伺服放大器用途原理图解
伺服驱动器原理_伺服驱动器的作用

伺服驱动器原理_伺服驱动器的作用什么是伺服驱动器伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。
一般是通过位置、速度和力矩三种方式对伺服电机进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。
伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。
当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。
该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。
在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度和较宽的测量范围,但这种方法有其固有的缺陷,主要包括:1)测速周期内必须检测到至少一个完整的码盘脉冲,限制了最低可测转速;2)用于测速的2个控制系统定时器开关难以严格保持同步,在速度变化较大的测量场合中无法保证测速精度。
因此应用该测速法的传统速度环设计方案难以提高伺服驱动器速度跟随与控制性能。
伺服驱动器工作原理目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。
功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。
伺服放大器FANUC

伺服放大器FANUC 伺服控制系统的连接,无论是αi或βi的伺服,在外围连接电路具有很多类似的地方,大致分为光缆连接、控制电源连接、主电源连接、急停信号连接、MCC连接、主轴指令连接(指串行主轴,模拟主轴接在变频器中)、伺服电机主电源连接、伺服电机编码器连接等内容。
目前常用的伺服放大器类型有αi伺服放大器、βiSVSP(一体化结构)、βiSVM(I/O Link)、βiSVM(FSSB)等。
(1)αi伺服放大器FANUCαi系列伺服放大器(SVM)用于驱动αi系列伺服电机,它的优点是体积小(宽度有60,90,150,300 五种),功耗低(比α系列减少10%左右)等优点,有普通型和高压两种,需要电源模块(PSM)配合使用。
图6-1-3 αi 放大器连接图说明:①主断路器接通后,CX1A接口输入伺服放大器控制用AC200V电压。
②通过PSM的AC200V引入DC24V,作为控制电源。
通过CXA2A、CXA2B接口,向各个模块供给DC24V。
③CNC 的电源接通,解除急停后,通过FSSB光缆发出MCC吸合信号MCON。
同时,通过伺服放大器接口CX4,解除伺服放大器的急停信号。
④CX3 接口是用来使得内部MCC吸合,从而控制外围的动力电缆。
⑤PSM内把输入AC200V 动力电源经过整流后,转换成DC300V输出。
需要注意的是:电源接通后,PSM中DC300V接通的时间大约为3秒;电源切断后,放电时间需要20分钟以上。
故电源切断后,需要注意接触端子有危险。
⑥JF1/JF2/JF3 的接线主要是伺服电机的反馈信号,包括伺服电机的位置、速度、旋转角度的检测信号。
⑦COP10B为伺服串行总线(FSSB)接口,与CNC系统的COP10A连接,COP10A为伺服串行总线接口,与下一个伺服单元的COP10B连接(光缆)。
(2)带主轴的βi伺服放大器对于βi 系列的伺服放大器,带主轴的放大器SPVM 是一体型放大器,连接如图6-1-4所示。
伺服控制器的工作原理

