三角函数公式及常见题型

合集下载

三角函数公式典型例题大全

三角函数公式典型例题大全

高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。

三角函数公式大全高中数学

三角函数公式大全高中数学

三角函数公式及练习【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式.【要点梳理】要点一:诱导公式诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z ∈要点诠释:(1)要化的角的形式为α±⋅ 90k (k 为常整数);(2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆记忆口诀“奇变偶不变,符号看象限”,意思是说角90k α⋅± (k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值.①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式.【典型例题】类型一:利用诱导公式求值例1.求下列各三角函数的值:(1)10sin 3π⎛⎫-⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解.【答案】(1)2(2)2-(3)1【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭.(3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1.【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具.举一反三:【变式1】(2018秋南京期末)已知4sin 5x =,其中02x π≤≤.(1)求cos x 的值;(2)求cos()sin()sin(2)2x x x ππ----的值.【答案】(1)35;(2)37【解析】(1)∵4sin 5x =,02x π≤≤,∴3cos 5x ==;(2)∵4sin 5x =,3cos 5x =,∴原式3cos 3534cos sin 755x x x ===++.例2.(1)已知cos 63πα⎛⎫-=⎪⎝⎭,求25cos sin 66ππαα⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值.(2)已知1cos(75)3α-︒=-,且α为第四象限角,求sin(105°+α)的值.【答案】(1)233+-(2)223【解析】(1)∵5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫+=--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 63πα⎛⎫=--=-⎪⎝⎭,222232sin sin 1cos 166633πππααα⎛⎡⎤⎛⎫⎛⎫⎛⎫-=--=--=-= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭∴253223cos sin 66333ππαα⎛⎫⎛⎫+--=-=-⎪ ⎪⎝⎭⎝⎭.(2)∵1cos(75)03α-︒=-<,且α为第四象限角,∴α―75°是第三象限角,∴sin(75)α-︒=223==-,∴22sin(105)sin[180(75)]sin(75)3ααα︒+=︒+-︒=--︒=.【总结升华】注意观察角,若角的绝对值大于2π,可先利用2k π+α转化为0~2π之间的角,然后利用π±α、2π-α等形式转化为锐角求值,这是利用诱导公式化简求值的一般步骤.举一反三:【变式1】已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】2213-【解析】∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α),∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴22sin(75)3α︒+===-.∴122221cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.类型二:利用诱导公式化简例3.(2018春陕西长安区期中)(1)计算cos300°―sin(―330°)+tan675°(2)化简sin[(21)]sin[(21)]sin(2)cos(2)n n n n απαπαπαπ+++-++⋅-(n ∈Z ).【思路点拨】(1)原式各项中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数计算即可得到结果;(2)原式利用诱导公式化简,约分即可得到结果.