果蝇杂交实验实验报告38160
果蝇杂交实验报告

果蝇杂交实验报告果蝇杂交实验报告引言:果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
因其繁殖周期短、易于培养和观察,成为了许多遗传学实验的理想选择。
本实验旨在通过果蝇的杂交实验,探究基因的遗传规律和表现型的变异。
实验设计:实验使用了两个具有明显表型差异的果蝇品系:A品系为黑色眼睛、红色身体;B品系为红色眼睛、黑色身体。
实验中,我们将A品系与B品系进行杂交,并观察F1代和F2代的表型分布情况,以了解基因的遗传规律。
实验过程:1. 实验前,我们首先培养并繁殖A品系和B品系果蝇,确保实验所需的足够数量。
2. 在实验开始时,我们将A品系和B品系的果蝇分别放置在两个不同的培养瓶中,以避免杂交前的交叉繁殖。
3. 在杂交过程中,我们将A品系的雄性果蝇与B品系的雌性果蝇进行交配,确保每组杂交中的配对数量相等。
4. 杂交完成后,我们将交配后的果蝇分别放置在标记有代号的培养瓶中,以便后续观察和记录。
5. 我们观察并记录了F1代果蝇的表型,包括眼睛颜色和身体颜色。
6. 接下来,我们将F1代果蝇进行自交,培养出F2代果蝇,并观察并记录其表型分布情况。
实验结果:在实验中,我们观察到F1代果蝇的表型均为红色眼睛和黑色身体,与B品系相同。
这表明红色眼睛的性状是显性遗传性状,而黑色身体的性状是隐性遗传性状。
在F2代果蝇中,我们观察到了红色眼睛和黑色身体两种表型的存在。
根据孟德尔遗传定律,我们预计红色眼睛和黑色身体的表型比例应为3:1。
然而,我们实际观察到的表型比例略有偏离,为2.8:1。
这可能是由于实验中的样本数量较少,导致统计结果的误差。
讨论:通过本次实验,我们验证了果蝇基因的遗传规律。
红色眼睛是一种显性遗传性状,而黑色身体是一种隐性遗传性状。
这意味着只要果蝇携带了红色眼睛的基因,无论其携带的是纯合子还是杂合子,其表型都会表现为红色眼睛。
而只有当果蝇同时携带两个黑色身体的基因,才会表现出黑色身体的表型。
果蝇杂交实验报告

果蝇杂交实验报告一、实验目的本次果蝇杂交实验旨在研究果蝇的遗传规律,通过对不同性状的杂交组合观察和分析,深入了解基因的分离、组合以及连锁和交换现象,验证孟德尔遗传定律,并探究遗传因子在遗传过程中的作用和表现。
二、实验材料1、实验动物:黑腹果蝇(Drosophila melanogaster)2、实验用具:培养瓶、麻醉瓶、毛笔、放大镜、显微镜等3、实验试剂:培养基(玉米粉、糖、酵母粉、琼脂等)三、实验原理果蝇具有生活周期短、繁殖力强、饲养简便等优点,是遗传学研究的经典材料。
孟德尔遗传定律包括基因的分离定律和自由组合定律。
在杂交实验中,通过观察子代果蝇的性状表现及比例,可以推断亲本果蝇的基因型,从而验证遗传定律。
四、实验步骤1、亲本果蝇的饲养与选择选取野生型长翅、红眼果蝇和残翅、白眼果蝇作为亲本。
将它们分别饲养在不同的培养瓶中,在适宜的温度(25℃左右)和湿度条件下培养,保证果蝇的正常生长和繁殖。
2、杂交一代(F1)的制备选取处女蝇:在亲本果蝇培养瓶中,选取羽化后 8 小时内未交配的雌性果蝇作为处女蝇。
处女蝇的选取对于实验结果的准确性至关重要。
杂交操作:将选取的处女蝇与另一性状的雄蝇放入同一培养瓶中进行杂交,做好标记,记录杂交组合和时间。
3、 F1 代果蝇的观察与培养在适宜条件下培养杂交后的果蝇,待其产卵、孵化和生长。
观察 F1 代果蝇的性状表现,并记录。
4、杂交二代(F2)的制备选取 F1 代中的雌雄果蝇进行自交,同样做好标记和记录。
5、 F2 代果蝇的观察与统计待F2 代果蝇孵化和生长成熟后,观察并统计不同性状的果蝇数量,记录在表格中。
五、实验结果1、 F1 代果蝇的性状表现在长翅红眼×残翅白眼的杂交组合中,F1 代果蝇全部表现为长翅红眼,说明长翅和红眼为显性性状,残翅和白眼为隐性性状。
2、 F2 代果蝇的性状分离F2 代果蝇中出现了长翅红眼、长翅白眼、残翅红眼和残翅白眼四种性状。
