长对策●生长速度早期演替种:早期迅速生长,具开拓对策(白桦)后期演替种:早期生长缓慢,具保守对策(红松)●生长方式以温带木本植物为例,其顶枝形成有两种主要方式:①有限生长类型:顶枝在冬季完全定型,冬芽形成时就决定了叶子数目。
②无限生长类型:冬芽只含有少量叶原基,在下一个生长季,顶枝尖端在生长季内还能产生新的叶子和节间。
●根冠比率—物质分配2)生殖对策生殖对策实际就包括两个方面的问题:第一是生殖者存活的问题,也即生殖的代价问题,生物生殖必然带来变化的生理压力和个体危险,因此,也就必然会影响到生物的生存;第二是生殖的效率问题,生物选择的对策,都旨在提高生殖的效率,这一点可从植物的生殖行为中证实。
1)体型效应物种个体的大小与其寿命有很强的正相关关系。
2)成体的存活与繁殖成熟个体存活率低,生物繁殖越早,投资于繁殖的能量越多;成熟个体存活率越高,生物的繁殖期越晚(个体较大),分配于繁殖的能量就越少。
3)当前繁殖与未来繁殖如果未来生命期望低,分配给当前繁殖的能量应该高,而如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低。
《生活史对策》PPT课件

(仿MackeMie等,1998)
该模式预示两种环境间观察到的生活史特性的不同
ቤተ መጻሕፍቲ ባይዱ
精选ppt
37
生殖效率也是生殖对策的一个主要问题。
后代的质量 投入能量
生殖效率
如一年生蚊母草是生长在池塘中的。在春天,池塘中心部分是一种相对稳定的环境, 竞争相当激烈,因此蚊母草产生较少的但是较重的种子,以便能迅速萌发。 与此相反,在池塘周围,由于环境较不稳定,它们则产生数量较多、重量较轻的种子, 以便增加从—不良的池塘环境中逃出的机会(Linhart,1974)。
Relationship between adult fish mortality and reproductive effort
as measured by the go精n选apdpot somatic index or GSI (data from 12 Gunderson 1997).
其它范例
Lack(1954)在研究鸟类生殖率进化问题时提出: 每一种鸟的产卵数,有以保证其幼鸟存活率最大为目标的倾向。 成体大小相似的物种,如果产小型卵,其生育力就高,但由此 导致的高能量消费必然会降低其对保护和关怀幼鸟的投资。
低生育力的、亲体有良好的育幼行为 高生育力,没有亲体关怀的行为
在进化过程中,动物可供选择的进化对策
精选ppt
33
产卵少—资源 浪费
产卵多—幼虫 竞争
豆象产 多少卵 合适?
产较多的卵会 耗尽自己的资 源和减少自己 的寿命
一只雌豆象 发现了一株
;
豇豆并开始 产卵
豆象的幼虫不能 在豇豆植株间移动
成年豆象也 无喂幼行为
生殖效率:后代精选质ppt量/投入能量
34
生态学:第6章 生活史对策

Growth
Competition Reproduction
6.2 体型效应 ✓ 生物个体大小差异非常悬殊,主要是由其遗传特征决定的。 ✓ 生物个体大小与其生长发育、繁殖、行为、进化、生态适应性等密切相关。
生物个体大小示意图
✓ 个体大小与生活史周期(寿命)的长短有很好的正相关性,即随着物种个体的增 大,寿命有增长的趋势(左图);但个体大小与内禀增长率之间呈显著的负相关 关系(右图)。
✓ 缓步动物也因此被认为是生命力最强的动物。在隐生的情况下,可以在高温 (151 ℃)、接近绝对零度(-272.8 ℃)、高辐射、真空或高压的环境下生存数 分钟至数日不等。曾经有缓步动物隐生超过120年的记录。
缓步动物门:是动物界的一个门,主要生活 在淡水的沉渣、潮湿土壤以及苔藓植物的水 膜中,少数种类生活在海水的潮间带。有记 录的大约有750余种。
stress