伺服控制器的工作原理伺服控制器是现代工业中广泛使用的一种控制器,它可以实现对电机的精确运动控制。
伺服控制器通常被用于需要高精度、高速度、高可靠性及大转矩的自动控制系统。
本文将介绍伺服控制器的工作原理。
概述伺服控制器的工作原理基于一个闭环控制系统。
它包含一个控制电路、电机和传感器。
控制电路通过对电机施加合适的电压和电流来控制其旋转,传感器用于检测电机的转速和位置并将这些信息反馈给控制电路。
控制电路根据传感器反馈的信息调整电压和电流来控制电机的运动。
控制电路伺服控制器的控制电路包括一个运算放大器、比较器、计时器和数字转换器。
它通过将输入信号与参考信号进行比较,来控制电机。
参考信号通常是一个电机应该达到的期望位置或速度。
控制电路可以根据传感器的反馈信号与参考信号之间的误差,计算出输出信号来控制电机。
电机伺服控制器通常用于驱动直流电动机或同步电动机。
电机的工作原理基于电流通过导体的磁场引起力矩的作用。
电机的转子在电磁场中旋转,进而带动负载运动。
传感器传感器是伺服控制器的关键组成部分。
它们通过测量电机的转速和位置,将这些信息反馈给控制电路。
反馈信息可以用来计算电机的误差并调整输出信号来控制电机的运动。
控制方式伺服控制器有两种控制方式:位置控制和速度控制。
位置控制位置控制主要用于需要精确控制电机位置的应用。
控制电路根据传感器反馈的电机位置,将输出信号调整为使得电机到达目标位置。
速度控制速度控制主要用于需要精确控制电机速度的应用。
控制电路根据传感器反馈的电机速度和目标速度之间的误差,将输出信号调整为使得电机达到目标速度。
总结伺服控制器通过控制电路、电机和传感器的协同作用,可以实现对电机的精确运动控制。
控制方式分为位置控制和速度控制。
伺服控制器的应用范围广泛,例如制造业中的机器人控制、印刷、包装、电气设备等。
希望本文能够对伺服控制器的工作原理有一个基本的理解。
伺服电机原理图

伺服电机原理图伺服电机是一种能够根据控制系统的指令,精确地控制位置、速度和加速度的电机。
其原理图如下所示:1. 电源模块,伺服电机的电源模块通常由直流电源和电源管理模块组成。
直流电源提供电能,而电源管理模块则用于管理电源的输入和输出,保证电机正常运行。
2. 控制模块,控制模块是伺服电机的核心部分,它包括控制器和编码器。
控制器接收来自控制系统的指令,然后通过编码器将指令转换成电机的运动控制信号,从而实现对电机的精确控制。
3. 传感器模块,传感器模块用于监测电机的位置、速度和加速度等参数,并将这些数据反馈给控制系统,以便控制系统能够及时调整指令,保证电机的运动精度和稳定性。
4. 电机模块,电机模块包括电机本身和驱动器。
电机是伺服电机的执行部分,它通过接收控制模块的控制信号,实现精确的位置、速度和加速度控制。
而驱动器则用于将控制模块的信号转换成电机所需的电流和电压,从而驱动电机正常运行。
伺服电机原理图所展示的各个模块之间密切配合,共同完成对电机的精确控制。
电源模块提供电能支持,控制模块接收指令并转换成控制信号,传感器模块监测电机的运动参数并反馈数据,电机模块则根据控制信号实现精确的运动控制。
这些模块相互作用,构成了伺服电机的整体工作原理。
除了以上所述的模块外,伺服电机的原理图还可能包括一些辅助模块,如温度传感器、过载保护模块等,用于进一步提高电机的性能和可靠性。
这些辅助模块的加入,使得伺服电机能够在更加苛刻的工作环境下稳定运行,为各种工业自动化设备提供了可靠的动力支持。
总的来说,伺服电机原理图所展示的各个模块协同工作,实现了电机的精确控制,为各种工业自动化设备提供了可靠的动力支持。
通过对伺服电机原理图的深入理解,我们能更好地了解伺服电机的工作原理和结构特点,为电机的选型、应用和维护提供有力的支持。
伺服电机与伺服控制系统原理全演示文稿