【答案】(1)-1;(2)2cos α-【解析】(1)原式=cos(360°―60°)+sin(360°―30°)+tan(720°―45°)=cos60°―sin30°―tan45°=111122--=-;(2)原式sin sin 2sin 2sin cos sin cos cos αααααααα---===-.【总结升华】诱导公式应用的原则是:负化正,大化小,化到锐角就终了.举一反三:【变式1】(2017江苏连云港月考)化简与求值:(1)cos(2)sin()sin()tan(3)2παπαπαπα-++-.(2.【答案】(1)cos α;(2)1【解析】(1)cos(2)sin()cos sin cos cos tan sin()tan(3)2παπααααπαααπα-+-==-+-.(2|cos10sin10|1cos10sin10︒-︒==︒-︒.类型三:利用诱导公式进行证明例4.求证:tan(2)sin(2)cos(6)tan 33sin cos 22παπαπααππαα----=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【思路点拨】(1)要证明的等式左边有切有弦,而等式右边只有切;(2)等式左边较复杂但却可以直接利用诱导公式.解答本题可直接把左式利用诱导公式进行化简推出右边.【证明】左边tan()sin()cos()sin 2cos 222αααπππαπα---=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦(tan )(sin )cos sin cos 222αααππαπα--=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦22sin sin cos sin sin cos 22ααππαααα==-⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭sin tan cos ααα=-=-=右边,原式得证.【总结升华】利用诱导公式证明等式,主要思路在于如何配角,如何去分析角之间的关系.举一反三:【变式1】设A 、B 、C 为ABC ∆的三个内角,求证:(1)()sin sin A B C +=;(2)sincos22A B C+=;(3)tancot 22A B C+=【证明】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证.(2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证.(3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证.【变式2】设8tan 7a απ⎛⎫+= ⎪⎝⎭.求证:1513sin 3cos 37720221sin cos 77a a πααππααπ⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.【证明】左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦88sin 3cos 7788sin cos 77ππααππαα⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭8tan 33781tan 17a a παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边.∴等式成立【巩固练习】1.对于诱导公式中的角α,下列说法正确的是()A .α一定是锐角B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2.已知sin()0πθ+<,cos()0θπ->,则下列不等式关系中必定成立的是()A .sin θ<0,cos θ>0B .sin θ>0,cos θ<0C .sin θ>0,cos θ>0D .sin θ<0,cos θ<03.sin 300 的值为()4.(2017贵州模拟)已知1sin(65)3α︒+=,则cos (25°-α)的值为()A .13-B .13C .223-D .2235.(2018四川广安模拟)已知2sin()43πα+=,则cos()4πα-的值等于()A .23-B .23C .53D .53±6.在直角坐标系,若α与β的终边关于y 轴对称,则下列等式恒成立的是()A .sin()sin απβ+=B .sin()sin απβ-=C .sin(2)sin παβ-=-D .sin()sin αβ-=7.sin34π·cos 625π·tan 45π的值是()A .-43B .43C .-43D .438.)2cos()2sin(21++-ππ等于()A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.tan2010°的值为.10.(2018秋苏州期末)已知θ是第三象限角,且2sin 2cos 5θθ-=-,则sin cos θθ+=________.11.sin315°―cos135°+2sin570°的值是________。

