解析几何高考大题总结

合集下载

高考解析几何大题题型归纳

高考解析几何大题题型归纳

高考解析几何大题题型归纳
高考解析几何大题主要分为以下几类:
1. 平面向量问题:涉及向量加减、点积(数量积)、叉积(向量积)及其性质,例如线段长度、平行四边形面积、点到直线距离等等。

2. 空间几何问题:涉及空间中点、线、面的位置关系、相交情况、垂直或平行关系、大小关系等问题,例如两平面夹角、直线与平面的交点、平面方程等。

3. 三角形问题:涉及三角形内部、外部、垂心、垂足、中线、中心、外心、内心等概念,例如三角形的外接圆、内切圆、垂心定理等。

4. 圆锥曲线问题:涉及圆、椭圆、抛物线、双曲线等曲线的定义、性质、焦点、方程、参数等问题,例如椭圆离心率、抛物线焦点、双曲线渐近线等。

5. 空间向量问题:涉及空间中平行六面体、四面体的体积、重心、外接球、内切球等问题。

以上是高考解析几何大题的主要题型归纳,但具体涉及哪些内容还是要根据题目的情况来确定的。

高中数学解析几何抛物线大题

高中数学解析几何抛物线大题

高中数学解析几何抛物线大题
抛物线大题:
一、抛物线的定义
1、抛物线是二次曲线的一种,它的方程式一般可表示为
$y=ax^2+bx+c$,当$a<0$时,得到的曲线是向下凹的,即为抛物线。

2、抛物线的凹顶是位于曲线上一点,它是抛物线上最高点,也称为顶点,当a<0时,顶点的坐标为$( -\frac{b}{2a},\frac{4ac-b^2}{4a} )$。

二、抛物线的过程
抛物线的运动轨迹实际上是一个二次函数的图形,它的轨迹可以概括为如下四个特点:
1、抛物线最开始是一条负斜率直线,也就是抛出物体时在水平移动,且斜率为负数。