6.3.4 机遇、平衡、周期性生活史对策 Winemiller & Rose(1992)对鱼类生活史对策的研究表明,与种群动态相关的参数, 如:繁殖力(产生的后代数量)、幼体成活率和性成熟年龄之间存在权衡,在这三 维空间中,鱼类的生态对策被划分为三种。
Байду номын сангаас
繁 ①机遇对策:繁殖力低、 殖 幼体成活率低、性成熟 力
✓ 动物界的休眠大致有两种类型: ① 一类是严冬季节来临时(低温和缺少食物)进行的冬眠,如青蛙、刺猬; ② 一类是酷暑、干旱季节的夏眠,如非洲肺鱼、黄鼠。
✓ 休眠是动物界较为常见的现象,如:两栖动物、爬行动物、部分无脊椎动物、少 数的鸟类和哺乳动物。
滞育(diapause):
✓ 昆虫和其他节肢动物长期适应不良环境而形成的种的遗传性。自然情况下,个体 发育到一定阶段,在不良环境到来之前,其生理上已经有所准备,由某些季节信 号(如光周期变化)的诱导而引起的形态发生停顿、生理活动降低等静止现象。
6生活史对策

环境
生物进化方向
6.3.2 生殖价和生殖效率
所有生物都不得不在分配给当前繁殖 ( Current
reproduction)的能量和分配给存活的能量之间进行权
衡,后者与未来的繁殖(future reproduction)相关联。 生殖价(reproduction value)是该个体马上要生 产的后代数量加上那些预期的其在以后的生命过程中要 生产的后代数量。进化预期使个体传递给下一世代的总 如果未来生命期望低,分配给当前繁殖的能量应该高, 而如果剩下的预期寿命很长,分配给当前繁殖的能量应 该较低。
第三部分:种群生态学
三 、 生 活 史 对 策
• 1、能量分配与权衡 • 2、体型效应 • 3、生殖对策 • 4、滞育和休眠 • 5、迁移 • 6、复杂的生活周期
• 7、衰老
生活史(life history):指生物从出生到死
亡所经历的全部过程。
生活史的关键组分包括身体大小(body size)、生长率(growth rate)、繁殖 (reproduction)和寿命(longevity)。 生态对策(bionomic strategy)或生活史对策 ( life history strategy ):生物在生存斗争中 获得的生存对策,如生殖对策、取食对策、 迁移对策 避敌对策、体型大小对策、r对策和K对策等。
2、体型效应
2.1 体型大小与寿命
体型大小是生物体最明显的表面性状, 是生物的遗传特征,它强烈影响到生物 的生活史对策。
一般来说,物种个体体型大小与其寿 命有很强的正相关关系。
图片:体型效应
体 型 效 应
2.2 体型大小与内禀ቤተ መጻሕፍቲ ባይዱ长率
物种个体体型大小与内禀增长率有很强的负相关关 系。
06生活史对策解析

花旗松的球果生产与木材生长的关系(即繁殖成本)
6.2
体型效应
物种个体体型大小与其寿命有很强的正相关关系,并与 内禀增长率有同样强的负相关关系。
个体大小与世代周期的关系
6.3
生殖对策
不同植物种的个体寿命(τ)和 生境中有利于该种一个世代生存 繁殖的时间长度(H)之比,可 表示生境持续稳定性。 τ/H
r -选择 (1)r -选择生物的特性 是新生境的开拓者,但存活要靠机会,所以在 一定意义上,机会主义者( opportunist),很容 易出现“突然的爆发和猛烈的破产”,种群数量变 动较大。 (2)r -选择生物的策略 通常出生率高、寿命短、个体小,一般缺乏保 护后代的机制,竞争力弱,但一般具有很强的扩散 能力,一有机会就入侵新的栖息生境,并通过高的 r 值而迅速增殖。
K-选择 (1)K-选择生物的特性 是稳定环境的保护者,在一定意义上,是保 守主义者( conservatism),当生存环境发生灾 变时很难迅速恢复,如果再有竞争者抑制,就可 能趋向灭绝。 (2)K-选择生物的策略 通常出生率低、寿命长、个体大、具有完善 的保护后代机制,一般扩散能力较弱,但竞争能 力较强,即把有限能量资源多投入于提高竞争能 力上。