三角函数与解三角形题型归纳及习题含详解

三角函数与解三角形题型归纳及习题含详解
2 简而言之即“奇变偶不变,符号看象限”. 题型归纳及思路提示
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。

其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。

两倍角的正弦、余弦、正切。

、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。

要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。

了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。

由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。

2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。

每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。

总的分值为 15 分左右,占全卷总分的约 10 左右。

( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。

根据图象求函数的表达式,以及三角函数图象的对称性。

如 2000 年第( 5 )题、( 17 )题的第二问。

( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。

如 2002 年( 15 )题。

( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。

一般要先对已知的函数式变形,化为一角一函数处理。

如 2001 年( 7 )题。

( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。

( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用
恒等变形一直三角函数中的一个难点,但在高考中也并非重点,因为在高考中,三角恒等变换由于题型的原因变得相当简单。

但是三角恒等变换题型能够培养学生计算、分解、添加项等各方面的能力,所以在学习必修四中学生们应该大量练习,从练习中也能理解三角函数的真正意义。

下面给出了三角函数常见变形形式和几道典型例题。

】4.设函数f(x)=(a为实常数)在区间上的最小值为-4,
那么a的值等于_______
三角形中恒等式锦囊:
11.求证:。

分析:这是一道三角恒等的证明问题,解决这类问题的一般策略是“切割化弦”、由繁到简。

其基本思路是根据题目的特点,结合有关三角公式,作适当的恒等变形。

证法1:左边
右边证法2:右边
证法3:右
边左边证法4:右边
左边证法5:右边
左边证法6:因为
,又
所以
从而,故原式成立。

反思:对三角公式做到不仅会用,而且能变形应用,这样才达到了灵活运用公式的目的,才能从中体会到公式变形的妙处及知识间的内在联系。

原题还可作如下变形,
同学们不妨试着证一下。

变形:;;
;;;;
;。

三角函数常用公式及用法

三角函数常用公式及用法三角函数是数学中重要的概念,它描述了三角形的各个边和角之间的关系。

三角函数常用公式及用法可以帮助我们解决各种与三角形有关的问题。

以下是三角函数的常用公式及用法的详细介绍。

1. 正弦函数(sine function):sin(x)正弦函数是一个周期函数,其周期为2π。

它可以表示为一个直角三角形的斜边与斜边与对边之比。

正弦函数的值域在-1到1之间。

常用公式及用法:- sin(β) = a / c (a为对边,c为斜边)- sin(α) = b / c (b为邻边,c为斜边)- 正弦函数的逆函数是反正弦函数,通常表示为sin^(-1)(x),也可记作arcsin(x)。

它表示的是当sin(x)等于一些值时,x的取值范围。

2. 余弦函数(cosine function):cos(x)余弦函数也是一个周期函数,其周期为2π。

它可以表示为一个直角三角形的邻边与斜边之比。

余弦函数的值域在-1到1之间。

常用公式及用法:- cos(β) = b / c (b为邻边,c为斜边)- cos(α) = a / c (a为对边,c为斜边)- 余弦函数的逆函数是反余弦函数,通常表示为cos^(-1)(x),也可记作arccos(x)。

它表示的是当cos(x)等于一些值时,x的取值范围。

3. 正切函数(tangent function):tan(x)正切函数是一个周期函数,其周期为π。

它可以表示为一个直角三角形的对边与邻边之比。

正切函数的值域为整个实数集。

常用公式及用法:- tan(β) = a / b (a为对边,b为邻边)- tan(α) = b / a (b为邻边,a为对边)- 正切函数的逆函数是反正切函数,通常表示为tan^(-1)(x),也可记作arctan(x)。

它表示的是当tan(x)等于一些值时,x的取值范围。

4. 余切函数(cotangent function):cot(x)余切函数是正切函数的倒数,即cot(x) = 1 / tan(x)。

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。

4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。

三角函数二倍角正弦、余弦、正切五种题型总结


例 1.已知 sin(
) 3 ,求 cos( ) .
12 2 5
6
例 2.已知 sin( ) m ,求 sin 2 . 4
例 3.若
,则
例 4.若
,则
变式练习: 1.设 为锐角,若
2.若
,则
,则 的值为
的值为
小结:给值求值是求值问题中最常见的题型,关键是寻求所求式子与已知式子之间的等量 或者和差关系,考查公式应用和变换的技巧.
题型四、与同角三角函数的结合考查
例 1.若
,则
例 2.若角
,则
例 3.若
,则
的值为______ .
变式练习:1.已知 求 若
,且 的值;

. ,求 的值.
2若
,则
题型五、函数性质以及最值得考查 例 1.已知 f (x) sin 2 x 2sin x cos x 3cos2 x ,求:
(1)f (x)的最大值以及取得最大值的自变量的集合; (2)f (x)的单调区间.
4
4
tan 22.5 1 tan 2 22.5
tan 75 变式练习:1. 1 tan 2 75
2. 求 sin10°sin30°sin50°sin70°的值.
方法一:适用 sin
sin 2 2 cos
,不断地使用二倍角的正弦公式
方法二:将正弦题目中的正弦形式全部转化为余弦形式,利用 cos
例 2.已知函数 f (x) sin x cos x cos 2 x 1 .
22
2
(Ⅰ)求函数 f (x) 的最小正周期及单调递增区间;
(Ⅱ)求函数 f (x) 在[ , ] 上的最大、小值.
小结:要求函数最值,先用降幂公式把原式降为低次幂,然后用辅助角公式化成

