环境工程原理设计

合集下载

环境工程原理课程设计任务书

环境工程原理课程设计任务书

环境工程原理课程设计任务书一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。

设计一列管式换热器满足上述生产需要。

三、具体要求本设计要求完成以下设计及计算:1、换热器工艺设计及计算:包括物料衡算、能量衡算、工艺参数选定及其计算;2、换热器结构设计:包括换热设备的主要结构设计及其尺寸的确定等;3、绘制换热器装配图:包括设备的各类尺寸、技术特性表等,用1号图纸绘制;4、编写设计说明书:作为整个设计工作的书面总结,说明书应简练、整洁、文字准确。

内容应包括:封面、目录、设计任务书、概述或引言、设计方案的说明和论证、设计计算与说明、对设计中有关问题的分析讨论、设计结果汇总(主要设备尺寸、各物料量和状态、能耗、主要操作参数以及附属设备的规格、型号等)、参考文献目录、总结及感想等。

四、主要技术路线提示1、查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2、根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3、根据换热器工艺设计及计算的结果,进行换热器结构设计;4、以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5、编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。

五、进度安排1、搜集资料、阅读教材,拟定设计方案0.3周2、换热器工艺设计及计算0.5周3、换热器结构设计0.4周4、绘制换热器装配图0.4周5、编写设计说明书0.4周六、完成后应上交的材料1、设计说明书1份2、换热器装配图1张七、推荐参考资料1、《化工原理》上册天津大学出版社2、《化工原理》化学工业出版社3、《化工设备机械基础》高等教育出版社4、《换热器设计》上海科技出版社5、《压力容器手册》劳动人事出版社6、《钢制石油化工压力容器手册》化学工业出版社7、《化工管路手册》化学工业出版社环境工程原理课程设计任务书二一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。

环境工程原理大型作业重力沉降室的设计

环境工程原理大型作业重力沉降室的设计

环境工程原理大型作业重力沉降室的设计重力沉降室是环境工程中常用的一种处理废水悬浮物的设备,具有结构简单、操作方便、运行稳定等特点。

下面将从设计原理、结构和工作原理三个方面进行具体介绍。

1.设计原理:重力沉降室利用重力对废水中的固体颗粒进行沉降分离。

当废水经过沉降室时,由于废水流速的减慢,使得固体颗粒由于自身重力的作用而向下沉降,最终沉积在重力沉降室底部,而清水则从沉降室上部流出。

2.结构设计:重力沉降室的结构应尽量简单,通常分为进水段、沉降段和出水段三部分。

进水段是废水进入沉降室的入口,通常设置在沉降室的一侧,进水段具有一定的宽度,以确保废水能够均匀地进入沉降室。

沉降段即为沉降室的主体部分,其宽度一般为进水段的2倍,以便让废水在沉降室内形成较大的沉降区域。

出水段通常设置在沉降室的另一侧,出水段的宽度与进水段相似,以保持废水流经重力沉降室时的稳定流速。

3.工作原理:当废水进入重力沉降室时,由于重力的作用,其中的固体颗粒会向下沉降,沿着沉降室的底部积累。

同时,为了保持较高的沉降效率,应适当增加沉降室的长度。

较轻的悬浮物则会随着上层水流一同流出沉降室,从出水段排出。

为了进一步提高沉降效果,可以在进水段和出水段之间设置泄流口,以控制进出水的流速,避免流速过快而影响沉降。

为了实现重力沉降室的设计,需要进行一定的工程计算和水力学分析。

首先需要确定废水的流量和水质特点,计算进水段、沉降段和出水段的尺寸和形状。

同时需要考虑沉降室的底部清污装置,以便定期清理沉积的悬浮物。

此外,还需要进行模拟或现场试验,验证设计的合理性,并对工程效果进行评估。

综上所述,重力沉降室的设计是环境工程中的一项重要内容,通过合理选择结构和参数,可以有效地去除废水中的悬浮物,提高水质的处理效果。

通过深入的设计和研究,我们可以进一步完善重力沉降室的性能和工作效率,提升其在环境工程领域的应用价值。

环境工程原理课程设计

环境工程原理课程设计
1 .4 1. 4 ' kG a 1 9.5 0.5 kG a 1 9.50.644 0.5 6.307 10.281 kmol/ m3 h kPa F 2. 2 2 .2 ' k L a 1 2.6 0.5 k L a 1 2.60.644 0.5 120 .600 125 .013 L / h F
0.4
64.4% 50% F
需要进行校正
由下式
1 .4 k a 1 9.5 0.5 k G a F ' G
可得
2 .2 k a 1 2.6 0. 5 k L a F ' L
液膜吸收系数由下式计算:
UL k L 0.095 a w L
2 3
L D L L

