2014年上海高考理科数学试题解析(完美WORD版)
2014届上海高考数学解析几何专练

={(x,y)|2m≤x+y≤2m+1,x,y∈R}, 若 A∩B≠,则实数 m 的取
值范围是
.
7.(12 年 8)在平面直角坐标系 xOy 中,若双曲线xm2-m2y+2 4=1 的 离心率为 5,则 m 的值为 .
8.(12 年 12)在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2-8x +15=0,若直线 y=kx-2 上至少存在一点,使得以该点为圆心,1 为半径 的圆与圆 C 有公共点,则 k 的最大值是 .
解答题(5 道题) 1.(08 年 18)设平面直角坐标系 xOy 中,设二次函数 f(x)=x2+
2x+b(xR)的图像与两坐标轴有三个交点,经过这三个交点的圆记为 C.求:
(1)求实数 b 的取值范围; (2)求圆 C 的方程 (3)问圆 C 是否经过某定点(其坐标与 b 无关)?请证明你的结论.
②点的坐标的处理的几种常类型.
第1 案例
种.分点问题 1.设 F1,F2 分别为椭圆
C:xa22+by22=1(a>b>0)的左、右
解析几何的问题 ①几何的问题(直线与圆) ②方程的问题(求曲线的方程) ③交点的问题(位置关系)
⑤直线与圆锥曲线的交点.
2.方法上 ①等价转化; ②待ห้องสมุดไป่ตู้系数法.
运算与转化
三、解析几何复习策略 1.我们应该做什么?
重视对基础知识、基本公式、基本方法的复习 如:(1)直线的方程的设法.
①过两点或一点的直线的方程;②不能根据条件设定 合适的方程(如 09 年 13)
直,则离心率 e=
.
3.(09 年 13)如图,在平面直角坐标系 xOy 中,A1,A2,B1,B2 为椭圆xa22+by22=1(a>b>0)的四个顶点,F 为其右焦点,直线 A1B2 与直线
2014年高考上海卷数学(文)试卷解析(精编版)(原卷版)

一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 . 2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 . 10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1xx +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( )(A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数a a x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比; (3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.。
2014上海闵行区高考数学(理)三模试题及答案解析

上海市闵行区2014年高考三模冲刺试卷数学(理科)考生注意:1 •答卷前,考生务必在答题纸上将学校、班级、考号、姓名等填写清楚.2 .本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分 56分)本大题共有14题,考生应在答题纸上相应编号的空格 内直接填写结果,每个空格填对得 4分,否则一律得零分.21 .集合 A={x|x -2x :0},B={x| x <1},则 A U B 等于2 •函数y ="0.2x -1的定义域是 ___________________________1 143 .已知函数 f(x) =〔,贝U f (1)= _______________ .1 +i 14 •若复数b(b • R )的实部与虚部相等,则 b 的值为 _____________________ .1-i 25.若对任意正实数 a ,不等式x 2 ::: 1 a 恒成立,则实数x 的最小值为 ______________ 6 .等比数列 的前n 项和为S n ,已知S!、2S 2、3S 3成等差数列,则数列的公比7 .已知平面上四点。
、A 、B 、C ,若OtWOC ,则AB33 AC&如图,在底面边长为a 的正方形的四棱锥 P - ABCD 中,已知PA _平面AC ,且PA = a ,则直线PB 与平面PCD 所成的角大小3T9.在极坐标系中,曲线]=4cos( )与直线「cos^ - 2的两3B个交点之间的距离为10.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3PAD个专业都有学生选择的概率是 ___________________ .11.函数f (x )=2x sin (2x 「1)图像的对称中心是 ________________________2 212.设F l 、F 2分别为双曲线x2 —y 2 =1(a ■ 0,b ■ 0)的左、右焦点,若在双曲线右支上 a b存在点P ,满足PF 2 卩店2 ,且F 2到直线PR 的距离等于双曲线的实轴长,则该双曲 线的渐近线方程为13.设角〉的终边在第一象限,函数f (x )的定义域为 0,11,且f (0^0, f (1) -1,当x + y …,有f( 2)=1 1f (x)si n t >(1-si n j )f(y),则使等式 f() 成立的〉的 4 4 集合为 ______________________________T —T —*14.直角坐标平面上,有2013个非零向量a 、2 a 川、2013 ,且—I —Ia k _a k 1(k 二1 ,112 ,, 2各向量)的横坐标和纵坐标均为非负实数,若二、选择题(本大题满分 20分)本大题共有4题,每题有且只有一个正确答案, 考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.315.下列函数中,与函数 y=x 的值域相同的函数为( )I’ 1X + 11(A ) y = l — .( B ) y = l n(x+1).( C ) y = ------- .( D ) y = x + —.12 丿x x16.角〉终边上有一点(-1,2),则下列各点中在角 2〉的终边上的点是()(A) (3,4). (B) (一3,-4).