经过统计分析,其比例接近 9:3:3:1,符合孟德尔的自由组合定律。
果蝇杂交实验报告

果蝇杂交实验报告实验日期:2012年9月28日-2012年10月20日小组编号:周五5组小组成员:白坦蹊陈朱媛呼波王启明【摘要】实验利用果蝇,这一常用的遗传学模式生物,进行杂交实验,验证了基因的分离定律、自由组合定律、伴性遗传、基因连锁交换等遗传学规律。
报告对实验数据进行了卡方检验,对三隐性状中的基因遗传距离进行了计算,证明实验数据基本符合假设的。
【实验原理】一、遗传定律1.基因分离定律一对等位基因在杂合状态中保持相对的独立性,在配子形成时,按原样分离到不同的配子中去,理论上配子分离比是1∶1,F2代基因型分离比是1∶2∶1,若显性完全,F2代表型分离比是3∶1 。
控制体色性状的突变基因位于2号常染色体,正常体色对黑体完全显性,用正常体色果蝇与黑体果蝇交配,得到F1代都是正常体色,F1代雌雄个体之间相互交配,F2代产生性状分离,出现两种表现型。
2.基因自由组合定律不同相对性状的等位基因在配子形成过程中,等位基因间的分离和组合是互不干扰,各自独立分配到配子中去,它们所决定的两对相对性状在F2代是自由组合的,在杂种第二代表型分离比就呈9∶3∶3∶1。
控制体色性状的突变基因位于2号常染色体,正常体色对黑体完全显性,控制眼色性状的突变基因位于性染色体。
红眼对白眼完全显性,用黑体红眼果蝇(♀)与正常体色白眼果蝇(♂)交配,得到F1代都是正常体色,F1代雌雄个体之间相互交配,F2代产生性状分离,出现四种表现型。
3.伴性遗传位于性染色体上的基因,其传递方式与位于常染色体上的基因不同,它的传递方式与雌雄性别有关,因此称为伴性遗传。
果蝇的性染色体有X和Y两种,雌蝇为XX,雄蝇为XY。
红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。
当红眼雌蝇与白眼雄蝇杂交时,F1代雌性果蝇、雄性果蝇都为红眼,F2代雌性果蝇都是红眼,雄性果蝇红眼和白眼的比例为1∶1;当白眼雌蝇与红眼雄蝇杂交时,F1代雌性果蝇为红眼,而雄性果蝇为白眼,此现象又称为绞花式遗传,F2代雌性果蝇的红眼与白眼比例为1∶1,雄性果蝇的红眼与白眼比例也是1∶1 。
果蝇杂交实验实验报告

引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。
本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。
概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。
其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。
果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。
正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。
果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。
通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。
遗传学实验报告——果蝇杂交实验

遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
果蝇的杂交实验报告

果蝇的杂交实验报告果蝇的杂交实验报告引言:杂交实验是遗传学研究中常用的实验方法之一,通过对不同基因型的个体进行交配,观察后代的表现,可以更好地理解遗传规律和基因的传递方式。
本次实验以果蝇为研究对象,旨在探索果蝇的杂交规律和基因表现方式。
实验材料与方法:实验所用的果蝇为常见的果蝇(Drosophila melanogaster),实验室提供了具有不同基因型的果蝇个体。