2、当抛物线经过顶点,斜率从负值变为正值,即抛物线开始反弹Test 栏。

3、当抛物线接近水平线时,斜率极小,且小于零,此时抛物线开始向下倾斜。

4、当抛物线趋于水平线时,斜率终于变成负数,到达最终形状,也就是它在水平线上的运动。

三、抛物线的应用
抛物线的应用非常广泛,如:
1、抛物线在现实世界中被广泛应用于物理、力学及许多其他领域,如抛物线运动、摆动运动等。

2、抛物线在计算机图形学中被用于表示图形的光滑与曲线,以及在人工智能中用于处理数字图像。

3、抛物线也常常被用于描述经济上的一些需求量及供给量等关系,以便进行更合理的调控。

四、抛物线的性质
抛物线的一些基本性质有:
1、轴对称性:抛物线所围成的图形与其凹顶点关于y轴对称。

2、放射性:抛物线与任一垂线所形成的三角形均具有放射性。

3、相反照应:抛物线与任一对称轴所形成的图形是反照的。

4、重心:抛物线的重心坐标为$( \frac{a}{3},\frac{-b^2}{9a})$。

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析一、高考定位回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.二、应对策略复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧.二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力.三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识.预测在2013年的高考题中:1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及.2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题.三、常见题型1.直线与圆的位置关系问题直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力.求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位.点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理.(2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨.2.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.常用的一些证明方法:点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为y=?x,并且相互垂直,这些性质的运用可以大大节省解题时间.3.“是否存在”问题所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值,若不存在,则要求说明理由.求解策略:首先假设满足条件的几何元素或参数值存在,然后利用这些条件并结合题目的其他已知条件进行推理与计算,若不出现矛盾,并且得到了相应的几何元素或参数值,就说明满足条件的几何元素或参数值存在;若在推理与计算中出现了矛盾,则说明满足条件的几何元素或参数值不存在,同时推理与计算的过程就是说明理由的过程.例3(2012年高考(湖北文))设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m?1),当点A在圆上运动时,记点M的轨迹为曲线C.(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标.(2)过原点斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ?PH,若存在,请说明理由.点评:本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解.对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.4.定点定值问题的方法圆锥曲线中的定点、定值问题是高考的热点,是指某些几何量线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.题型以解答题为主,解决的基本思想从变量中寻求不变,即先用变量表示要求的量或点的坐标,再通过推理计算,导出这些量或点的坐标和变量无关.常见的类型:(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.点评:(1)椭圆和双曲线的定义反映了它们的图形特点,是画图的依据和基础,而定义中的定值是求标准方程的基础,在许多实际问题中正确利用定义可以使问题的解决更加灵活.已知圆锥曲线上一点及焦点,首先要考虑使用圆锥曲线的定义求解.(2)求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量m,k 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x1的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点. 5.最值与范围问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围.圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.求解最值问题应注意:(1)如果建立的函数是关于斜率k的函数,要增加考虑斜率不存在的情况;(2)如果建立的函数是关于点的坐标x,y的函数,可以考虑用代入消元、基本不等式、三角换元或几何解法来解决问题.例5(2012年高考(广东理))在平面直角坐标系xOy中,已知椭圆C:)的距x2a2+y2b2=1(a>b>0)的离心率e=23,且椭圆C上的点到Q(0,2离的最大值为3.点评:从近两年高考试题来看,直线与圆锥曲线的位置关系、弦长、中点弦的问题是高考的热点问题,题型既有选择题、填空题,又有解答题,难度中等偏高.客观题主要考查直线与圆锥曲线的位置关系、弦长问题,解答题考查较为全面,在考查上述问题的同时,注重考查函数与方程、转化与化归,分类讨论等思想,所以在备战2013年高考中对于此类问题应引起足够的重视.6.轨迹问题求轨迹方程的常用方法:法:将几何关系直接转化成代数方程. (1)直接(2)定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程.(3)代入法:把所求动点的坐标与已知动点的坐标建立联系.(4)交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹.求动点的轨迹方程的一般步骤(1)建系――建立适当的坐标系;(2)设点――设轨迹上的任一点P(x,y);(3)列式――列出动点P所满足的关系式;(4)代换――依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简;――证明所求方程即为符合条件的动点轨迹方程. (5)证明点评:本小题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用.在求解点M的轨迹方程时,要注意首先写出直线AA1和直线A2B的方程,然后求解.。

