复旦大学复变函数期末考试题

合集下载

复变期末考试试卷

复变期末考试试卷

复变期末考试试卷复变函数是数学中的一个重要分支,它在工程学、物理学以及许多其他科学领域中有着广泛的应用。

本期末考试试卷旨在测试学生对复变函数理论的理解和应用能力。

以下是复变期末考试的题目:一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 102. 如果 \( f(z) = z^2 + 2z + 1 \),那么 \( f(2 - i) \) 的值是:A. 3B. 4C. 5D. 63. 以下哪个是解析函数的必要条件?A. 可微B. 可积C. 连续D. 有界...二、填空题(每空2分,共20分)1. 如果 \( z = x + yi \),那么 \( \overline{z} \) 是 ______ 。

2. 复数的乘法满足 \( (z_1 z_2) \overline{z_1} = \) ______ 。

3. Cauchy-Riemann 方程是 ______ 的必要条件。

...三、简答题(每题10分,共20分)1. 解释什么是解析函数,并给出一个解析函数的例子。

2. 描述复平面上的共轭曲线,并给出一个具体的例子。

四、计算题(每题15分,共30分)1. 计算下列积分:\[\int_{|z|=2} \frac{1}{z-1} dz\]2. 给定 \( f(z) = \frac{z^2 - 1}{z^2 + 4z + 3} \),求 \( f(z) \) 在 \( z = -1 \) 处的留数。

五、证明题(每题10分,共10分)证明:如果 \( f(z) \) 在 \( z_0 \) 的某个邻域内解析,并且\( |f(z)| \leq M \) 对所有 \( z \) 都成立,那么 \( f(z) \) 在\( z_0 \) 处的留数存在。

六、应用题(每题10分,共10分)考虑一个简单的 RLC 电路,其阻抗 \( Z(z) \) 可以表示为复数函数。

复变函数考试试题及参考答案

复变函数考试试题及参考答案

复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。

答案:$(1+i)^3=-2+2i$。

2.计算下列复数的幂函数:$z=-2+i$,$n=4$。

答案:$(-2+i)^4=7-24i$。

3.求解方程:$z^2+4z+5=0$。

答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。

4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。

答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。

5.计算下列复数的共轭复数:$z=2-i$。

答案:$z^*=2+i$。

6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。

答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。

7.计算下列复数的实部和虚部:$z=3+2i$。

答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。

答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。

9.求复数的幂函数:$z=-1-i$,$n=2$。

答案:$(-1-i)^2=1-2i-1=-2i$。

10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。

答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。

《复变函数》2018-2019期末试题及答案

《复变函数》2018-2019期末试题及答案
从而有
(c为任意常数)
因此
故得
由f(O)=1得c=0,故得
2.解法1:设
因,(z)在c的内部只有两个有限奇点0与1,故作 由定理4.4有


解法2:设 因f(z)在c的内部只有两个有限奇点0与l,且知0是f(z)的二级极点,l是f(z)的一级极点,由定理7.1得


3.解:因为厂(z)的有限奇点只有z=2,所以f(z)在点z=l可展成幂级数,且f(z)在|z—l |<1内可展开,有
四、证明题(本题l5分)证:因为
而函数 在点z=1解析,且 故由定理6.4得知点z=1为函数f(z)的二级极点.
四、证明题(本题t5分)
试证:点z=l是函数 的二级极点.
试题答案及评分标准
一、单项选择题(本题共20分,每小题4分)
1.C 2.C 3.B 4.A 5.B
二、填空题(本题共20分。每小题4分)
1.闭
2.孤立
3.1
4.0
5.直线
三、计算题(本题共45分,每小题15分)
1.解:由C—R条件有
于是
由此得
《复变函数》2018-2019期末试题及答案
一、单项选择题(本题共20分,每小题4分)
1.设 则 可用z表示为( ).
2.点 是集合 的( ).
A.孤立点B.内点
C.外点D.边界点
A.0B.1(:.2 D.3
5.函数 在点Z=l展成幂级数的收敛半径为( ).
A.1B.2C.3D.4
二、填空题(本题共20分,每小题4分)
1.若点集E的全部聚点都属于E,则称E为()集.
2.设点a为函数f(x)的奇点,若,f(x)在点a的某个去心邻域 内解析,则