0.5
L g L
1 3
代入得
. 3.6 7422266 k L 0.095 -6 119.751 3.6 998.2 5.29 10 0.868m / h



填料选择:
常用填料 环形 (拉西环、鲍尔环、阶梯环) 形状 鞍形 (矩鞍形、弧鞍形)
波纹形(板波纹、网状波纹)
材料:陶瓷、金属、塑料 堆放:整砌、乱堆
选用DN25塑料阶梯环,结构简单,高径比小,在 填料层中填料间有更多的接触点,床层均匀且孔隙 率大,气体的流动阻力小,生产能力大,成本低
基础物性参数
可取: 计算塔径:
u 0.7uF
D 4VS u 4 2400 3600 1.151m 3.14 0.6412

课程思政-环境工程原理-教案

课程思政-环境工程原理-教案

环境工程原理教案)教师姓名:单位:课程名称:环境工程原理《适用对象:环境工程原理教案1一、教学内容第一章绪论1 污染控制技术体系2 污染控制技术原理的基本类型3 环境工程原理的研究方法二、教学目的和要求1.知识目标(1)明确【环境工程原理】课程的地位、作用、学习方法和教学要求;(2)了解环境问题与环境学科的发展和环境污染与环境工程学;(3)掌握环境净化与污染控制技术;(4)掌握环境净化与污染控制技术原理。

2.能力目标包括专业能力、创新能力、情感态度价值观等方面的培养。

(1)了解【环境工程原理】的发展概况和研究内容;(2)学习【环境工程原理】专业课程为今后在资源循环相关领域的研究和开发打下良好的理论分析基础。

三、教学重点和难点1.教学重点(1)环境净化与污染控制技术;(2)环境净化与污染控制技术原理。

2.教学难点环境净化与污染控制技术原理四、教学方法以课堂讲授为主,结合生态破坏和环境污染问题引出学习【环境工程原理】的意义、目的和教学要求,简单介绍【环境工程原理】中的理论基础在本专业中所占据地位,增加学生的学习兴趣。

教学手段采用以PPT为主,板书为辅,介绍一些工程中利用环境工程原理的实例图片。

五、教学过程含课程导入、讲授、小结、作业等第一章绪论课程思政知识点(1):课程思政与中国共产党的初心、使命;讲述新中国成立以来环境工程学科在我国的发展与巨大成就。

【课程导入】产业革命以后,人类的生产力获得了飞速发展、技术水平迅速提高、人口迅速增长,人类活动的强度和范围逐渐增强和扩展,人类与环境的矛盾以及由此带来的环境问题也日趋突出。

【讲授】环境问题与环境学科的发展【讲授】环境污染与环境工程学【讲授】环境净化与污染控制技术概述【讲授】环境净化与污染控制技术原理【讲授】《环境工程原理》的主要研究内容和方法【讲授】《环境工程原理》课程的主要内容和目的课程思政知识点(2):介绍党与国家在环境保护和资源循环利用上的不懈努力【小结】(1)污染控制技术体系;(2)污染控制技术原理的基本类型;(3)环境工程原理的研究方法。