(C) (4,3). (D) (-4,-3).17. 一无穷等比数列la n "各项的和为 3 1 第二项为—, 则该数列的公比为()231 (A ) 一. (B ) 2. (C) -1 .1 2 (D )—或一.333 3 318.下图揭示了一个由区间 0,1到实数集R 上的对应过程:区间 0,1内的任意实数 m 与数轴上的线段 AB (不包括端点)上的点 M —一对应(图一),将线段AB 围成一个 圆,使两端A, B 恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在ya 1 +T ■4 T ■4 H —*a 2 + a 3 + 11 +a 2013 =1 (常数),则 a 1+a 2+a 3+|||+a 2013的最小值为轴上,点 A 的坐标为(0,1)(图三).图三中直线 AM 与x 轴交于点N n,0,由此得到 一个函数n = f (m ),则下列命题中正确的序号是()(1)f 〔]=0 ;(2) f (x )是偶函数; (3)f (x )在其定义域上是增函数;\2)(4)y = f (x )的图像关于点 丄,0对称.12丿(A )( 1)( 3)( 4).( B )( 1)( 2)( 3)、解答题(本大题满分 74分)本大题共有 5题,解答下列各题必须在答题纸相应编 号的规定区域内写出必要的步骤。
2014年高考上海卷数学真题(理)

2 0 1 4年 全 国 普 通 高 等 学 校 招 生统 一 考 试上海数学试卷(理工农医类)考生注意:1、本试卷共4页,23道试题,满分150分。
考试时间120分钟。
2、本考试分设试卷和答题纸。
试卷包括试题与答题要求。
作答必须涂(选择题)或写(非选择题)在答题纸上。
在试卷上作答一律不得分。
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸正面清楚地填写姓名。
一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、函数._______)2(cos 212的最小正周期是x y -=2、若复数z=1+2i ,其中i 是虚数单位,则⎪⎪⎭⎫ ⎝⎛_z 1 +z z ⋅=___________. 3、若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4、设⎩⎨⎧+∞∈-∞∈=),,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为__________.5、若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面所成角的大小为 (结果用反三角函数值表示)。
7. 已知曲线C 的极坐标方程为)sin 4cos 3(θθρ-=1,则C 与极轴的交点到极点的距离是 。
8. 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= 。
9. 若2132)(--=xx x f ,则满足0)(<x f 的x 取值范围是 。
10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示)。
上海市2014高考数学压轴卷试题 理(含解析)

2014年上海高考数学押题卷(理)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 函数)-3(log 1)(2.0x x x f +=的定义域为_____________已知F 是抛物线x y 42=的焦点,B A ,在抛物线上,M (3,2)为线段AB 的中点,则OAB ∆的面积为_____________已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x x f 1292)(23+-=,则不等式)1(|)(|f x f ≥ 的解集是_____________已知数列{}n a 其前n 项和为n S ,且222++=n n S n *()n ∈N ,则数列{}n a 的通项公式为_____________零向量b a ,满足]32,2(|2|2||2||∈-==b a b a ,且,则,a b 夹角的取值范围是_____________在7)xa x +(的展开式中含有27x - ,则2a =_____________ 已知复数4-,,2211121≥⋅+=-=z z z z ib z i a z 的共轭复数。
若是,则b 的取值范围是_____________ 已知=-=+>-=θθθαααcos sin ,1)2tan(,02sin 542cos 则且,_____________ 红、黄、蓝三色灯泡分别有3、2、2支,把它们挂成一排,要求红色灯泡不能全部相邻,则看到的不同效果有_____________个。
已知函数)sin(2)(ϕω+=x x f (其中R ∈x ,0>ω,πϕπ<<-)的部分图象如图所示。
13 14年上海高考理科数学试卷及答案

2013年上海高考理科数学考生注意:1. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号、,并将核对后的条形码贴在制定位置上,在答题纸反面清楚地填写姓名。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题1.计算:20lim______313n n n →∞+=+2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =3.若2211x x x y y y =--,则______x y += 4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =6.方程1313313x x -+=-的实数解为________ 7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示) 9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________13.