环境工程原理课程设计列管式换热器的设计
环境工程原理课程设计任务书

环境工程原理课程设计任务书一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。
设计一列管式换热器满足上述生产需要。
三、具体要求本设计要求完成以下设计及计算:1、换热器工艺设计及计算:包括物料衡算、能量衡算、工艺参数选定及其计算;2、换热器结构设计:包括换热设备的主要结构设计及其尺寸的确定等;3、绘制换热器装配图:包括设备的各类尺寸、技术特性表等,用1号图纸绘制;4、编写设计说明书:作为整个设计工作的书面总结,说明书应简练、整洁、文字准确。
内容应包括:封面、目录、设计任务书、概述或引言、设计方案的说明和论证、设计计算与说明、对设计中有关问题的分析讨论、设计结果汇总(主要设备尺寸、各物料量和状态、能耗、主要操作参数以及附属设备的规格、型号等)、参考文献目录、总结及感想等。
四、主要技术路线提示1、查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2、根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3、根据换热器工艺设计及计算的结果,进行换热器结构设计;4、以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5、编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
五、进度安排1、搜集资料、阅读教材,拟定设计方案0.3周2、换热器工艺设计及计算0.5周3、换热器结构设计0.4周4、绘制换热器装配图0.4周5、编写设计说明书0.4周六、完成后应上交的材料1、设计说明书1份2、换热器装配图1张七、推荐参考资料1、《化工原理》上册天津大学出版社2、《化工原理》化学工业出版社3、《化工设备机械基础》高等教育出版社4、《换热器设计》上海科技出版社5、《压力容器手册》劳动人事出版社6、《钢制石油化工压力容器手册》化学工业出版社7、《化工管路手册》化学工业出版社环境工程原理课程设计任务书二一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。
列管式换热器课程设计报告书

一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。
板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。
设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。
完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。
(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。
换热所用板片的厚度仅为0. 6~0. 8mm。
同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。
(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。
(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。
(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。
各类材料的换热板片也可适应工况对腐蚀性的要求。
当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。
同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。
环境工程原理课程设计列管式换热器在牛奶冷却过程中的设计

书列管式换热器在牛奶冷却过程中的设计目录一、绪论1、换热器的设计意义与重要性2、灭菌牛奶冷却换热器计算过程中的主要参数说明二、换热器的原理1、列管式换热器的设计原理2、列管式换热器的设计任务三、设计计算1、确定设计方案2、确定物性数据3、计算总传热系数4、计算传热面积5、工艺结构尺寸6、换热器核算(1)热量核算(2)换热器内流体的流动阻力(3)换热器主要结构尺寸和计算结果总表四、参考文献一、绪论1、换热器的设计意义及其重要性。
换热器是各种工业部门最常见的通用热工设备,广泛应用于化工,能源,机械,交通,制冷,空调及航空航天等各个领域。
换热器不仅是保证某些工艺流程和条件而广泛使用的设备,也是开发利用工业二次能源,实现余热回收和节能的主要设备。
在食品工业中的加热,冷却,蒸发和干燥等的单元操作中,经常见到食品物料与加热或冷却介质间的热交换。
各种换热器的作用,工作原理,结构以及其中工作的流体类型,数量等差别很大,而换热器的工作性能的优劣直接影响着整个装置或系统综合性能的好坏,因此换热器的合理设计极其重要。
目前国内外在过程工业生产中所用的换热器设备中,列管式换热器仍占主导地位,虽然它在换热效率,结构紧凑性和金属材料消耗等方面,不如其他新型换热设备,但她具有结构坚固,操作弹性大,适应性强,可靠性高,选用范围广,处理能力大,能承受高温和高压等特点,所以在工程中仍得到广泛应用。
2、灭菌牛奶冷却换热器计算过程中的主要参数说明T---牛奶的定性温度,℃t---冷盐水的定性温度,℃---牛奶的密度,kg/m3---牛奶的定压比热容,kJ/(kg·℃)---牛奶的导热系数,W/(m·℃)---牛奶的粘度,Pa·s---冷盐水的密度,kg/m3---冷盐水的定压比热容,kJ/(kg·℃)---冷盐水的导热系数,W/(m·℃)---冷盐水的粘度,Pa·sQ----热流量,kWK ----总传热系数,W/(㎡·℃)m t ∆----进行换热的两流体之间的平均温度差,℃ i W ----冷却水用量,kg/s e R ----雷诺准数 r P ---普兰特准数i α----管程传热系数,W/(㎡·℃) 0α----壳程传热系数,W/si R ----冷盐水污垢热阻,㎡·℃/W;o R s ----牛奶污垢热阻,㎡·℃/Wλ----管壁的导热系数,W/(㎡·℃) s n ---传热管数,(根) L ---传热管长度,m P N ---换热器管程数 N ---传热管总根数 ϕ---温度校正系数 c n ---横过管束中心线的管数 t ---管心距,mm D ---壳体内径,mmh ---弓形折流板圆缺高度,mm B ---折流板间距,mm B N ---折流板数 d ---接管内径,mm e d ---当量直径,m o u ---壳程流体流速,m/s i u ---管程流体流速,m/s S ---传热面积,2mp S ---换热器实际传热面积,2m H ---换热器面积裕度 ∑∆i P ---管程压降,Pa 1P ∆---管内摩擦压降,Pa 2P ∆---管程的回弯压降,Pa s N ---壳程串联数t F ---管程压降的结垢修正系数 ∑∆0P ---壳程压降,Pa '1P ∆---流体流经管束的阻力,Pa'2P ∆---流体流过折流板缺口的阻力,Pa二、换热器的设计原理1、列管式换热器的设计原理列管式换热器主要由壳体、管束、管板和封头等部分组成,壳体内部装有平行管束,管束两端固定在管板上。
列管式换热器的课程设计