U
脉宽
脉宽
脉宽
脉宽
周期不变 周期不变
平均直流电压
ωt
第38页,共47页。
7.3 直流伺服电机及其速度控制
U
Ia +
U T Ton
主要内容
Ea
t
VD
Ua
M
Ea
Ia
t
-
直流电机电压的平均值:
T—脉冲周期,
t
UaT 1 0TEaTTonEa
控制 回路
电流环:电流调节,作用:系统快速性、稳定性改善。
触发脉冲发生器:产生移相脉冲,使可控硅触发角前移或 后移。
主回路:可控硅整流放大器:整流、放大、驱动,使电机转动。
第33页,共47页。
7.3 直流伺服电机及其速度控制
主回路由大功率晶闸管构成的三相全控桥式反并接可逆电路,分 成二大部分( Ⅰ和 Ⅱ ),每部分内按三相桥式连接,二组反并 接,分别实现正转 和反转。
i ——电枢电流
a
i f ——励磁电流
R a ——电枢电路的电阻
R f ——励磁回路的电阻
L a ——电枢回路的自感系数
L f ——励磁回路的自感系数
——电动机的机械角速度
第16页,共47页。
2. 机械系统的转矩平衡方程
Te
T2
T0
J
d
dt
T e ——电磁转矩 T 2 ——负载转矩
T 0 ——空载损耗转矩
与晶闸管调速系统比较,速度调节器和电流调节
器原理一样。不同的是脉宽调制器和功率放大器。
第41页,共47页。
7.3 直流伺服电机及其速度控制 脉宽调制器
伺服驱动器的工作原理

伺服驱动器的工作原理
伺服驱动器是一种控制电机运动的设备,其工作原理如下:
1. 反馈控制系统:伺服驱动器中包含一个闭环反馈控制系统,用于监测电机的转速、位置或力矩。
反馈传感器(如编码器或霍尔传感器)将电机的实际状态返回到伺服驱动器中,使其能够实时调整输出信号以达到所需的运动精度和稳定性。
2. 控制信号处理:伺服驱动器接收来自控制器或计算机的控制信号,这些信号包含电机应该执行的运动指令,如加速、减速、位置调整等。
伺服驱动器根据接收的信号和反馈传感器的输入,计算出合适的驱动信号,并将其传递给电机。
3. 电流放大器:伺服驱动器中的电流放大器将控制信号转换为足够大的电流,用于驱动电机。
根据电机的负载情况和运动要求,电流放大器可以对驱动电流进行调节和控制。
4. 电机控制:伺服驱动器通过控制电流的大小和方向,使电机按照预定的速度、位置或力矩运动。
电源电压被转换为电机所需的直流电,以提供电机所需的功率。
5. 保护和监测功能:伺服驱动器通常还具有一系列的保护和监测功能,以确保电机和驱动器的安全运行。
这些功能可能包括过电流保护、过热保护、电压保护等,同时还可以实时监测电机运行状态和故障诊断。
通过以上工作原理,伺服驱动器能够实现对电机运动的精确控制,并在各种工业和自动化应用中发挥重要作用。
伺服驱动器原理图

伺服驱动器原理图伺服驱动器是一种控制系统,它能够根据输入的指令,控制电机的运动和位置。
在工业自动化领域,伺服驱动器被广泛应用于各种机械设备中,如数控机床、自动化生产线等。
它的原理图如下所示:1. 电源模块。
伺服驱动器的电源模块通常由直流电源和电源管理电路组成。
直流电源为整个系统提供电能,而电源管理电路则负责对电源进行稳压、过流保护等处理,以确保系统的稳定运行。
2. 控制模块。
控制模块是整个伺服驱动器的核心部分,它接收来自控制器的指令,并将其转化为电机的运动控制信号。
控制模块通常包括微处理器、编码器接口、PWM模块等部分,通过这些部分的协作,实现对电机的精准控制。
3. 电流检测模块。
电流检测模块用于监测电机的电流情况,以实现对电机的电流控制。
通过对电机电流的监测和调节,可以确保电机在工作过程中不会因为电流过大而损坏。
4. 速度控制模块。
速度控制模块用于监测电机的转速,并根据系统要求对其进行调节。
通过对电机的速度进行精准控制,可以实现对工作过程的精准控制。
5. 位置控制模块。
位置控制模块是伺服驱动器中最关键的部分之一,它用于监测电机的位置,并根据系统要求对其进行调节。
通过对电机位置的监测和调节,可以实现对工作过程的精准控制。
6. 保护模块。
保护模块是为了确保整个伺服驱动器系统的安全运行而设计的。
它通常包括过流保护、过压保护、过热保护等功能,以保护电机和整个系统不受损坏。
伺服驱动器的原理图是整个系统的核心,它通过各个模块的协作,实现对电机的精准控制,从而实现对工作过程的精准控制。
在工业自动化领域,伺服驱动器的应用将会越来越广泛,它将成为工业生产中不可或缺的重要组成部分。
伺服电机及其控制原理-PPT