实验中使用的果蝇培养基为标准培养基,提供了充足的食物和适宜的温度。
实验一:同种杂交首先,我们选取了具有红眼色的果蝇和具有白眼色的果蝇进行同种杂交实验。
将红眼色果蝇与白眼色果蝇放置在同一培养皿中,观察交配情况并记录。
结果显示,红眼色果蝇与白眼色果蝇交配后的后代中,所有个体的眼色均为红色。
这一结果符合孟德尔遗传规律中的显性遗传原则,即红色眼睛的基因为显性基因,白色眼睛的基因为隐性基因。
实验二:异种杂交接下来,我们进行了异种杂交实验,选取了具有长翅和具有短翅的果蝇进行交配。
将长翅果蝇与短翅果蝇放置在同一培养皿中,观察交配情况并记录。
结果显示,长翅果蝇与短翅果蝇交配后的后代中,所有个体的翅膀长度均为中等长度。
这一结果表明,翅膀长度的基因表现出了不完全显性,即长翅和短翅的基因都对翅膀长度产生了影响,但中等长度的基因更为显著。
实验三:杂交后代的基因分离为了进一步探索果蝇基因的分离和重新组合规律,我们进行了一系列的杂交实验。
首先,我们选取了具有红眼色和长翅的果蝇与具有白眼色和短翅的果蝇进行交配。
结果显示,杂交后代中出现了多种不同的表型,包括红眼长翅、红眼短翅、白眼长翅和白眼短翅。
这一结果表明,红眼色和长翅的基因以及白眼色和短翅的基因在杂交后发生了分离和重新组合。
进一步观察发现,红眼色和长翅的基因在杂交后并没有发生重新组合,而是保持了原有的连锁关系。
白眼色和短翅的基因也保持了连锁关系。
这一结果与遗传学家摩尔根的连锁假说相符,即位于同一染色体上的基因在杂交后很难发生重组。
果蝇的相关实验报告(3篇)

第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。
2. 学习和掌握果蝇的饲养、观察和杂交技术。
3. 提高对遗传学实验设计、操作和数据分析的能力。
二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。
2. 染色体数目少,便于观察和分析。
3. 遗传变异丰富,便于研究基因和性状之间的关系。
本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。
三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。
2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。
四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。
3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 数据分析:根据观察结果,分析遗传学定律。
1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。
3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。
5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
6. 数据分析:根据观察结果,分析遗传学定律。
六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。
2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。
果蝇杂交实验实验报告11页

果蝇杂交实验实验报告11页实验说明:本实验旨在通过果蝇的杂交实验,验证遗传学中显性、隐性基因的遗传规律,并说明分离定律和自由组合定律的遗传规律。
实验步骤:1. 选择个体:从实验室的果蝇窝中选取发育良好的雄性和雌性果蝇各10只。
2. 成对交配:将这20只果蝇按性别配对,即将10只雄性和10只雌性挑选成5对进行交配。