环境工程原理课程设计

环境工程原理课程设计

环境工程原理课程设计课程设计题目:城市生活污水处理厂设计设计要求:1. 以某城市年均生活污水排放量为基础,设计符合国家相关标准的污水处理厂。

2. 按照设计原则,结合实际情况,布置污水处理流程及设施,包括初级处理、中级处理、高级处理等环节。

3. 重点设计生物处理工艺流程和设备,包括生物膜法、好氧池、厌氧池、沉淀池等,根据实际情况选用合适的生物处理方法。

4. 该污水处理厂需设计智能控制系统,可实现对污水流量、水质指标等的实时监测和自动控制。

5. 设计计算初始投资和运营费用,以及建设周期、管理维护方式等。

6. 涵盖文献资料综述、方案设计、设备选型、计算分析等内容,并撰写报告。

设计思路:1. 确定设计参数:根据城市生活污水排放量和水质指标,确定处理量、去除率等参数。

2. 设计初级处理:包括格栅除渣、沉砂池、沉淀池等处理环节,去除悬浮物、泥沙等。

3. 设计中级处理:采用好氧生物处理和厌氧生物处理等方法,进一步去除污水中的有机质和氮磷等营养物质。

4. 设计高级处理:包括沉淀池、生物膜反应器等工艺,去除污水中残留的有害物质和微生物等。

5. 设计智能控制系统:采用自动化控制技术,实现对污水处理流程和设施的智能化监测和控制。

6. 计算初始投资和运营费用:根据上述设计方案和设备选型,计算出初始投资和运营费用,并根据实际情况进行优化。

7. 撰写报告:在完成设计任务后,撰写完整的报告,包括文献资料综述、方案设计、设备选型、计算分析等内容。

参考文献:1. 《城市污水处理技术与工程》2. 《环境工程原理与应用》3. 《现代水处理原理与技术》4. 《生物膜技术在水处理中的应用》5. 《污水处理工程设计实例》。

环境工程原理教案

环境工程原理教案

环境工程原理教案教案标题:环境工程原理教案教学目标:1. 了解环境工程的基本原理和概念。

2. 掌握环境工程中常用的处理技术和方法。

3. 培养学生对环境问题的认识和解决能力。

4. 培养学生的团队合作和创新能力。

教学重点:1. 环境工程的基本原理和概念。

2. 环境工程中的处理技术和方法。

教学难点:1. 环境工程中的处理技术和方法的深入理解和应用。

2. 学生对环境问题的认识和解决能力的培养。

教学准备:1. 教学课件和多媒体设备。

2. 相关的教学资源和实例。

3. 实验室和实践环境。

教学过程:1. 导入环境工程的概念和意义(5分钟):- 引导学生思考环境工程的定义和作用。

- 介绍环境工程对于环境保护和可持续发展的重要性。

2. 环境工程原理的讲解(15分钟):- 介绍环境工程中常用的原理和理论,如质量守恒、能量守恒、动量守恒等。

- 解释这些原理在环境工程中的应用。

3. 环境工程处理技术和方法的介绍(20分钟):- 介绍环境工程中常用的处理技术和方法,如废水处理、废气处理、固体废弃物处理等。

- 分析这些技术和方法的原理、特点和应用范围。

4. 环境工程案例分析(20分钟):- 提供一些实际的环境工程案例,引导学生分析和解决问题。

- 鼓励学生讨论和提出创新的解决方案。

5. 学生实践和实验(30分钟):- 安排学生进行一些实践和实验活动,例如废水处理实验、空气质量监测等。

- 指导学生收集数据、分析结果并进行总结。

6. 总结和评价(10分钟):- 总结本节课的重点内容和学习收获。

- 对学生的表现进行评价和反馈。

教学延伸:1. 鼓励学生参与环境保护和可持续发展的实践活动,如参观环保企业、参与社区环境改善等。

2. 组织学生进行小组项目研究,深入探讨特定环境问题,并提出解决方案。

3. 鼓励学生参与相关的科研和竞赛活动,提升专业能力和创新能力。

教学评估:1. 课堂参与和讨论表现评价。

2. 实践和实验报告评价。

3. 小组项目研究报告评价。

环境工程原理课程设计报告

环境工程原理课程设计报告

环境工程原理课程设计报告一、课程目标知识目标:1. 理解环境工程基本原理,掌握环境污染治理的基本方法和技术;2. 了解环境工程在保护和改善环境质量方面的重要作用,认识我国环境工程领域的发展现状及趋势;3. 掌握环境质量评价、环境规划与管理的基本理论和方法。

技能目标:1. 能够运用环境工程原理分析和解决实际问题,具备初步的环境工程设计与实践能力;2. 能够运用所学知识,对环境工程案例进行综合评价,并提出合理的改进措施;3. 能够通过小组合作,进行环境工程项目的设计与实施,提高沟通协作能力。

情感态度价值观目标:1. 培养学生对环境问题的关注和责任感,激发他们为改善环境质量贡献力量的意愿;2. 树立正确的环境保护观念,使学生认识到环境保护与可持续发展的重要性;3. 培养学生的创新精神和实践能力,提高他们面对环境问题时的自信心。

本课程针对高中年级学生,结合环境工程原理课程特点,注重理论与实践相结合,培养学生的环保意识和实践能力。

在教学过程中,教师需关注学生的个体差异,激发学生的学习兴趣,引导他们通过小组合作、实践探究等途径,达到课程目标。

课程目标的设定旨在使学生在掌握环境工程基本知识的同时,能够运用所学技能解决实际问题,提高他们的环境保护意识和责任感。

后续教学设计和评估将围绕这些具体的学习成果展开。

二、教学内容本课程教学内容主要包括以下几部分:1. 环境工程原理基础:介绍环境工程的基本概念、原理和方法,涉及水污染治理、大气污染治理、固废处理与处置等方面的内容。