使用最为广泛的列管式换热器把管子按一定方式固定在管板上, 而管板则安装在壳体内。因此,这种换热器也称为管壳式换热器。常 见的列管换热器主要有固定管板式、带膨胀节的固定管板式、浮头式 和 U 形管式等几种类型。 1.2 换热器类型
根据列管式换热器的结构特点,主要分为以下四种。以下根据本 次的设计要求,介绍几种常见的列管式换热器。
b U 型管换热器 U 型管换热器结构特点是只有一块管板,换 热管为 U 型,管子的两端固定在同一块管板上,其管程至少为两程。 管束可以自由伸缩,当壳体与 U 型环热管由温差时,不会产生温差 应力。U 型管式换热器的优点是结构简单,只有一块管板,密封面少, 运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难; 哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程 管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。 此外,其造价比管定管板式高 10%左右。
换热管管板上的排列方式有正方形直列、正方形错列、三角形直 列、三角形错列和同心圆排列。
正三角形排列结构紧凑;正方形排列便于机械清洗。对于多管程 换热器,常采用组合排列方式。每程内都采用正三角形排列,而在各 程之间为了便于安装隔板,采用正方形排列方式。
管板的作用是将受热管束连接在一起,并将管程和壳程的流体分 隔开来。管板与管子的连接可胀接或焊接。 2.6 壳程结构
在壳程管束中,一般都装有横向折流板,用以引导流体横向流过 管束,增加流体速度,以增强传热;同时起支撑管束、防止管束振动 和管子弯曲的作用。 折流板的型式有圆缺型、环盘型和孔流型等。
圆缺形折流板又称弓形折流板,是常用的折流板,有水平圆缺和 垂直圆缺两种。切缺率(切掉圆弧的高度与壳内径之比)通常为 20%~ 50%。垂直圆缺用于水平冷凝器、水平再沸器和含有悬浮固体粒子流 体用的水平热交换器等。垂直圆缺时,不凝气不能在折流板顶部积存, 而在冷凝器中,排水也不能在折流板底部积存。弓形折流板有单弓形 和双弓形,双弓形折流板多用于大直径的换热器中。
列管式换热器课程设计说明

设计题目安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院专业班级:高分子材料与工程10-1班2012年11月16日设计要求:(1) 处理能力:5X 105t/a热水(2)操作条件:①热水:入口温度80C ,出口温度60C.②冷却介质:循环水,入口温度30C,出口温度40C .③允许压降:不大于105Pa.④每年按300天计算,每天24小时连续运行•学生应完成的工作:(1) 根据换热任务和有关要求确认设计方案;(2) 初步确认换热器的结构和尺寸;(3) 核算换热器的传热面积和流体阻力;(4) 确认换热器的工艺结构。
参考文献阅读:《化工容器及设备》、《化工原理》、《化工容器及设备》、《化工单元过程及设备课程设计》、《热交换器设计手册》、《换热原理及计算》工作计划:本次课程设计两周时间,第一周主要对换热器全面了解后进行换热器特性参数的有关计算,第二周按照自己的计算的有关参数进行换热器结构的绘制工作。
任务下达日期:2012年11月05日任务完成日期:2012年11月16日指导老师(签名):学生(签字)列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合.6.6 适的计算步骤。
查得计算中用到的各种数据,对该换热器的传热系数 传热面积 工艺结构尺寸等等要进行核算,与要设计的目标进行对照 是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和 参考,来完成本次课程设计。
[关键字]换热器标准方案核算结构尺寸一 •概述•方案的设计与拟定三•设计计算 .............................................. .93.1确定设计方案 ..................................... 9.3.1.1选择换热器的类型......................... (9)3.1.2流动空间及流速的测定...................... (9)3.2确定物性数据 (9)3.3计算总传热系数 .................................. .103.3.1 热流量..................................... ..103.3.2平均传热温差.............................. ..113.3.3冷却水用量 (11)3.4计算传热面积 ................................. ..113.5工艺结构尺寸 .................................... .123.5.1管径与管内流速.............................. ..123.5.2管程数与传热管数 (12)3.5.3传热管排列和分程方法........................ ..123.5.4壳体内径 (13)3.5.5 折流板 (13)3.5.6 接管 ...................................... ..133.6换热器核算.................................... .143.6.1热量核算................................... ..143.6.1.1壳程对流传热系数..................... .143.6.1.2管程对流传热系数..................... ..15163.6.1.3 传热系数 K ..................................................... ..15361.4传热面积S 3.6.2换热器内流体的流动阻力 (16)3.6.2.1管程流动阻力 .......................... .163.6.2.2壳程阻力 ............................... .713・6・2・3换热器的主要结构尺寸和计算结果 ..... ..18四. 设计小结 ............................................ .19五. ........................................................ 心得收获 (20)六. 参考文献 ......................................... ・・21 一.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
列管式换热器课程设计

