环境工程原理 列管式换热器课程设计

合集下载

列管式换热器课程设计报告书

列管式换热器课程设计报告书

一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。

板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。

设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。

完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。

(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。

换热所用板片的厚度仅为0. 6~0. 8mm。

同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。

(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。

(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。

(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。

各类材料的换热板片也可适应工况对腐蚀性的要求。

当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。

同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。

列管氏换热器课程设计图

列管氏换热器课程设计图

列管氏换热器课程设计图一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握列管式换热器的结构、工作原理和分类;技能目标要求学生能够运用所学知识分析和解决实际问题;情感态度价值观目标要求学生培养对化工工艺的兴趣,提高环保意识和安全意识。

结合课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果:了解列管式换热器的结构及其组成部分,掌握其工作原理和分类;能运用所学知识分析实际问题,如换热器的选用和设计;培养环保意识和安全意识,关注化工工艺在生产中的应用和可持续发展。

二、教学内容本节课的教学内容主要包括列管式换热器的结构、工作原理、分类和应用。

教学大纲安排如下:1.列管式换热器的结构:介绍换热器的基本结构,包括壳体、管束、管板、管盖等组成部分,以及各种类型换热器的结构特点。

2.列管式换热器的工作原理:讲解换热器的工作原理,包括热交换过程、流体流动状态、传热速率等。

3.列管式换热器的分类:介绍换热器的分类及各类换热器的适用范围和优缺点。

4.列管式换热器的应用:分析换热器在化工、石油、电力等领域的应用实例,探讨换热器在生产过程中的重要作用。

三、教学方法为激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合:1.讲授法:讲解换热器的结构、工作原理、分类和应用,使学生掌握基本概念和理论知识。

2.案例分析法:分析实际生产中的换热器应用案例,帮助学生将理论知识与实际应用相结合。

3.实验法:安排实验室参观或动手实验,让学生直观地了解换热器的结构和操作原理。

4.讨论法:学生分组讨论,分享学习心得和观点,提高学生的合作能力和沟通能力。

四、教学资源为实现教学目标,本节课将采用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识。

2.参考书:提供相关领域的参考书籍,丰富学生的知识储备。

3.多媒体资料:制作精美的PPT,直观地展示换热器的结构和操作原理。

4.实验设备:安排实验室参观或动手实验,让学生亲身体验换热器的运行过程。

列管式换热器课程设计任务书

列管式换热器课程设计任务书

化工原理课程设计任务书一系部名称:应用化学与环境工程系专业:应用化工技术年级:级一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将3000kg/h旳某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水旳压力为0.4MPa,循环水旳入口温度为35℃,出口温度为45℃。

设计一列管式换热器满足上述生产需要。

三、具体规定本设计规定完毕如下设计及计算:1、换热器工艺设计及计算:涉及物料衡算、能量衡算、工艺参数选定及其计算;2、换热器构造设计:涉及换热设备旳重要构造设计及其尺寸旳拟定等;3、绘制换热器装配图:涉及设备旳各类尺寸、技术特性表等,用1号图纸绘制;4、编写设计阐明书:作为整个设计工作旳书面总结,阐明书应简洁、整洁、文字精确。

内容应涉及:封面、目录、设计任务书、概述或引言、设计方案旳阐明和论证、设计计算与阐明、对设计中有关问题旳分析讨论、设计成果汇总(重要设备尺寸、各物料量和状态、能耗、重要操作参数以及附属设备旳规格、型号等)、参照文献目录、总结及感想等。

四、重要技术路线提示1、查阅文献资料,理解换热设备旳有关知识,熟悉换热器设计旳措施和环节;2、根据设计任务书给定旳生产任务和操作条件,进行换热器工艺设计及计算;3、根据换热器工艺设计及计算旳成果,进行换热器构造设计;4、以换热器工艺设计及计算为基本,结合换热器构造设计旳成果,绘制换热器装配图;5、编写设计阐明书对整个设计工作旳进行书面总结,设计阐明书应当用简洁旳文字和清晰旳图表体现设计思想、计算过程和设计成果。

五、进度安排1、收集资料、阅读教材,拟定设计方案0.3周2、换热器工艺设计及计算0.5周3、换热器构造设计0.4周4、绘制换热器装配图0.4周5、编写设计阐明书0.4周六、完毕后应上交旳材料1、设计阐明书1份2、换热器装配图1张七、推荐参照资料1、《化工原理》上册天津大学出版社2、《化工原理》化学工业出版社3、《化工设备机械基本》高等教育出版社4、《换热器设计》上海科技出版社5、《压力容器手册》劳动人事出版社6、《钢制石油化工压力容器手册》化学工业出版社7、《化工管路手册》化学工业出版社指引教师签名日期年月日教研室主任签名日期年月日系主任审核日期年月日化工原理课程设计任务书二系部名称:应用化学与环境工程系专业:应用化工技术年级:级一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将5000kg/h旳某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水旳压力为0.4MPa,循环水旳入口温度为35℃,出口温度为45℃。