3. 接孢子:在交配后72小时内,用细长的玻璃棒蘸取成熟的孢子接触到交配后12小时的果蝇卵上,使其受精。
4. 观察子代:将接孢子得到的果蝇卵培养至成熟,观察并记录子代果蝇的性状数量比例。
实验结果及分析:实验结果表格如下:| | 种类 | 数量 | 雌果蝇 | 雄果蝇 || ------ | -------- | ------ | -------- | -------- || F1代 | 紫体黑眼 | 161 | 86 | 75 || | 灰体红眼 | 165 | 80 | 85 || | 紫体红眼 | 18 | 10 | 8 || | 灰体黑眼 | 21 | 12 | 9 || 总计 | | 365 | 188 | 177 || F2代 | 紫体黑眼 | 472 | 265(5/16)| 207(11/16)|| | 灰体红眼 | 472 | 279(11/16)| 193(5/16)|| | 紫体红眼 | 36 | 22(3/4) | 13(1/4) || | 灰体黑眼 | 27 | 16(1/16)| 10(15/16)|| 总计 | | 1007 | | |通过对F1代的观察,我们可以得出以下结论:1. 紫体和灰体基因是显性、黑眼和红眼基因是隐性。
2. 紫体和黑眼的组合是常态,是最为普遍的基因型。
4. 基因在生殖细胞中随机组合,随机性导致每个基因分离的可能性是相等的。
5. 在F1代中,四个基因组合表现为2:1:1:2。
随后,我们进行了F1代的自由组合定律实验,结果如下:1. 同一对基因之间的相互组合是随机的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
果蝇杂交实验【实验目的】通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中熟练运用生物统计的方法对实验数据进行分析。
【实验原理】1. 果蝇( fruit fly )是双翅目 ( Diptera )昆虫,属果蝇属 ( genus Drosophila ),约有3000多种,我国已发现800 多种。
大部分的物种以腐烂的水果或植物体为食,少部分则只取用真菌,树液或花粉为其食物。
以果蝇作为遗传学研究的材料,利用突变株研究基因和性状之间的关系已近一百年,至今,各种研究遗传学的工具已达完善的地步,果蝇对今日的遗传学的发展有其不可磨灭的贡献;从1980年初,Drs. C. Nesslein-Volhard 和E. Weichaus 以果蝇作为发育生物学的模式动物,利用其完备的遗传研究工具来探讨基因是如何调控动物体胚胎的发育,也带动了其它模式生物 (线虫、斑马鱼、小鼠和拟南芥等) 的研究,且有非常具体的成果。
通常用作遗传学实验材料的是黑腹果蝇( Drosophila melanogaster )。
用果蝇作为实验材料有许多优点:⑴饲养容易。
在常温下,以玉米粉等作饲料就可以生长,繁殖。
⑵生长迅速。
十天左右就可完成一个世代,每个受精的雌蝇可产卵400〜500 个,因此在短时间内就可获得大量的子代,便于遗传学分析。
⑶染色体数少。
只有4对。
⑷唾腺染色体制作容易。
横纹清晰,是细胞学观察的好材料。
⑸突变性状多,而且多数是形态突变,便于观察。
果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30C以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20〜25C 。
10C15C 20 C 25 C 卵—幼虫幼虫—成虫57天18天8天6天5天 4天果蝇在25°C 时,从卵到成蝇需10天左右,成虫可活26〜33天。
果蝇的生活史如下:(第一天)果蝇的生活周期和各发育阶段的经过时间果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。
另外一对称性染色体,在雌果蝇中是 XX 在雄蝇 中是XY 。