解析几何大题及答案

解析几何大题及答案

解析几何大题及答案解析几何是数学中的一个重要分支,研究的是空间图形的性质和变换。

在高中数学中,解析几何是一个关键的考点,也是学生容易遇到的难点之一。

本文将解析几何中的几个大题进行解析,并给出详细的答案。

一、平面直角坐标系与向量1. 设平面上一直线的方程为3x-y+4=0,求该直线的斜率及与坐标轴的交点坐标。

答案:首先将直线的方程转化为斜截式的形式,即y=3x+4。

由此可得该直线的斜率为3。

与x轴的交点坐标可通过令y=0,解得x=-4/3;与y轴的交点坐标可通过令x=0,解得y=4。

因此,该直线与x轴的交点坐标为(-4/3,0),与y轴的交点坐标为(0,4)。

2. 已知平面内的向量a=(4,3),求向量2a的模和方向角。

答案:向量2a=(2*4,2*3)=(8,6)。

模可以通过向量的标准模公式计算:|2a|=√((8)^2+(6)^2)=√100=10。

方向角可以通过向量的方向角公式计算:tanθ=y/x=6/8=3/4,所以θ=arctan(3/4)。

因此,向量2a的模为10,方向角为arctan(3/4)。

二、直线的方程与位置关系1. 设直线L1过点A(1,3)且与直线L2:2x+3y-7=0相交于点B,求线段AB的中点坐标。

答案:首先求直线L1的方程,由过点A(1,3),设斜率为k,则直线L1的方程为y-3=k(x-1)。

将直线L2的方程与直线L1的方程联立,可求出点B的坐标。

解方程组得到B的坐标为(-1,3)。

线段AB的中点坐标可以通过两点坐标的平均值计算:((1+(-1))/2,(3+3)/2)=(0,3)。

因此,线段AB的中点坐标为(0,3)。

2. 设直线L1:x+2y-3=0与直线L2:2x-y-1=0相交于点A,直线L1与直线L3:2x+3y-4=0平行,求直线L3的方程。

答案:由直线L1与直线L2的方程可解得直线L1与直线L2的交点A的坐标为(1,1)。

由直线L1与直线L3平行可得其斜率相等,即2=3k,解得k=2/3。

2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)

2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)

解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,

解析几何大题集合(34题)

解析几何大题集合(34题)

1. 已知椭圆C :14522=+y x 的左右焦点分别为21,F F(1)若P 是椭圆上的一点,且∠︒=3021PF F ,求△的面积;(2)过椭圆的左焦点作一条倾斜角为45°的直线l 与椭圆交于A.B 两点,求AB 的长.2.已知点P 为圆A:8)1(22=++y x 的动点,点B (1,0),线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为C 。

(1)求曲线C 的方程;(2)当P 在第一象限,且322cos =∠BAP 时,求点M 的坐标3.已知椭圆E :)0(,12222>>=+b a by a x 的离心率为21,点A,B 分别为椭圆E 的左右顶点,点C 在E 上,且△ABC 面积的最大值为32, 求(1)椭圆E 的方程;(3)设F 为E 的左焦点,点D 在直线x=-4上,过F 作DF 的垂线交椭圆E 与M,N 两点。

证明:直线OD 平分线段MN 。

4. 已知椭圆)0(,12222>>=+b a by a x 的左右焦点分别为21,F F ,A为上顶点,P 为椭圆上任一点(与左右顶点不重合)。

(1)若21AF AF ⊥,求椭圆的离心率; (2)若P (-4,3),且021=∙PF PF ,求椭圆的方程;(3)若存在一点P 使∠21PF F 为钝角,求椭圆的离心率的取值范围。

21PF F5. 如图,A,B,C 是椭圆M :上的三点,其中A 是椭圆的右顶点,BC 过椭圆M 的中心,且满足AC ⊥BC,BC=2AC. (1) 求椭圆M 的离心率(2)若y 轴被△ABC 的外接圆所截得的弦长为9,求椭圆M 的方程。

6. 设椭圆C :)0(,1222>=+a y a x 的两个焦点)0,(),0,-(21c F c F (c>0),且椭圆C 与圆222c y x =+有公共点。

(1)求a 的取值范围;(2)若椭圆上的点到焦点的最短距离是2-3,求椭圆的方程。

新高考数学复习:解析几何大题

新高考数学复习:解析几何大题

(2)证明:如图,在平面直角坐标系中,设A(x1, y1),B(x2,y2).
因为直线AB过F(1,0),依题意可设其方程为x =ty+1.
由xy= 2=ty4+x,1,得y2-4ty-4=0. 因为Δ=16t2+16>0,所以y1+y2=4t. 所以x1+x2=ty1+1+ty2+1=4t2+2. 因为D是AB的中点,所以D(2t2+1,2t). 由抛物线的定义得|AB|=x1+1+x2+1=4t2+4.
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物 线的焦点,若过抛物线的焦点,可直接利用公式|AB|=x1+x2+ p,若不过焦点,则用弦长公式|AB|= 1+k2|x1-x2|.
(3)涉及直线与圆锥曲线相交弦的中点和弦所在直线的斜率 问题时,常用“点差法”“设而不求法”,并借助一元二次方 程根的判别式、根与系数的关系、中点坐标公式及参数法求 解.但在求得直线方程后,一定要代入原方程进行检验.
(4)点差法求解弦中点问题的基本步骤为: ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程. ③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解.
(2019·福建质量检查测试)在平面直角坐标系xOy中, 圆F:(x-1)2+y2=1外的点P在y轴的右侧运动,且P到圆F上的 点的最小距离等于它到y轴的距离,记P的轨迹为E.
函数与方程思想的应用,在此处绝不是小概率事件!
押题一 直线与圆锥曲线的位置关系 (2019·唐山摸底)斜率为k(k≠0)的直线l与抛物线y=x2 交于A(x1,y1),B(x2,y2)两点,O为坐标原点. (1)当x1+x2=2时,求k; (2)若OB⊥l,且|AB|=3|OB|,求|AB|.