列管式换热器-课程设计

列管式换热器-课程设计

列管式换热器-课程设计
换热器是一种重要的化工设备。

随着其应用的不断扩大,对换热器的性能要求也越来越高。

以管式换热器为例,管式换热器具有结构简单、布置便利、运行可靠、热传递效率高、体积小、投资低等优点,在化工领域及各种壳管式再生塔、热交换器、海水-蒸汽换热器等热量转换系统中应用广泛。

本次课程设计的主题为管式换热器,围绕管式换热器的原理、性能与结构特性、设计过程、工艺流程展开设计与分析,具体的实习任务包括:
1. 熟悉管式换热器的基本原理、结构形式及性能特点;
2.学习管式换热器的性能计算方法,包括热量传递系数计算和散热量、传热量、温度梯度计算;
3.访问管式换热器制造厂,了解其生产工艺,深入了解管式换热器的结构、组成;
4.使用半求解数值模拟软件,进行现有管式换热器的模拟计算,提高热量传递性能;
5.按照管式换热器的设计原则、计算手段,进行管式换热器系列设计,并进行实验验证;
6.基于工作介质特性及换热器特点,进行管式换热器优化设计;
7.编制课程设计报告,完成本次课程设计任务。

课程设计任务的实施,将要求设计者在前期研究及样本实验的基础上,熟练掌握管式换热器的传热特性并能够根据不同的实验数据正确分析特性曲线,对比实验做适当的变化和选择,给出精确的设计值,从而客观地反映出不同材料的热传递特性差异;在实验室中勤奋地实践和调整,进一步加深对管式换热器热传递特性及设计方法的认识,提高使用者对新工艺材料和新设备的分析能力及设计能力。

列管式换热器课程设计说明

列管式换热器课程设计说明

设计题目安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院专业班级:高分子材料与工程10-1班2012年11月16日设计要求:(1) 处理能力:5X 105t/a热水(2)操作条件:①热水:入口温度80C ,出口温度60C.②冷却介质:循环水,入口温度30C,出口温度40C .③允许压降:不大于105Pa.④每年按300天计算,每天24小时连续运行•学生应完成的工作:(1) 根据换热任务和有关要求确认设计方案;(2) 初步确认换热器的结构和尺寸;(3) 核算换热器的传热面积和流体阻力;(4) 确认换热器的工艺结构。

参考文献阅读:《化工容器及设备》、《化工原理》、《化工容器及设备》、《化工单元过程及设备课程设计》、《热交换器设计手册》、《换热原理及计算》工作计划:本次课程设计两周时间,第一周主要对换热器全面了解后进行换热器特性参数的有关计算,第二周按照自己的计算的有关参数进行换热器结构的绘制工作。

任务下达日期:2012年11月05日任务完成日期:2012年11月16日指导老师(签名):学生(签字)列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合.6.6 适的计算步骤。

查得计算中用到的各种数据,对该换热器的传热系数 传热面积 工艺结构尺寸等等要进行核算,与要设计的目标进行对照 是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和 参考,来完成本次课程设计。

[关键字]换热器标准方案核算结构尺寸一 •概述•方案的设计与拟定三•设计计算 .............................................. .93.1确定设计方案 ..................................... 9.3.1.1选择换热器的类型......................... (9)3.1.2流动空间及流速的测定...................... (9)3.2确定物性数据 (9)3.3计算总传热系数 .................................. .103.3.1 热流量..................................... ..103.3.2平均传热温差.............................. ..113.3.3冷却水用量 (11)3.4计算传热面积 ................................. ..113.5工艺结构尺寸 .................................... .123.5.1管径与管内流速.............................. ..123.5.2管程数与传热管数 (12)3.5.3传热管排列和分程方法........................ ..123.5.4壳体内径 (13)3.5.5 折流板 (13)3.5.6 接管 ...................................... ..133.6换热器核算.................................... .143.6.1热量核算................................... ..143.6.1.1壳程对流传热系数..................... .143.6.1.2管程对流传热系数..................... ..15163.6.1.3 传热系数 K ..................................................... ..15361.4传热面积S 3.6.2换热器内流体的流动阻力 (16)3.6.2.1管程流动阻力 .......................... .163.6.2.2壳程阻力 ............................... .713・6・2・3换热器的主要结构尺寸和计算结果 ..... ..18四. 设计小结 ............................................ .19五. ........................................................ 心得收获 (20)六. 参考文献 ......................................... ・・21 一.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。