在x O y 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________14.对区间I 上有定义的函数()g x ,记(){|(),}gI y y gx x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x = 二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件17.在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)6318.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ).(A) 0,0m M =>(B) 0,0m M <>(C) 0,0m M <=(D) 0,0m M <<三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.D 1C 1B 1A 1D C BA20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.23.(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,; (3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.2014年上海市高考数学试卷(理科)一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是_________.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=_________.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为_________.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示).7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是_________.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________.10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示).11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=_________.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为_________.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为_________.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.。
2014年高考理科数学(上海卷)
2 0 1 4年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、函数._______)2(cos 212的最小正周期是x y -=2、若复数z=1+2i ,其中i 是虚数单位,则}1{zz +z ⋅=___________.3、若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为__ 4、设⎩⎨⎧+∞∈-∞∈=],,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为_____________.5、若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示)。
7. 已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
8. 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= 。
9. 若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 。
10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示)。
11.已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a+b= 。
12.设常数a 使方程sin x x a =在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= 。
13.某游戏的得分为1,2,3,5,随机变量ξ表示小白玩游戏的得分。
若()ξE =4.2,则小白得5分的概率至少为 。
14.已知曲线C :x =l :x=6。
2014年上海高考数学试题
2014年普通高等学校招生统一考试上海市数学试题(理科)满分150分;考试时间120分钟.一、填空题(本大题共有14题,满分56分)1、函数212cos (2)y x =-的最小正周期是 .2、若复数12z i =+, 其中i 是虚数单位, 则1z z z ⎛⎫+∙= ⎪⎝⎭ . 3、若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合, 则该抛物线的准线方程为 . 4、设2, (,),(), [,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =, 则a 的取值范围为 . 5、若实数x , y 满足1xy =, 则222x y +的最小值为 .6、若圆锥的侧面积是底面积的3倍, 则其母线与底面角的大小为 (结果用反三角函数值表示).7、已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=, 则C 与极轴的交点到极点的距离是 .8、设无穷等比数列{}n a 的公比为q ,若)(431lim n n a a a a +++=∞→ , 则q = . 