三角函数常考题型及解题方法

直线和圆的位置关系知识点补充知识点1:判断直线和圆的位置关系:(1)利用圆心到直线的距离等于半径。

(2)直线过一定点,此定点在圆内,则直线和圆相交。

知识点2 圆),(,00222y x r y x 经过圆上点=+的切线方程为200r yy xx =+;点),(00y x 为圆,)()(222r b y a x =-+-上一点,则过该点的切线方程为200))(())((r b y b y x x a x =--+--知识点 3 ;过圆外一点可作出圆的两条切线,求切线方程时,通常),(,00222y x r y x 经过点=+设切线的点斜式方程,若求出的k 只有一个,则说明还有一条切线必垂直于x 轴(无斜率),。

应补上。

三角函数的图象和性质知识点1 :只要求三角函数的周期,对称轴,对称中心,单调区间,值域,一般是将三角函数化为同角一次,在此使用辅助角公式。

)sin(ϕ+=wx A y ,使用对三角函数的整体思想去做。

知识点2 三角函数的两种图象平移:(1)先伸缩后平移;(2)先平移后伸缩知识点3 三角函数周期的求解方法(1)利用求解周期的定义(2)利用公式wT w T ππ==,2 (3)对于较为复杂的三角函数转化为)sin(ϕ+=wx A y +k 求解知识点4 确定三角函数的单调区间函数)sin(ϕ+=wx A y (A>0,w>0)的单调区间的确定:基本思路是讲ϕ+wx 看做一个整体,由函数名称对于的原单调区间求解对于的x 的范围若0<w ,方式(1)通过诱导公式将负号诱导,原函数的增区间变为减区间,减区间变为增区间。

(2)利用复合函数的单调性。

知识点5 已知函数图象上的点求解析式)sin(ϕ+=wx A y 的方法(1)绘出图象确定解析式)sin(ϕ+=wx A y 的题型,有时从寻找“五点法”的第一个零点()0,wϕ-作为突破口,要从图象的升降情况找准第一个零点的位置。

(2)已知函数图象求函数)sin(ϕ+=wx A y ()0,0>>w A 的解析式时,常用的解题方法是待定系数法,由图中的最大值或者最小值确定A ,由周期确定w 的取值,由适合解析式的点的坐标来确定ϕ,但由图象求得的)sin(ϕ+=wx A y )0,0(>>w A 的解析式一般不唯一,只有限定了也的取值范围,才能得出唯一解,否则ϕ的值就不确定,解析式也就不唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真诚为您提供优质参考资料,若有不当之处,请指正。 1 / 11 三角函数背诵 一、基本公式 1、角度与弧度、三角函数值 角度 0° 30° 45° 60° 90°

弧度 0 6 4 3 2

sin 0 12 22 32 1

cos 1 32 22 12 0

tan 0 33 1 3 不存在

2.三角函数在各象限内的正负 口诀“一全正, 二正弦,三正切,四余弦.”

sin cos

tan(cot

3.同角三角函数基本关系式 平方关系:22sin1cos 商的关系:sintancos

例题:1、已知12sin13,并且是第二象限角,求cos,tan.



2、已知cos2sin,求(1)cos2sin5cos4sin

+ + ——+ + + + ————

.22coscossin2sin2⑵真诚为您提供优质参考资料,若有不当之处,请指正。

2 / 11 4.诱导公式 口诀:“奇变偶不变,符号看象限。”

sin()sin cos()cos tan()tan

例:1.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(



的值。求:已知)sin(2)4cos()3sin()2cos( ,3)tan( .2 真诚为您提供优质参考资料,若有不当之处,请指正。

3 / 11 3.若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)的值.