大型和小型小天蓝绣球(Phlox drummondi) 生殖价随年龄的变化
6.3.3
生境分类与植物的生活史对策
J. P. Grime等人(1979)在r-和K-选择 的基础上,对生活史式样的分类作了扩充,提出 了在资源丰富的临时生境中的选择,称干扰型 ( R);在资源丰富的可预测生境中的选择,称 竞争型( C);在资源胁迫生境中的选择,称胁 迫忍耐型(S)。 它们的能量分配方式分别为: R-选择主要 分配给生殖,C-选择主要分配给生长,S-选择 主要分配给维持。
第六章生活史对策解析

B. 在繁殖中,生物可以选择能量分配方式。 C. 资源或许分配给一次大批繁殖----单次生殖,或更均匀地随时间分
开分配----多次生殖。 D. 同样的能量分配,可产生或者许多小型后代,或者少量大型的后代。
6.2 能量分配与权衡
6.3 体型效应
目前世界上恐龙脊椎化石最高高度为1.5米,而亚洲至今已 发现的恐龙脊椎化石还没有超过1.1米的。宁夏灵武发掘出 亚洲最大个体恐龙部分骨架 。据专家凭借其中一根高达
1.1米的脊椎判断,这是世界级的恐龙化石。
6.4 生殖对策
6.4.1 r-选择和K-选择
r-选择(r-strategy):生活在条件 严酷和不稳定的环境中,种群内 的个体常把较多的能量用于生殖, 力争使种群增长率达到最大化的 选择。 r-选择( r-selection)者 :采取r对策的生物称r-选择者。
6.5
生境分类 不同繁殖付出生境的物种: 高繁殖付出(高CR)生境物种:推迟繁殖后代, 竞争激烈; 低-CR生境物种:提前繁殖后代,竞争弱.
“两面下注”理论:
多次生殖:成体死亡率与幼体死亡率相比较 为稳定(在很长时期内产生后代);
单次生殖:幼体死亡率低于成体死亡率(分 配给繁殖的能量高,后代一次全部产出)
竞争对策(C-选择):在资源丰富的可预测生 增中的选择,主要将资源分配给生长。
胁迫-忍耐对策(S-选择):在资源胁迫的生境 中的选择,主要将资源分配给维持。
6.6 滞育和休眠
如果当前环境苛刻,而未来环境预期会更好,生物可能进入发育暂时 延缓的休眠状态。休眠(dormancy)亦称“蛰伏”。为适应不利的环 境条件,动物的生命活动处于极度降低的状态。 昆虫的休眠称做滞育,是比较常见的现象。 如果环境条件不适宜,种子可能就会作为种子库的一部分而留在土中 一段时间。有些种子如睡莲的种子可在库中存活成百上千年。 另外,缓步类动物,在发育的任何阶段都可以发生一种叫做潜生现象 的休眠,动物可以在这种状态下存活许多年。 这种蛰伏可作为日周期的一部分发生,如发生在蜂鸟、蝙蝠和鼠中的 那样,也可能持续较长时间 。 响应冷环境的深度蛰伏叫冬眠(hibernation) ,冬眠通常特征是心率 和总代谢降低、核心体温降低于10°C。 一些种类的鸟和哺乳动物,可以通过类似于冬眠的夏季休眠来度过沙 漠长期的高温和类似的生境,这种休眠叫做夏眠(estivation) 。
6生活史对策

—Department of Environmental Science and Engineering—
生殖效率:后代质量 投入能量 生殖效率:后代质量/投入能量
豆象产
产卵少—资源 产卵少 资源 浪费 产卵多—幼虫 产卵多 幼虫 竞争 产较多的卵会 耗尽自己的资 源和减少自己 的寿命
多少卵 合适? 合适?
—Department of Environmental Science and Engineering—
7、衰老
7.9.1 衰老现象 生物体进入老年后,身体恶化,繁殖力、精力、 存活力下降 7.9.2 衰老的原因 机械水平:化学毒物的影响使细胞器崩溃,引 起衰老。 进化影响决定衰老 : 突变积累模型:早期表达的坏基因早期被去除, 晚期表达的则不能被去除而持久地保持在种群中 拮抗性多效模型:部分基因对早期繁殖有利对 生命晚期有害
?