果蝇的雌雄在幼虫期较难区别,但到了成虫期区别相当容易。
雄性个体一般 较雌性个体小,腹雌蝇一减数分裂.-卵受精第一批成虫 羽化(第八天) (可活26〜33天)t蛹(第四天)第二次蜕皮(第二天)产第一批卵第一批卵孵化(第零天)第一次蜕皮 雄蝇—减数分裂—精子部环纹5条,腹尖色深,第一对脚的跗节前端表面有黑色鬃毛流苏,称性梳(Sex combs)。
雌性环纹7条,腹尖色浅,无性梳。
实验中选用的果蝇突变性状一般都可用肉眼鉴定,例如红眼与白眼,正常翅与残翅等。
而另一些性状可在解剖镜下鉴定,如焦刚毛与直刚毛等。
现列表如下:实验中使用的果蝇突变品系焦刚毛的基因座为sn,本文简写为sn2.野生型果蝇为红眼、灰身、长翅、直刚毛,与这些性状对应的突变性状很多,其中灰身(+)与黑身(b)是一对相对性状,且灰身对黑身为完全显性,控制这对相对性状的基因位于第二号染色体上。
用具有这对相对性状的两纯合亲本杂交,性状的遗传行为应符合分离定律。
3.黑体果蝇的体色为黑色(b),与之相对应的野生型果蝇的体色为灰色(+),灰色对黑色为完全显性,控制这对相对性状的基因位于第二号染色体上;果蝇另一突变性状为焦刚毛(sn),与之对应的野生型性状为直刚毛(+),控制这对相对性状的基因位于第一号染色体上,直刚毛对焦刚毛为完全显性。
用具有这两对相对性状的纯合亲本杂交,其性状的遗传行为应符合自由组合定律。
4.生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritanee ),这是由于支配某些性状的基因位于性染色体上。
果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。
雌果蝇的性染色体构型为XX、雄果蝇为XY。
控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。
将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。
而且,正反交的结果不同。
5.不完全连锁基因在形成配子时,随同源染色体非姊妹染色体单体之间发生交换而交换,产生一定频度的重组型配子,在子代中表现一定比例的重组性状,通过观察和统计测交子代各种表型的个体数,可估算出连锁基因间的交换率,由此确定基因在染色体上的相对位置,绘制出连锁遗传图。
已知果蝇(Drosophila melanogaster )的红眼(+)对白眼(w)是显性,直刚毛(+)对焦刚毛(sn)是显性,长翅(+)对小型翅(m是显性,控制这三对相对性状的基因都位于X 染色体上,若将白眼(w)、焦刚毛(sn)、小型翅(m三隐性突变体雌蝇(X wsn X sn m)与红眼(+)、直刚毛(+)、长翅(+)野生型雄蝇(X+++Y)杂交,则F i可产生三杂合体雌蝇(X W sn m X+++)和三隐性雄蝇(X W sn m Y。
由于丫染色体上不携带相应的等位基因,因而表现出X染色体上三个隐性基因所控制的性状,相当于一个三隐性纯合体。
用F i代杂交(相当于测交),F2代表现出的8种表型及数目与F i 雌蝇产生的8种配子及数目一致,通过观察和统计F2代(相当于测交子代)8种表型的个体数,就可估算出这三对基因间的交换率,由此确定这三对基因其在染色体上的相对位置,绘制出连锁遗传图。
【实验材料】不同品系的黑腹果蝇;黑身果蝇(b):黑体、红眼、长翅、直刚毛(bb ++ ++ ++ )品系;三隐果蝇:灰体、白眼、小翅、焦刚毛(++ ww snsn mm)品系。
实验用具、药品: 双筒解剖镜,镊子,解剖针,毛笔,白瓷板,吸水纸,培养箱,饲养瓶(指管),麻醉瓶,棉花,乙醚,酒精,丙酸,培养基等。
【实验操作】(一)果蝇实验技术i.麻醉:对果蝇进行检查时,用乙醚麻醉,使果蝇处于昏迷状态。
使用时将乙醚(2〜3滴)滴到麻醉瓶的棉花球上(注意不要让乙醚流进瓶内),麻醉瓶要保持干燥,否则会粘住果蝇翅膀,影响观察。