二、三角函数的性质 (1)三角函数的图象及性质

函数 sinyx cosyx

tanyx

定义域 R R |,2xxkkZ



值域 [1,1] [1,1] R 奇偶性 奇函数 偶函数 奇函数 有界性 sin1x cos1x 无界函数 最小正 周期 2 2 

o 2

32

y o o 

3

2

2

y

x 2

2

x

32

x

y

2 真诚为您提供优质参考资料,若有不当之处,请指正。

4 / 11 2,222()32,222()kkkZkkkZ增区间减区间 

2,2()2,2()kkkZkkkZ增区间

减区间 ,22()kkkZ增区间

对称轴 ()2xkkZ ()xkkZ 无对称轴

对称 中心 ,0kkZ

,02kkZ





,02kkZ







max

min

221;221xkkZyxkkZy时,

时, 

max

min

21;211xkkZyxkkZy时,

时,

(2)其它变换:(0,0)A 函数 sinyAx cosyAx tanyAx

定义域 R R 22|,2kxxkZ





值域 [,]AA [,]AA R

奇偶性 kkZ时是奇函数, 2kkZ时是偶函数。 2kkZ时是奇函数,kkZ时是偶函数。 kkZ时是奇函数

有界性 sinAxA cosAxA 无界函数 最小正 周期 2 2 

无最值 最值 单 调 区 间 真诚为您提供优质参考资料,若有不当之处,请指正。

5 / 11 4242,22()42432,()22kkkZkkkZ



增区间减区间



22,()22,kkkZkkkZ



增区间减区间 2222,22()kkkZ



增区间

对称轴 22()2kxkZ ()kxkZ 无对称轴 对称 中心 ,0kkZ 22,02kkZ



2,02kkZ







max

min

422;422kxkZyAkxkZA时,

时,y

max

min

2;(2)kxkZyAkxkZA时,

时,y

三、图像平移变换 1、先相位变换 周期变换 振幅变换(先平移后伸缩)

sinyx sinyx:把sinyx图象上所有的点向左(0) 或向右

(0)平移个单位。 sinyx:把sinyx图象上各点的横坐标伸长(01)

或缩短(1)到原来的 1倍,纵坐标不变。 sinyAx:把sinyx图象上各点的纵坐标伸长(1A)

或缩短(01A)到原来的A倍,横坐标不变。 2、先周期变换 相位变换 振幅变换(先伸缩后平移)

sinyx sinyx:把sinyx图象上各点的横坐标伸长(01)或缩短

无最值 最值 单 调 区 间 真诚为您提供优质参考资料,若有不当之处,请指正。

6 / 11 (1)到原来的1 倍,纵坐标不变。 sinyx:把sinyx图象上所有的点向左(0)或向右(0)

平移个单位. sinyAx:把sinyx图象上各点的纵坐标伸长(1A)或缩短(01A)到

原来的A倍,横坐标不变。 例:

个单位得到;平移的图象向的图象可以看成把函数___________2sin3 )32sin(3 1.xyxy

;,则所得图象的函数为的横坐标缩短到原来的上各点个单位,再把所得图象图象向右平移的把函数 ____________2

1

8)42sin( .2xy

四、三角恒等变换 1、两角和与差的三角函数公式:

sin()sincoscossin,cos()coscossinsin,tantantan()1tantan。

2、二倍角公式 sin22sincos;

2222cos2cossin2cos112sin;

22tantan21tan

 真诚为您提供优质参考资料,若有不当之处,请指正。 7 / 11 3、降幂公式 221cos21cos21sin;cos;sincossin2222

4.化一公式(辅助角公式) 222222sincos(sincos)ababababab



22sin()ab

其中:2222cos,sinababab 例:1设函数23()3cossincos2fxxxx,求()fx的最小正周期和单调递增区间

2.已知函数2()2cos2sincos1(,0)fxxxxxR的最小正周期是2 (1)求()fx的解析式 (2)当[0,]12x时,求()fx的最值

五、解三角形 1. 内角和定理:

在ABC中,ABC;sin()ABsinC;cos()ABcosC

cos2ABsin2

C

2. 面积公式:1sin2ABCSabC 1sin2bcA =1sin2caB

相关文档
最新文档