9、若2132()f x x x -=-, 则满足()0f x <的x 的取值范围是 .10、为强化安全意识, 某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练, 则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).11、已知互异的复数a , b 满足0ab ≠, 集合22{, }{, }a b a b =, 则a b += .12、设常数a 使方程a x x =+co s 3sin 在闭区间[0,2π]上恰有三个解123, , x x x , 则123x x x ++= .13、某游戏的得分为1, 2, 3, 4, 5, 随机变量ξ表示小白玩该游戏的得分.若() 4.2E ξ=, 则小白得5分的概率至少为 .14、已知曲线24:y x C --=, 直线:6l x =.若对于点(,0)A m , 存在C 上的点P 和l 上的Q 使得=+, 则m 的取值范围为 .二、选择题(本大题共有4题,满分20分).15、设, a b R ∈, 则“4a b +>”是“2a >且2b >”的(A) 充分条件 (B) 必要条件(C) 充分必要条件(D) 既非充分又非必要条件 16、如图, 四个棱长为1的正方体排成一个正四棱柱, AB 是一条侧棱, )8,,2,1( =i P i 是上底面上其余的八个点, 则)8,,2,1( =⋅i i 的不同值的个数为(A) 1 (B) 2 (C) 4 (D) 817、已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点, 则关于x 和y 的方程组11221,1a x b y a x b y +=⎧⎨+=⎩的解的情况是 (A) 无论k , 12, P P 如何, 总是无解 (B) 无论k , 12, P P 如何, 总有唯一解(C) 存在k , 12, P P , 使之恰有两解 (D) 存在k , 12, P P , 使之有无穷多解18、设2(), 0,()1, 0.x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩若(0)f 是()f x 的最小值, 则a 的取值范围为 (A) [1,2]- (B) [1,0]- (C) [1,2] (D) [0,2]三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19、(本题满分12分)底面边长为2的正三棱锥P ABC -, 其表面展开图是三角形123P P P , 如图.求123PP P △的各边长及此三棱锥的体积V .20、(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥, 函数2()2x x a f x a+=-. (1)若4a =, 求函数()y f x =的反函数1()y f x -=;(2)根据a 的不同取值, 讨论函数()y f x =的奇偶性, 并说明理由。
2014年高考真题——理科数学(上海卷)原卷版
2014年上海市高考数学试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z +z ⋅=___________. 3. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 4. 设⎩⎨⎧+∞∈-∞∈=],,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为_____________. 5. 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7. 已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 .8. 设无穷等比数列{n a }的公比为q ,若)(lim 431Λ++=∞→a a a n ,则q= . 9. 若2132()f x x x -=-,则满足0)(<x f 的x 取值范围是 .10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).11. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += .12. 设常数a 使方程sin 3cos x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= .13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r ,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)817. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 18. ⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则a 的取值范围为( ). (A)[-1,2] (B)[-1,0] (C)[1,2] (D) [0,2]三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数a a x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,οο45.1812.38==βα求CD 的长(结果精确到0.01米)?22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔;⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是公比为q 等比数列,12n n S a a a =+++L ,113,*,3n n n S S S n N +≤≤∈求q 的取值范围; (3)若12,,,k a a a L 成等差数列,且121000k a a a +++=L ,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a L的公差.。
2014年高考数学真题上海【文】试题及答案