参考教材相关章节,组织学生了解环境污染的类型、成因及危害。

2. 环境污染治理技术:详细讲解水处理技术、大气污染控制技术、固废处理技术等,并结合实际案例进行分析。

教学内容涵盖教材中相关章节,旨在使学生掌握环境污染治理的基本技术及其应用。

3. 环境质量评价与规划:介绍环境质量评价、环境规划与管理的基本理论、方法和技术。

依据教材相关章节,组织学生进行环境质量评价实践,提高他们的环境管理能力。

环境工程原理课程设计报告书

环境工程原理课程设计报告书

目录一、吸收技术概况 (3)二、设计任务及步骤 (3)2.1设计任务 (3)三、填料塔操作条件 (3)四、设计方案的确定 (4)4.1吸收流程的选择 (4)4.2吸收剂的选择 (4)4.3填料的选择 (4)4.4吸收工艺流程图(附图)及工艺过程说明 (5)五、吸收塔的物料衡算 (5)5.1基础物性数据 (5)a.液相物性数据 (5)b.气相物性数据 (5)c.气液两相平衡时的数据 (6)5.2物料衡算 (6)5.3填料塔的工艺尺寸计算 (7)a.塔径的计算 (7)b.泛点率校核和填料规格 (9)c.液体喷淋密度校核 (9)5.4填料层高度计算 (9)a.传质单元数的计算 (9)b.传质单元高度的计算 (10)c.填料层高度的计算 (11)5.5填料塔附属高度的计算 (12)5.6液体分布器的简要设计 (12)a.液体分布器的选型 (12)b.分布点密度及布液孔数的计算 (13)5.7其它附属塔件的选择 (14)a. 填料支撑板 (14)b.填料压紧装置 (14)c.气体进出口装置与排液装置 (14)d.吸收塔主要接管的尺寸计算 (15)e.离心泵的选择 (16)5.8流体力学参数计算 (16)a.填料层压力降的计算 (16)六、工艺设计计算结果汇总与主要符号说明 (17)6.1基础物性数据和物料衡算结果汇总 (17)6.2填料塔工艺尺寸计算结果表 (19)6.3流体力学参数计算结果汇总 (20)6.4附属设备计算结果汇总 (20)D聚丙烯塑料阶梯环填料主要性能参数汇总 (20)6.5所用38N6.6主要符号说明 (21)参考文献 (22)设计方案讨论及结束语 (24)一、吸收技术概况当气体混合物与适当的液体接触,气体中的一个或者几个组分溶解与液体中,而不能溶解的组分仍留在气体中,使气体得以分离。

吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5089
五、塔径的计算
2、泛点率的校核
u'
4qV D2
4 2400 3600 1.02
0.85m /
s
f u' 100% 0.85 100% 70%
up
1.21
泛点率在50%—80%之间,所以符合要求
栅板填料
性能优越,但造价过高。
鞍形填料整体性能不如鲍尔环,阶梯环是在鲍尔环基础上 发展来的,整体性能有所提高。
五、塔径的计算
五、塔径的计算
1、泛点气速的计算、填料的选择 炉气总质量流量为:WG qV G 24001.26 3024kg / h
吸收液水的总质量流量为 WL qnLM S 4655.7818 83804.04kg / h
1.003m / s(泛点气速)
取设计空塔气速为 u=1.003×70%=0.702m/s
设计塔径 D 4qV 4 2400 / 3600 1.10m
u
0.702
圆整后取D=1.2m=120mm
五、塔径的计算
填料38mm
比表面积为a=132.5m2/m3、填料因子∅=116m-1;已知,
数 DG=0.039m2/h
3、气液平衡数据:
查得20℃下SO2在水中的亨利系数 E=0.355×104KPa
平衡常数m= E 0.355104 35.04
P 101.325
溶解度系数 H=
s=
998.2
=0.0156kmol / KPa m3
EMs 0.355104 18
三、流体流向的选择
2、气相物性数据:
25℃ SO2混合气体平均摩尔质量 MG=0.05×64+0.95×29=30.75kg/kmol、
黏度 μG=1.81×10-5 N/m
平均密度
ρG=PRMT
101.3 30.75 1.26kg、/ m3 8.31 298
SO2在20℃水中的扩散系数 DL=1.47×10-9m2/s、SO2在25℃空气中扩散系
进塔惰性气相流量
qnG
qV 22.4
T0 T
p p0
1
y1
2400 22.4
273 298
101.3 101.3
1
0.05
93.2425kmol
/
h
该吸收过程属于低浓度吸收,平衡关系为直线,最小液气
比可按下式计算: qnL qnG
qnL qnG
min
33.288
取操作液气比为:
qnL qnG
1.5
qnL qnG
min
1.5 33.288 49.932
则吸收剂水的用量为:qnL 49.932qnG 49.932 93.2425 4655.78kmol / h
物料衡算:qnG Y1 Y2 qnL X1 X 2