列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。
1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。
它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。
催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。
随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。
在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。
催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。
催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。
催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。
原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。
烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。
分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。
吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。
列管式换热器的设计

物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yibin University环境工程原理课程设计题目列管式换热器的设计专业资环学生姓名陈皓年级化工12级4班指导教师徐慎颖化学与化工学院2014.12任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件煤油 16万吨/年 4*4万吨/年 121.2吨/天原料温度煤油:入口132℃,出口47℃地点:宜宾煤油物性数据允许压降:不大于0.1MPa冷却介质任选五、设计内容1、概述2、设计方案的选择3、确定物理性质数据4、设计计算计算总传热系数计算传热面积需考虑设备与环境之间热交换,保温等条件5、主要设备工艺尺寸设计管径尺寸和管内流速的确定传热面积、管程数、管数和壳程数的确定接管尺寸的确定6、设计结果汇总7、设计心得目录任务书 ........................................................................................................ 错误!未定义书签。
概述与设计方案简介................................................................................ 错误!未定义书签。
一、换热器的类型 ................................................................................ 错误!未定义书签。
二、换热器 ............................................................................................ 错误!未定义书签。
三、换热器类型 .................................................................................... 错误!未定义书签。
1.固定管板式换热器......................................................................... 错误!未定义书签。
2.U型管换热器 ................................................................................. 错误!未定义书签。
3.浮头式换热器................................................................................. 错误!未定义书签。
4.填料函式换热器............................................................................. 错误!未定义书签。
四、换热器类型的选择 ........................................................................ 错误!未定义书签。
五、流径的选择 .................................................................................... 错误!未定义书签。
六、材质的选择 .................................................................................... 错误!未定义书签。
七、管程结构 ........................................................................................ 错误!未定义书签。
设计计算.................................................................................................... 错误!未定义书签。
一、确定设计方案 ................................................................................ 错误!未定义书签。
1.选择换热器的类型......................................................................... 错误!未定义书签。
2.流动空间及流速的确定................................................................. 错误!未定义书签。
二、确定物性数据 ................................................................................ 错误!未定义书签。
三、计算总传热系数 ............................................................................ 错误!未定义书签。
1.热流量............................................................................................. 错误!未定义书签。
2.平均传热温差:............................................................................. 错误!未定义书签。
3.冷却水用量..................................................................................... 错误!未定义书签。
4.总传热系数K.................................................................................. 错误!未定义书签。
四、计算换热面积 ................................................................................ 错误!未定义书签。
五.工艺结构尺寸 .................................................................................. 错误!未定义书签。
1.管径和管内流速............................................................................. 错误!未定义书签。
2.管程和传热管数............................................................................. 错误!未定义书签。
3.平均传热温差校正及壳程数......................................................... 错误!未定义书签。
4.传热管的排列和分程方法............................................................. 错误!未定义书签。
5.壳体内径......................................................................................... 错误!未定义书签。
6.折流板............................................................................................. 错误!未定义书签。
7.接管................................................................................................. 错误!未定义书签。
六、换热器核算 .................................................................................... 错误!未定义书签。
1.热量核算......................................................................................... 错误!未定义书签。
1.1壳程对流传热系数...................................................................... 错误!未定义书签。
1.3总传热系数K。
........................................................................... 错误!未定义书签。
1.4传热面积校核.............................................................................. 错误!未定义书签。
2.换热器内流体的流动阻力 ................................................................ 错误!未定义书签。
2.1管程阻力...................................................................................... 错误!未定义书签。
2.2壳程阻力...................................................................................... 错误!未定义书签。
七、换热器的主要结构尺寸和计算结果表 ........................................ 错误!未定义书签。