开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
指令脉冲
脉冲马达
1脉冲 = 1步进角
例 步进角 0.36°的情况 1脉冲 → 0.36°的动作
1000脉冲 → 360°(1圈)
开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
位置 = 脉冲数 速度 = 脉冲频率
42
问题8:伺服电机过热(电机烧毁)。
原因:1、负载惯性(负荷)太大,增大电机和控制器 的容量;2、设备(机械)松动、脱落,重新确认设备 (机械)各部件;3、与驱动器接线错误,确认电机和 控制器名牌,根据说明书检查是否接线错误。4、电机 轴承故障。5、电机故障(接地、缺相等)
43
3.1 伺服控制器概述
伺服驱动器(servo drives) 又称为“伺服控制器”、“伺服放大器”,是 用来控制伺服电机的一种控制器,其作用类似 于变频器作用于普通交流马达,属于伺服系统 的一部分,主要应用于高精度的定位系统。
44
伺服控制器的作用
1、按照定位指令装置输出的脉冲串,对工件进行定位控制。 2、伺服电机锁定功能:当偏差计数器的输出为零时,如果有外力
34
需要我们注意的是: 伺服电机实际使用当中,必须了解电
机的型号规格,确认好电机编码器的分 辨率,才能选择合适的伺服控制器。
35
松下伺服电机常见故障分析
问题1:对伺服电机进行机械安装时,应该 注意什么问题?
由于每台伺服电机都带有编码器,它是一个十分容易碎 的精密光学器件,过大的冲击力会使其破坏。因而在安 装的过程中要避免对编码器使用过大的冲击力。
开环伺服系统结构简图
数控装置发出脉冲指令,经过脉冲分配和功 率放大后,驱动步进电机和传动件的累积误 差。因此,开环伺服系统的精度低,一般可 达到0.01mm左右,且速度也有一定的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服放大器作用原理图解
伺服放大器的作用是将多个输入信号与反馈信号进行综合并加以放大,根据综合信号极性的不同,输出相应的信号控制伺服电机正转或反转。
当输入信号和反馈信号相平衡时,伺服电机停止转动,执行机构输出轴便稳定在一定位置上。
伺服放大器组要由前置磁放大器、触发器、晶闸管主回路和电源等部分组成,其组成如下图所示。
为适应复杂的多参数调节的需要,伺服放大器设置由三个输入信号通道和一个位置反馈信号通道。
因此,它可以同时输入三个输入信号和一个位置反馈信号。
在单参数的简单调节系统中,只使用其中一个输入通道和反馈通道。
在伺服放大器中,前置磁放大器把三个输入信号和一个反馈信号综合为偏差信号,并放大为电压信号U22-21输出。
此输出电压同时经触发器1(或2)转换成触发脉冲去控制晶闸管主回路1(或2)的晶闸管导通,从而将交流220V电源加到两相伺服电机绕组上,驱动两相伺服电动机转动。
当△1>0时,U22-21>0,触发器2和主回路2工作,两相伺服电机正转;当△1<0时,,触发器1和主回路1工作,两相伺服电机反转;两组触发器和两组晶闸管主回路的电路组成及参数完全相同,所以当输入信号和与位置反馈电流If相平衡,前置磁放大器的输出U22-21≈0,两触发器均无触发脉冲输出,主回路1和2中的晶闸管阻断,两相伺服电动机的电源断开,电动机停止转动。
由此可见,伺服放大器相当于一个三位式无触点继电器,并具有很大的功率放大能力。