2014高考数学上海【文】一、填空题.1. 函数()212cos 2y x =-的最小正周期是_____________.2. 若复数12i z =+,其中i 是虚数单位,则1___________z z z ⎛⎫+⋅= ⎪⎝⎭.3. 设常数a ∈R ,函数()21f x x x a =-+-. 若()21f =,则()1f = .4. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则抛物线的准线方程为____. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名. 为了解该校高中学生的牙 齿健康状况,按各年级的学生数进行分层抽样. 若高三抽取20名学生,则高一、高二共 需抽取的学生数为 .6. 若实数,x y 满足1xy =,则222x y +的最小值为___________.7. 若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为_____________(结果用 反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两 个小长方体的体积之和等于 .9.设,0,()1,0.x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩ 若(0)f 是()f x 的最小值,则a 的取值范围 为 .10.设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则__________q =. 11. 若()2132f x x x-=-,则满足()0f x <的x 的取值范围是___________.12.方程sin 1x x =在区间[]0,2π上的所有解的和等于 .13. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则 选择的3天恰好为连续3天的概率是_____________(结果用最简分数表示).14.已知曲线:C x =,直线:6l x =. 若对于点(),0A m ,存在C 上的点P 和l 上的 点Q 使得0AP AQ +=,则m 的取值范围为________________.二、选择题.15. 设,a b ∈R ,则“+4a b >”是“2a >且2b >”的( ). A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件16. 已知互异的复数b a ,满足0≠ab ,集合{}{}22,,b a b a =,则=+b a ( ). A. 2 B. 1 C. 0 D. -117.如图,四个边长为1的小正方形排成一个大正方形,AB 是大正方形的一条边,)7,,2,1( =i P i 是小正方形的其余顶点,则i AB AP ⋅)7,,2,1( =i 的不同值的 个数为( ).A. 7B. 5C. 3D. 118.已知()111,P a b 与()222,P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组11221,1a x b y a x b y +=⎧⎨+=⎩ 的解的情况是( ).A. 无论k 、1P 、2P 如何,总是无解B. 无论k 、1P 、2P 如何,总有唯一解C. 存在k 、1P 、2P ,使之恰有两解D. 存在k 、1P 、2P ,使之有无穷多解三、解答题. 19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123P P P ,如图. 求123PP P ∆的各边长及此三棱锥的体积V .B1220. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数()22x x af x a+=-.(1) 若4a =,求函数()y f x =的反函数()1y f x -=;(2) 根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.P7P 65221. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米. 设点A 、B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(1) 设计中CD 是铅垂方向,若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01米)?(2) 施工完成后,CD 与铅垂方向有偏差,现在实测得38.12α=,18.45β=,求CD 的长(结果精确到0.01米).A22.(本题满分16分) 本题共有3个小题,第1小题满分3分,第2小题满分6分,第3 小题满分7分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点()()111222,,,P x y P x y ,记()()1122ax by c ax by cη=++++. 若0η<,则称点12P P 、被直线l 分隔,若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线. (1) 求证:点()()1,21,0A B -,被直线10x y +-=分隔;(2) 若直线y kx =是曲线2241x y -=的分割线,求实数k 的取值范围;(3) 动点M 到点()0,2Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的 方程,并证明y 轴为曲线E 的分隔线.23. (本题满分18分) 本题共有3个小题,第1小题满分3分,第2小题满分6分, 第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,n *∈N ,11a =.(1) 若22a =,3a x=,49a =,求x 的取值范围;(2) 若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应 {}n a 的公比; (3) 若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.2014高考数学上海【文】参考答案说明1. 