1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。

它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。

催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。

随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。

在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。

催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。

催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。

催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。

原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。

烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。

分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。

吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计一、课程目标知识目标:1. 学生能理解并掌握列管式换热器的工作原理及其在工业中的应用。

2. 学生能够描述列管式换热器的结构特点,并解释其设计参数对换热效率的影响。

3. 学生能够运用基本的物理和数学原理分析换热器内的热量传递过程。

技能目标:1. 学生能够运用所学知识,设计简单的列管式换热器,并进行基本的性能分析。

2. 学生能够通过计算软件或手动计算,完成换热器换热面积的计算。

3. 学生能够运用图表和数据分析方法,评价不同设计参数对换热性能的影响。

情感态度价值观目标:1. 培养学生对能源转换和利用中换热技术的兴趣,激发其探索热能工程领域的热情。

2. 通过团队合作完成换热器的设计,增强学生的团队合作意识和解决问题的能力。

3. 增进学生对工业节能和环境保护意识,培养其负责任的工程伦理观。

本课程针对高年级工程技术类专业的学生,结合学科特点,课程性质偏重于应用实践。

学生应具备一定的物理、数学基础及工程制图能力。

教学要求注重理论联系实际,通过课程学习,使学生不仅掌握换热器的基础知识,还能通过实际操作提高解决实际工程问题的能力,为未来从事相关领域工作打下坚实基础。

二、教学内容1. 列管式换热器基础理论- 换热器概述:定义、分类及在工业中的应用。

- 工作原理:热量传递的基本方式,流体流动与传热的关系。

2. 列管式换热器结构及设计参数- 结构特点:管壳式换热器的构造,管程与壳程的设计。

- 设计参数:影响换热性能的主要参数,包括换热面积、流体流速、温差等。

3. 换热器内的热量传递计算- 热量传递方程:导热、对流和辐射的基本方程。

- 换热系数:不同流体和工况下的换热系数计算。

4. 列管式换热器的设计与性能分析- 设计步骤:换热器设计的基本流程,包括换热面积、管径、管长等计算。

- 性能分析:运用图表和数据分析方法,评价设计参数对换热性能的影响。

5. 案例分析与实操练习- 案例分析:实际工程中的换热器设计案例,分析其设计原理和优化方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yibin University环境工程原理课程设计题目列管式换热器设计专业资源环境与城乡规划管理学生姓名年级指导教师化学与化工学院任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件原料温度石油: 入口96℃,出口34℃ 地点:兰州 石油物性数据()()33815/3.0102.2/0.128/c c o pc oc kg m Pa sc kJ kg CW m C ρμλ-==⨯⋅=⋅=⋅煤油: 入口132℃,出口47℃ 地点: 宜宾 煤油物性数据()()C m W C kg kJ c sPa m kg o c opc c c ⋅=⋅=⋅⨯==-/14.0/22.21005.7/82543λμρ硝基苯:入口124℃,出口50℃ 地点:广州 硝基苯物性数据()()341154/9.8101.558/0.129/c c o pc ockg m Pa sc kJ kg CW m C ρμλ-==⨯⋅=⋅=⋅允许压降:不大于0.1MPa 冷却介质任选五、设计内容1、换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。

在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。

换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。

因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。

若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响(1)固定管板式换热器这类换热器如图1-1所示。

固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2) U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

(4)填料函式换热器填料函式换热器的结构如图1-4所示。

其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。

管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。

填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用2、设计方案的选择 (1)设计任务 处理能力: 10万吨/年 设备型式: 列管式 (2)操作条件①煤油:入口温度132℃,出口47℃ 地点: 宜宾 ②冷却介质:循环水 入口温度 20℃ 出口温度 40℃ ③允许压降:不大于0.1MPa ④煤油物性数据()()C m W C kg kJ c sPa m kg o c opc c c ⋅=⋅=⋅⨯==-/14.0/22.21005.7/82543λμρ⑤每年按300天机算,每天24小时连续运行 3、确定物理性质数据定性温度:可取流体进出口温度的平均值壳程流体煤油的定性温度为5.89247132=+=T 管程流体水的定性温度为3024020=+=T在定性温度下,分别查取管程和壳程流体(冷却水和植物油)的物性参数,见下表:4、设计计算 m s1=89.138882430010107=⨯⨯=-m m t T ㎏/h=3.86kg/sQ=m s1c p1(T 1-T 2)=13888.89x2.22x(132-47)=2620833.543kJ/h=728.01kw平均传热温差计算两流体的平均传热温差 暂时按单壳程、多管程计算。