X1
qnG qnL
Y1
Y2
X2
1 49.932
任务分工
资料查找
侯鹏飞 陈一鸣 王棣
王棣、陈一鸣

计算
刘彩、侯鹏飞
邹轶


陈一鸣
画图
王棣
同 努

ppt
侯鹏飞

Word整理
刘彩 邹轶
一、操作条件
1、操作温度:20℃
对于物理吸收,降低操作温度,对吸收有利,但低于环 境温度的操作温度需要消耗大量的制冷动力,所以一般情 况取常温较为有利。
2、操作压力:常压
G L
0.2 L
0.0223
0.98
五、塔径的计算
填料25mm
比表面积为σ=223m2/m3、填料因子∅=172m-1;已知,
常温下水的黏度μL=100.5×10-5、 =1
up
0.0223g L0.2
L G
0.0223 9.8 1172 100.5102
0.2
1.26 998.2
对于物理吸收,加压操作一方面利于提高吸收过程的传质 推动力,另一方面也可以减小气体的体积流率,减小吸收 塔径。但从工程角度和经济效益考虑,加压对设备有很大 的要求,因此对于单纯的吸收,一般选用常压。
二、基础物性数据
1、液相物性数据:
20℃水密度ρL=998.2kg/m³ 、黏度μL=100.5×10-5N/m、
环境工程原理课程设计
班级:环工1102 学生姓名:侯鹏飞(组长)、
王棣、邹轶、 陈一鸣、刘彩 指导老师:华虹 完成时间:2013年12月23号
《环境工程原理》课程设计任务书
矿石焙烧炉送出的气体冷却到25℃后送入填料塔,用 20℃清水洗涤除去其中的SO2。
入塔炉气流量为2400m³/h,其中进塔SO2的摩尔分率为 0.05,要求SO2回收率为95%。
1、并流
2、逆流
综上,由于逆流时液气比较并流时小,选用逆流
四、物料衡算
已知:进塔气相SO2摩尔分率 y1=0.05、SO2的回收率 φ=95%
入塔炉气流量 qV=2400m3/h、进塔液相溶质组分摩尔比 X2=0
计算求得 进塔气相SO2摩尔比
Y1
y1 1 y1
0.05 1 0.05
0.0526
⟹出塔气相摩尔比 Y2=Y1(1-φ)=0.0526×0.05
常温下水的黏度μL=100.5×10-5、 =1
up
0.0223g L0.2
L G
0.0223 9.8 1116 100.5102
0.2
1.26 998.2
1.21m / s
(泛点气速)
取设计空塔气速为 u=1.21×70%=0.85m/s
设计塔径 D 4qV 4 2400 / 3600 1.0005m
u
0.85
圆整后取D=1m=100mm
五、塔径的计算
经济核算
填料直径 填料比表面积 填料因子 填料层高度
VP Pa
塔径 塔高 塔体造价 元 填料价格 /元
0.038
132.5 116 6 300 1 8.42 33000
4712
0.025
228 172 4.5 200 1.2 7.32 34500
0.05 2.63103
9.487 104
五、塔径的计算
1、填料类型的选择
拉西环
环 十字环 螺旋环 螺旋环
鲍尔环——阶梯环
填料
鞍形填料
弧鞍填料 矩鞍填料
波纹板填料
拉西环表面未能完全完全利用, 传质效能较低,更为严重的是它自身 的形状引起严重的沟流和壁流,使气 液分布不均匀,相际接触不均。
拉西环的衍生品虽然比表面积有 所增加,但本质缺点没有解决。
由《化工原理(第二版)》利用Eckert泛点关联图
0.5
WL WG
G L
2
ቤተ መጻሕፍቲ ባይዱ
横坐标
u 2
g
G L
L
0.2
纵坐标
五、塔径的计算
0.0223 0.0109
300Pa
横坐标:
WL WG
G L
0.5
83804.04 302.4
1.26 998.2
0.5
0.98
纵坐标:
u2
g
相关文档
最新文档