本解答列出试题的解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2. 评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅. 当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度觉得后面部分的给分,这时原则上不应超过后面 应给分数之半. 如果有较严重的概念性错误,就不给分.一、(第1题至第14题) 1.π22. 63. 34. 2x =-5. 706. 7. 1arcsin 38. 249. (,2]-∞11. (0,1)12. 7π313.11514. [2, 3]二、(第15题至第18题)三、(第19题至第23题)19. [解]在△123PP P 中,13P A P A =,23P C P C =,所以AC 是中位线, 故1224PP AC ==. ……3分 同理,234P P =,314P P =. 所以△123P P P 是等边三角形,各边长均为4. ……6分 设Q 是△ABC 中心,则PQ ⊥平面ABC ,所以AQ PQ . ……9分从而,13ABC V S PQ =⋅=△. ……12分20. [解](1) 因为2424x x y +=-,所以4(1)21x y y +=-, ……3分得1y <-或1y >,且24(1)log 1y x y +=-.因此,所求反函数为124(1)()log 1x f x x -+=-,1x <-或1x >. ……6分 (2) 当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数; ……8分当1a =时,21()21x x f x +=-,定义域为(,0)(0,)-∞+∞,2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =是奇函数; ……11分当0a >且1a ≠时,定义域22(,log )(log ,)a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数. ……14分21. [解](1) 记CD h =. 根据已知得tan tan 20αβ≥>,tan 35h α=,tan 80h β=,所以2280035180hh h ⨯≥>⎛⎫- ⎪⎝⎭, ……4分解得28.28h ≤≈. 因此,CD 的长之多约为28.28米. ……6分 (2) 在△ ABD 中,由已知,+=56.57αβ,115AB =, 由正弦定理得sin sin()BD ABααβ=+,解得85.064BD ≈. ……10分 在△ BCD 中,由余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅,解得26.93CD ≈. 所以,CD 的长约为26.93米. ……14分22. [证](1) 因为40η=-<,所以点,A B 被直线10x y +-=分隔. ……3分[解](2) 直线y kx =与曲线2241x y -=有公共点的充要条件是方程组22,41y kx x y =⎧⎨-=⎩有 解,即1||2k <. 因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即 1||2k ≥.当1||2k ≥时,对于直线y kx =,曲线2241x y -=上的点(1,0)-和(1,0)满足 20k η=-<,即点(1,0)-和(1,0)被y kx =分隔.故实数k 的取值范围是11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. ……9分[证](3) 设M 的坐标为(,)x y ,则曲线E ||1x =,即222(2)1x y x ⎡⎤+-⋅=⎣⎦. ……11分对任意的0y ,0(0,)y 不是上述方程的解,即y 轴与曲线E 没有公共点. ……13分又曲线E 上的点(1,2)-和(1,2)对于y 轴满足0η<,即点(1,2)-和(1,2)被y 轴分隔. 所以y 轴为曲线E 的分隔线. ……16分23. [解](1) 由条件得263x ≤≤且933xx ≤≤,解得36x ≤≤. 所以x 的取值范围是[3, 6]. ……3分(2) 设{}n a 的公比为q . 由133n n a a ≤,且110n n a a q -=≠,得0n a >.因为+1133n n n a a a ≤≤,所以133q ≤≤.从而11111110003m m m a q q ---⎛⎫==≥ ⎪⎝⎭,131000m -≥,解得8m ≥. ……7分8m =时,1,33q ⎡⎤⎢⎥⎣⎦.所以,m 的最小值为8,8m =时,{}n a ……9分(3) 设数列12100,,,a a a 的公差为d .则1+33n n n a a d a ≤≤,223n n a d a -≤≤,1,2,,99n =.① 当0d >时,999821a a a a >>>>,所以102d a <≤,即02d <≤. ……12分 ② 当0d =时,999821a a a a ====,符合条件. ……14分③ 当0d <时,999821a a a a <<<<,所以9999223a d a -≤≤,2(198)2(198)3d d d -+≤≤+,又0d <,所以20199d -≤<. 综上,12100,,,a a a 的公差的取值范围为2,2199⎡⎤-⎢⎥⎣⎦. ……18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年上海高考理科数学试题解析(完美WOR版)2014年全国普通高等学校招生统一考试上海数学试卷(理工农医类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(2014)函数y 12COS2(2X)的最小正周期是 _________ .【解析】:原式=cos4x,T —4 2z【解析】:原式=Z z 1 z21 5 1 62 23.(2014)若抛物线y22px的焦点与椭圆x七1的右焦点重合,则该抛物线的准线方程为 .【解析】:椭圆右焦点为(2,0),即抛物线焦点,所以准线方程x 24.(2014)设f(x)x2 x ( ,a),若f(2) 4,则 a 的取x , x [a, ).