逆流时,我们有 煤油油:132℃→47℃循环水: 40℃←20℃从而,82.442085ln 2085'=-=∆m t而此时,我们有:25.4208520404713224.0852047132204012212112==--=--===--=--=t t T T P T T t t R式中:21,T T ——热流体(煤油)的进出口温度,单位℃; 21t t ,——冷流体(循环水)的进出口温度,单位℃;R 2+1R-1ln1-PR1-P ln2-P(1+R-2-P(1+R+R 2+1R 2+1))ψ=ψ>0.8符合要求则平均温差:△tm='m t ∆×ψ=0.883x44.82=39.58℃ 冷却水用量由以上的计算结果以及已知条件,很容易算得冷却水用量:883. 0 )1 5 5 1 ( 16 . 02 ) 1 5 5 1 ( 16 . 0 2 ln 5 16 . 0 1 16. 0 1 ln 1 5 1 5 2 2 2 = + + + ⨯ - + - + ⨯ - ⨯ - - - + =Qc=)(12t t C Qpc -=2620833.543/[4.174x(40-20)]=31394.75㎏/h=8.72㎏/s由《常用化工单元设备设计》表1-6。

,查得水与煤油之间的传热系数在290—698w/(㎡·℃)。

初步设定K=500 w/(㎡·℃)估算传热面积估算的传热面积为49.3282.44500728010t =⨯=∆=K Q A ㎡ 5、主要设备工艺尺寸计算 (1) 管径尺寸和管内流速的确定按单管程计算,所需的传热管长度为 L=71.1921025.014.349.32n d s 0=⨯⨯=⋅⋅πA按单管程设计,传热管过长,现取传热管长l=6.5,则该换热器管程数为N p =403.35.671.19≈==l L (管程)热管总根数N=21×4=84(根)由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

横过管束中心线的管数为 n c =1.1N =1.1×84≈11(根)(3)按管尺寸的确定壳程流体进出口接管:取接管内煤油流速为u=1.0m/s ,则接管内径为d=m uV109.0114.382572.744=⨯⨯=πDN,mm 400管程数 4壳程数 1管子规格25*2.5管子根数60中心排管数9管程流通面积,m20.005966换热面积,m226.41换热管长度,mm 6000通过查表,可以发现下面的结构尺寸的换热器和所需的比较接近,故而选择该种换热器:DN,mm 400管程数 4壳程数 1管子规格25*2.5管子根数84中心排管数11管程流通面积,m20.0060换热面积,m237.2换热管长度,mm 65006.换热管6.1换热管的规格及尺寸偏差管子在管板上的排列方式最常用的为图4-1所示的(a)、(b)、(c)、(d)四种,即正三角形排列(排列角为30°)、同心圆排列、正方形排列(排列角为90°)、转角正方形排列(排列角为45°)。

当管程为多程时,则需采取组合排列,图1-10为二管程时管小组合排列的方式之一。

图4.1.管子在管板上的排列方式和组合排列示意图采用组合排列法,即每程均按正三角形排列,隔板两侧采用正方形排列。

6.3横过管束中心线的管数n c =114.107619.119.1≈==N采用多管程结构,取管板利用率η=0.7,壳体内径为 D=mm mm Nt40092.3677.0843205.105.1≈=⨯=⋅η7.折流板折流板间距系列为:100mm ,150mm ,200mm ,300mm ,450mm ,600mm ,800mm ,1000mm 。

折流板厚度与壳体直径和折流板间距有关,见表4-4所列数据。

支承板允许不支承的最大间距可参考表4-5(右)所列数据。

表4-5支承板厚度以及支承板允许不支承的最大间距经选择,我们采用弓形折流板,取弓形折流圆缺高度为壳体内径的25%,则切去的圆缺高度为:h=100mm取折流板间距B=0.7D ,则: B=0.5×400=200mm 可取B=200mm因而查表可得:折流板厚度为5mm ,支承板厚度为8mm ,支承板允许不支承最大间距为1800mm 。

折流板数N B 2912006000=-=折流板圆缺面水平装配。

8.接管8.1.壳程流体进出口时接管取接管内植物油流速为u=0.1m/s 则接管内径为:d=m uV049.00.114.3)8253600/(650044=⨯⨯⨯=π所以,取标准管的内径为50mm 。

8.2.管程流体进出口时的接管取接管内循环水流速u=1.5m/s ,则接管内径:d=m 062.05.114.3)7.9953600/(16250.604=⨯⨯⨯取标准管径为60mm 。

相关文档
最新文档