环境
K-对 对
r-对 对
应对
应对
化 r K
r-对 对 K-对 对
物 种 进
环境
过 程
3.2 生殖价和生殖效率 生物个体的生殖价是其即将生产的后代数(当前繁 ( 殖输出), 殖输出),加上预期生产的后代数(未来繁殖输出)。 ), (未来繁殖输出) 生物通过提高后代的质量与投入能量的比值来提高 生殖效率(后代质量/投入能量 )。
—Department of Environmental Science and Engineering—
4、滞育和休眠
4.1 休眠 (dormancy):是由不良环境条件直接引起的,当不 良环境条件消除时,便可恢复生长发育 4.2 滞育 (diapause):昆虫的休眠,是昆虫长期适应不良环 境而形成的种的遗传性。在自然情况下,当不良环境到来之前, 生理上已经有所准备,即已进入滞育。一旦进入滞育必需经过 一定的物理或化学的刺激,否则恢复到适宜环境也不进行生长 发育 4.3 潜生现象(隐生现象, cryptobiosis)、蛰伏 (torper)、 冬眠 (hibernation)、夏眠 (aestivation)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5),生境分类 ),生境分类 Grime的 植物生活史对策的分类——Grime的 CSR三角形 的 的
Grime(1979)认为有四种类型: 竞争对策 竞争对策(competitive strategy)
有利的环境中,常成为群落中的优势种,不利条件下,可通过营养器官的调 节来适应生境的变化.
第六章 生活史对策
1,生活史的概念 ,
生活史( history) 生活史(life history):生物从其出生到死亡所经历的 全部过程. 生活史的关键组分——身体大小,生长率,繁殖,寿命 身体大小,生长率,繁殖, 身体大小 生态对策(bionomic strategy):生物在生存斗争中获得的生存 生态对策 对策.也称为生活史对策 生活史对策(life history strategy) 生活史对策
2,生活史对策的类型 ,
1),能量分配与权衡 ),能量分配与权衡
2),体型效应 ),体型效应 物种个体体型大小与其寿命有很强的正相关关系,并与 内禀增长率有同样强的负相关关系.
个体大小与世代周期的关系
3),生殖对策 ),生殖对策 不同植物种的个体寿命(τ)和 生境中有利于该种一个世代生存 繁殖的时间长度(H)之比,可 表示生境持续稳定性. τ/H r-选择 特点:快速发育,小型成体, 快速发育,小型成体, 快速发育 数量多而个体小的后代, 数量多而个体小的后代,高的 繁殖能量分配和短的世代周期 短的世代周期. 繁殖能量分配 短的世代周期 K-选择 特点:慢速发育,大型成体, 慢速发育,大型成体, 慢速发育 数量少但体型大的后代, 数量少但体型大的后代,低繁 殖能量分配和长的世代周期 长的世代周期. 殖能量分配 长的世代周期
4),生殖价和生殖效率 ),生殖价和生殖效率 x龄个体的生殖价 生殖价(reproductive value)(RVx)是该个体马上 生殖价 要生产的后代数量(当前繁殖输出 当前繁殖输出),加上那些预期的以后 当前繁殖输出 的生命过程中要生产的后代数量(未来繁殖输出 未来繁殖输出). 未来繁殖输出 特点: 特点: 如果未来生命期望低,分配给当前繁殖的能量应该高,而 如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低. 个体的生殖价必然会在出生后升高,并随年龄老化降低. 生殖效率也是生殖对策的一个主要 问题. 生物是通过提高后代的质量与 投入能量的比值来达到提高生殖效 率的目的的.
极端对策(extreme strategy) 极端对策( )
指在严重压迫和干扰下,不能发育(产生种子)的对策.
6),滞育和休眠 ),滞育和休眠
7),迁移 ),迁移 ), 8),复杂的生活周期 ),复杂的生活周期 ),
9),衰老 ),衰老 ),
�
பைடு நூலகம்
耐逆境对策(stress-tolerant strategy) 耐逆境对策( )
多属于寿命长,生长慢,营养物质循环慢,开花既不繁多又不规则的常绿植物.
杂草对策(ruderal strategy) 杂草对策( )
以短的寿命,高的相对生长率,高的种子产量为特征.在资源匮乏时,能 压缩营养部分的分配,增加生殖部分的分配,保证大量种子的产生.