值范围为____________ .【解析】:根据题意,2 [a, ),•. a 25.( 2014)若实数x,y满足xy 1,则x22y2的最小值2 (2014)若复数z 1 2i,其中i是虚数单位,则为 _________ .【解析】:x2 2y2 2 x V2y 2逅6.(2014)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为______________ (结果用反三角函数值表示).【解析】:设圆锥母线长为R,底面圆半径为「,T S侧3S 底,・°・r R 3 r 2,即R 3r ,・°・cos ^ ,即母3线与底面夹角大小为arcco 百7. ( 2014)已知曲线C 的极坐标方程为(3cos 4sin ) 1,则C 与极轴的交点到极点的距离是 _________ .【解析】:曲线C 的直角坐标方程为3x 4y 1,与x 轴 的交点为(1,0),到原点距离为£33范围是图,可得X 的取值范围是(0,1)8. (2014) 设无穷等比数列a n的公比为q ,若lim a 3 a 4na n,则 q【解析】:a 12a ?a 〔q 1 q1 qq 宁,10 q 1,9. (2014)若 f(x)2 x 31X^,则满足f(x) 0的X 的取值【解析】:2 -3 XO\7 X1X?,结合幂函数图像,如下10.(2014)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示)•【解析】:P各丄Go 1511.( 2014)已知互异的复数a,b满足ab 0,集合a ,b a2, b2,贝a b ________________________ .【解析】:第一种情况:a a2,b b2, ■/ ab 0 , /. a b 1 , 与已知条件矛盾,不符;第——种情况:a b2,b a2,「・ a a4 a3 1 ,「・a2 a 1 0 , 即 a b 1 ;12.( 2014)设常数a使方程sinx T3cosx a在闭区间[0,2 ]上恰有三个解X1,X2,X3 ,贝【解析】:化简得2sin(x -) a,根据下图,当且仅3当a -.3时,恰有三个交点,艮卩X i X2 X3 0 23 313.( 2014)某游戏的得分为1,2,3,4,5,随机变量表示小白玩该游戏的得分•若E( ) 4.2,则小白得5分的概率至少为_____________ •【解析】:设得i分的概率为P i ,•••Pl 2p2 3p3 4p4 5p s 4.2 ,且P i P2 P3 P4 P5 1 ,・• 4 P i 4P2 4P3 4P4 4p§4,与前式相减得:T P i 0 ,・•3p 2P2 P3 P5 P5 ,即3p1 2P2 P3 P5 0.2 ,P5 0.214.(2014)已知曲线c:x 447,直线i:x 6.若对于点A(m,0),存在C上的点P和l上的Q使得AP牘0,则m的取值范围为_____________________ .【解析】:根据题意, A是PQ中点,即m x P 62二、选择题(本大题共有4题,满分20分)每 题有且只有一个正确答案,考生应在答题纸的相 应编号上,将代表答案的小方格涂黑,选对得 5分,否则一律得零分•15. ( 2014)设 a,b R ,则 “ b 4 ”是 “ 2 且 b 2”勺( ) (A)充分条件. (C)充分必要条件. 又非必要条件• 【解析】:B16. (2014)如图,四个棱长为1的正方体排成一个正 四棱柱,AB 是一条侧棱,(B)必要条件•(D)既非充分2 x p 0 ,.•. m [2,3]AP(i 1,2丄,8)是上底面上其余的八个点,则AB Ap (i 1, 2, K , 8)的不同值的个数为 ( )(A) 1. (B) 2.(C) 4. (D) 8.【解析】:根据向量数量积的几何意义,ABAP等于|A B乘以AP在AB方向上的投影,而AP在A B方向上的投影是定值,AB也是定值,••• AB AP为定值1, •••选A17. (2014)已知P i(a i,b i)与P2(a2,b2)是直线y kx 1 ( k为常数)上两个不同的点,则关于x和y的方程组a1Xb^y 1,的解的情况是()a2x Ry 1(A)无论k,R,P2如何,总是无解.(B) 无论k,R,P2如何,总有唯一解.(C)存在k,P,B,使之恰有两解.(D)存在k,P1,P2,使之有无穷多解•【解析】:由已知条件b1 ka1 1,b2 ka2 1,a ib 2 a ?b i a i (ka 2 1) a 2(ka i 1) a i a 2 0解,选B2、..(X a) , X 0,「 r 亠 jtf尸( t18. (2014)设 f (x ) i若 f (o )是 f (x )的最小x — a, x 0.x值,则a 的取值范围为()(A) [ 1, 2]. (B) [ 1,0].(C) [1,2].(D) [0,2].【解析】:先分析x 0的情况,是一个对称轴为x a 的二次函数,当a 0时,f(x)min f(a) f(0),不符合题意,排除AB 选项;当a 0 时,根据图像f(x)minf(0),即a 0符合题意,排除C 选项;.•.选D ;三、解答题(本大题共有5题,满分74分)解 答下列各题必须在答题纸相应编号的规定区域 内写出必要的步骤.19. (2014)(本题满分12分)a ibi a 2b2底面边长为2的正三棱锥P-ABC ,其表面展开图是三角形PP2P3,如图.求厶p i p2p3 的各边长及此三棱锥的体积V.【解析】:根据题意可得P,B,P2共线,,•* ABR BAR CBP2,ABC 60ABR BAR CBP2 60 ,P I 60,同理P2 P3 60 ,「.