《复变函数论》试题库及答案

《复变函数论》试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末试题及答案

复变函数期末试题及答案

复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。

答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。

答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变函数期末试卷(含答案)

复变函数期末试卷(含答案)

解:令,则
因在处连续,故在处连续。
又,故在处不可导。
16.设在区域内解析,且。试证在内必为常数。
证:因在内解析,故
已知等式两边分别对求偏导,并用上式得:
同理可得,故均为常数,进一步有在内必为常数。
17.计算积分,其中为不过和的任一简单闭曲线。
解:①均在的外部,在所围的闭区域上解析,故
②在内部,在外部,由高阶导数公式
《复变函数》期末试卷
1、 单项选择题(每题2分,共20分)
1. 以下命题正确的是
A.
B.零的辐角为零
C.
D.对任意复数有 [ A ]
2.若,则
A.
B.
C.
D.
[D ]
3.设在区域内解析,则
A.
B.
C.
D.
[B]
4.下列说法正确的是
A.如果存在,则在处解析
B.如果和在区域内可微,则在区域内解析
C.如果在区域内处处可导,则在区域内解析
[ A]
B.二级零点
C.三级零点 10.设则 A.
D.四级零点 B.
[C ] [C]
C.
D.
[D ]
Hale Waihona Puke 二、填空题(每空2分,共10分)
11.
12.设为包围的任一简单闭曲线,为整数,则 或0
13.的主值等于
14.函数在处的主要部分为

在处的主要部分为
0
2、 解答题
15.讨论函数在原点的连续性与可导性。
D.如果在区域内解析,则在区域内一定不解析
5.下列等式中不正确的是
A. (为整数) B.
C. (为整数)
D. [ B ]
6.设在复平面内处处解析(其中为常数),则

《复变函数》考试试题(三)参考答案

《复变函数》考试试题(三)参考答案

《复变函数》考试试题(三)参考答案一. 判断题1.× 2.×3.√ 4.√ 5.√6.√7. √ 8.√ 9.√ 10.√. 二.填空题.1.{},z z i z C ≠±∈且;2. 2()k i k z π∈;3. 1ei -+;4. 1;5. 2101in n π=⎧⎨≠⎩; 6. 1; 7. i ±; 8. (21)z k i π=+; 9. ∞; 10. 1(1)!n -.三. 计算题.1. 解 1222211(1)2!!n zn zz e z zzn -+∞==+++⋅⋅⋅=∑.2. 解 11!(1)11l i ml i m l i m ()l i m (1)(1)!n n nn n n n n n n c n n n e c n n nn +→∞→∞→∞→∞+++=⋅==+=+. 所以收敛半径为e . 3. 解 令 22()(9)zef z z z =-, 则 201Re ()99zz z es f z z ====--.故原式022R e ()9z i i s f z ππ===-.4. 解 令 962()22f z z z z =-+-, ()8z z ϕ=-.则在:C 1z =上()()f z z ϕ与均解析, 且()6()8f z z ϕ≤<=, 故由儒歇定理有 (,)(,)1N f C N f C ϕϕ+=+=. 即在 1z < 内, 方程只有一个根. 四. 证明题.1. 证明 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩ 因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为 00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数). 所以12()f z c ic =+为常数.2. 证明 取 r R >, 则对一切正整数 k n > 时, ()1!()!(0)2nk k kz rk f z k M r f dz zrπ+=≤≤⎰.于是由r 的任意性知对一切k n >均有()(0)0k f=.故0()nnn k f z cz ==∑, 即()f z 是一个至多n 次多项式或常数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档