高考解析几何题型归纳总结

高考解析几何题型归纳总结

高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。

几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。

为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。

1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。

在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。

(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。

(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。

2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。

在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。

考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。

(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。

(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。

例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。

考生应注意灵活运用不同种类三角形的性质。

3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。

在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。

(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何高考大题总结
————————————————————————————————作者:————————————————————————————————日期:
2016江西
2014全国一
2007年天津
2016年全国二
2014全国二
二2013全国二
2013全国一
2012江西
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l 向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。

若不存在,说明理由。

2011江西
2010江西
2009江西
2008江西
2007江西
2015山东
在平面直角坐标系xOy 中,已知椭圆C :2222b
y a x +=1(a >b >0)的离心率为23,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设椭圆E :2
2
2244b y a x +=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q ;
(ⅰ)求OP
OQ 的值; (ⅱ)求△ABQ 面积的最大值.
2015江苏
如图,在平面直角坐标系xOy 中,已知椭圆
+=1(a >b >0)的离心率为,且右焦
点F 到左准线l 的距离为3.
(1)求椭圆的标准方程; (2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.
2015浙江
已知椭圆上两个不同的点A,B关于直线y=mx+对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).
2015天津
已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.
(Ⅰ)求直线FM的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
2016全国三
2017浙江
2016天津
2016浙江
2016上海
2014陕西
曲线C由上半椭圆C1:y2
a2+x2
b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x
2+1(y≤0)连
接而成,C1与C2的公共点为A,B,其中C1的离心率为
3 2.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l 的方程.
2014天津
设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
2014安徽
如图,已知两条抛物线)0(2:112
1>=P x P y E 和 )0(2:2222>=P x P y E ,过原点O 的两条直线1l 和2l ,
1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交
于21,B B 两点.
(Ⅰ)证明:2211//B A B A ;
(Ⅱ)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点.记111C B A ∆与 222C B A ∆的面积分别为1S 与2S ,求2
1S S 的值.
2014福建
已知双曲线E :﹣=1(a >0,b >0)的两条渐近线分别为l 1:y=2x ,l 2:y=﹣2x .
(1)求双曲线E 的离心率;
(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、第四象限),且△OAB 的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程,若不存在,说明理由.
2014山东
设函数())ln 2(2x x
k x e x f x +-=(k 为常数, 2.71828e =L 是自然对数的底数) (I )当0k ≤时,求函数()f x 的单调区间;
(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。

2015上海
已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.
(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;
(2)设l1与l2的斜率之积为﹣,求面积S的值.
2015广东
已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . ()1求圆1C 的圆心坐标;
()2求线段AB 的中点M 的轨迹C 的方程;
()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.
2015四川
椭圆E :2222+1(0)x y a b a b
=>>的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为22.
(1)求椭圆E的方程;
(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得QA PA
QB PB
恒成立?
若存在,求出点Q的坐标;若不存在,请说明理由。

2015重庆
如题图,椭圆
=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1
(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程; (Ⅱ)若|PF 1|=|PQ|,求椭圆的离心率e .
2015陕西
已知椭圆()的半焦距为,原点到经过两点 ,的直线的距离为
. (I )求椭圆的离心率; (II )如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
:E 22
221x y a b
+=0a b >>c O (),0c ()0,b 12
c E AB :M ()()225212
x y ++-=
E A B E。

相关文档
最新文档