△ PP2P3是等边三角P ABC是正四面形,体,所以△ PP2P3边长为4;・・・V丄AB3口12 320. (2014)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.2x a(1)若 a 4,求函数y f(x)的反函数y f 1(x);⑵根据a的不同取值,讨论函数y f(x)的奇偶性,并说明理由._ _ X【解析】:(I): a 4,二f(x) 2__4 y,二2X,X log2 4y 4 ,y 1•彳4x 4・・ y f 1(x) log2 -------------------------- , x ( , 1) (1,)x 1(2) 若f(x)为偶函数,则f(x) f( X),・2X a 2 x a• • 2^,整理得a(2X 2X) 0 J. a 0,此时为偶函数若f(x)为奇函数,则f (x) f( X),・2X a 2 x a• • --------- -------------s X ?2 a 2 a整理得a2 1 0,: a 0 a 1,此时为奇函数当a (0,1) (1,)时,此时f(x)既非奇函数也非偶函数21. (2014)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米.设点A、B在同一水平面上,从A和B看D的仰角分别为和.(1)设计中CD是铅垂方向.若要求2,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差•现在实测得38.12 , 18.45 ,求CD的长(结果精确到0.01米).【解析】:(1)设CD的长为x米,则tan宕® 80 ,tan tan 2 tan 2 tan 1 tan226.93米题,第1小题满分3分,第2小题满分5分,第 3小题满分8分.在平面直角坐标系xOy 中,对于直线l :ax by c 0则称点只卫被直线l 分割.若曲线C 与直线l 没有公 共点,且曲线C 上存在点R,P 2被直线I 分割,则称 直线l 为曲线C 的一条分割线.(1)求证:点A(1,2), B( 1,0)被直线x y 1 0分割;的取值范围;⑶ 动点M 到点Q (0,2)的距离与到y 轴的距离之积ADB 180(2) 设 DB a, DA b, DC m123.43,则汙任,解得85.06,sin 123.43‘115sin 38.12 a・・ m . 802 a 2 160acos18.4526.93, /. CD 的长为22. (2014)(本题满分16分)本题共有3个小和点 R (X 1, %),巳区,y 2), 记(ax 1by 1c)(ax 2by ?c). 若0, ⑵若直线y kx是曲线x 24y 21的分割线,求实数k为1,设点M的轨迹为曲线E.求证:通过原点的直线中,有且仅有一条直线是E的分割线•【解析】:(1)将A(1,2),B( 1,0)分别代入x y 1,得(1 2 1) ( 1 1) 4 0・••点A(1,2), B( 1,0)被直线x y 1 0分割2 2(2)联立%4y k 1,得(1 4k2)x21,依题\ / y kx 7意,方程无解,• 1 4k2 0,二k 丄或k 1‘ 2 2(3)设M(x,y),贝V Jx2(y 2)2|x 1,•曲线E的方程为[x2 (y 2)2]x2 1①当斜率不存在时,直线x 0,显然与方程①联立无解,又P(1,2),F2( 1,2)为E上两点,且代入x 0,有 1 0,•x 0是一条分割线;当斜率存在时,设直线为y kx,代入方程得 : (k2 1)x4 4kx3 4x2 1 0,令f(x) (k2 1)x4 4kx3 4x2 1,贝y f(o) 1 ,2 2f(1) k 1 4k 3 (k 2) ,2 2f( 1) k 1 4k 3 (k 2),当k 2时,f(1) 0 , f (0) f (1) 0,即f(x) 0在(0,1)之间存在实根,••• y kx与曲线E有公共点当k 2时,f(0)f( 1) 0,即f(x) 0在(1,0)之间存在实根,•y kx与曲线E有公共点•直线y kx与曲线E始终有公共点,• 不是分割线,综上,所有通过原点的直线中,有且仅有一条直线x 0是E的分割线23. ( 2014)(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.已知数列a”满足;a n a”’3a”, n N*,a, 1.3(1)若a2 2,a3 x,a4 9,求x的取值范围;⑵设a n是公比为q的等比数列,s n a1 a2 L a n . ^若1 * yS n S n 1 3S n,nN, 3求q的取值范围;(3)若…丄,a k成等差数列,且正整数k的最大值,以及k取最大值时相应数列【解析】:a1 a2 L a k 1000,(1)依题意, 1 —a2 a33 2 33a的公差.・236,又a4 3a…3 x 27,综上可得3 x(2)由已知得a n,又“1a2 3a1 ,当q 1时,S n n S, 3S n,即£3n,成立当1 q 3时,3S n ,n3^,q 1n 1-1 q ______ 1 3n3 q 1 此不等式即3q n n 1qq n23q n2二3q n 1 q n 2 q n(3q 1) 2 2q n 2 0 ,对于不等式q n1 3q n 2 0 ,令n 1 ,得2 c cq 3q 20,解得1q 2,又当1q 2时,q 3 0,•n 1… q3q n 2q n(q3) 2 q(q 3) 2 (q 1)(q 2) 0成立,• I 1 q2比1当1 q1时,S n1 q 1S1 q 3S 1 3S n,即1 1 q n 1n 1 . n q31 q,3 1 q 1 q 1 q即n 13qn 1 q n q3q n2 02 0 ‘3q10,q30• ••3q n1nq 2 q n(3q1)22q n20n 1q3q n2q n(q 3)2q(q3)2(q 1)(q 2) 0・•・J q 1时,不等式恒成立综上,q的取值范围为1 q 23(3)设公差为d,显然,当k 1000,d 0时, 是一组符合题意的解,二k max 1000 ,贝U由已知得1 (k 2)d31 (k 1)d 3[1 (k 2)d],整理人 谭峰2 x 80160x 35 , x 26400 x 2,6400 解得0 x 20、、2 28.28 ,・•・ CD 的长至多为28.28 米(爲d 2,当k 1000时,不等式即 「・d 2 , a 〔 a ?・・・a ,k(k 1)d “c k ' ) 1000, 2 ? 二 k 1000 时,d 2000 2k 2 解得 k(k 1) 2k 1 ? 1000 J999000 k 1000 J999000,•-・ k 1999 , 二k 的最大值为1999 ,此时公差 ,2000 2k 1998 1d k(k 1) 1999 19981999。