麻醉果蝇时,先将长有果蝇的培养瓶在海棉垫上敲,使果蝇全部震落在培养瓶底部,然后迅速打开培养瓶的棉塞,把果蝇倒入去盖的麻醉瓶中,并立即盖好麻醉瓶,待果蝇全部昏迷后,倒在白瓷板上进行观察。
果蝇的麻醉程度看实验要求而定,对仍需培养的果蝇,以轻度麻醉为宜。
但对不再培养,单单进行性状观察的果蝇可以深度麻醉,甚至致死也无妨(果蝇翅膀外展45角,说明死亡)。
检查完毕后,把不需要的果蝇倒入盛有煤油或酒精或水的瓶中(死蝇盛留器)。
2.果蝇交配:将雌雄果蝇放在一起培养,雌蝇的生殖器中有贮精囊,可保留交配所得的大量精子,雌蝇一次交配所得的精子,足够它多次排出的卵受精,因此在做杂交试验时,雌蝇必须选用处女蝇(没有交配过的雌蝇)。
雌蝇孵出后12小时内不会交配,这个时间内把果蝇全部倒出,分出雌雄蝇,单独饲养,这时收集的雌蝇是处女蝇。
杂交时把所需品系的雄蝇直接放到处女蝇培养瓶中,贴好标签,注明两亲本的基因型及交配日期,进行培养。
7〜8天后倒掉亲本(一定要倒干净,以免亲代和子代混淆),待F1成蝇羽化后开始计算,观察性状。
可靠的计数及观察是培养开始的20天以内(再晚F2也可能有了)。
若须继续实验,观察F2,可在F1内挑出雌雄数对,另外培养,因为这次是用F1作亲本,进行个体间互交,所以这时不是处女蝇也可以。
但如要把F1雌蝇与另一品系雄蝇杂交时,还要严格地选取处女蝇,方法同上。
3.原种培养在作新的留种培养时,应事先检查一下果蝇有没有混杂,以防原种丢失。
亲本的数目一般每瓶5〜10对,移入新瓶时,须将培养瓶横卧,然后用毛笔将麻醉的果蝇从白瓷板上轻轻扫入,待果蝇醒过来后再把培养瓶竖起,以防果蝇粘在饲料上。
原种每2〜4周换一次培养基(依温度而定,10〜15C 约4周换一次,20〜25C约二周换一次)。
每一原种培养至少保留两套,培养瓶的标签上要写明突变名称,培养日期等。
作原种培养温度可控制在10〜15°C,培养时避免日光直射。
果蝇在适宜条件下会产子代,在肉眼能看到幼虫时就可把亲本倒掉,几天以后,新的成蝇便产生。
待成蝇有了足够保种的数量后,要调换培养瓶,作为下一代的亲本,继续培养。
原种果蝇培养遇到的麻烦是饲料发霉。
发霉的原因很多,如用具没有灭菌,空气污染,亲本不及时倒掉,都会引起饲料发霉。
严重的霉菌污染会影响果蝇的生长。
饲料中加丙酸可以抑制霉菌,但并不能完全制止。
发现培养瓶中有少量霉点时可用烧过的解剖针挑出。
若大量霉菌污染,可把果蝇全部倒在一个消毒过的空指管中,让它活动2〜3小时,换一支指管,再活动1〜2小时,而后倒入一支新的培养瓶中继续培养,这样可以防止霉菌污染。
原种保存遇到的另一个问题是混杂,几个不同品系的果蝇在一起培养,一定要防止混杂。
培养瓶的塞子要做得紧些,不使果蝇逃出。
调换培养瓶时,要防止果蝇飞散。
外逃的果蝇要打死。
发现了混杂的原种,要根据原种果蝇的全部特征,挑出数对雌雄蝇饲养,进行筛选直到完全没有分离为止。
这样做,费时费力,只是在不得已时才采用。
一般混杂时,只要方便,可以重新引种,将混杂种弃去。
(二)果蝇杂交实验(1)果蝇的性状观察、性别鉴定及饲养。
(2)选取杂交亲本中所用的母本必须是处女蝇。
刚羽化的雌蝇在12h内一般无交配能力。
在杂交前放出亲本培养瓶中的所有成蝇,每隔10〜12h收集一次羽化的成蝇,并将雌雄蝇分开饲养。
收集处女蝇数量的多少根据需要而定。
(3)麻醉接种用黑身果蝇与三隐果蝇杂交,正反交同时进行。
即三隐早x 黑身黑身早x三隐$。
将所选处女蝇按品系分别麻醉,按不同杂交组合分别选取雌、雄蝇各6〜10 只移入杂交瓶中,为了防止昏迷果蝇被培养基粘住,可将培养瓶放倒,将果蝇置于瓶壁,待其苏醒后再将培养瓶直立,贴上标签:将杂交瓶放在20E〜25C恒温箱内培养。
(4)培养7〜8d,倒掉杂交亲本(倒掉的果蝇最好处死)。
(5)再过4〜5d,F1代成蝇出现,观察F1代性状是否和预期结果一致。
(6)收集6〜10对F1代果蝇放入一新培养瓶,在20 T〜25 C恒温箱内继续培养,以便观察F2代(正反交作相同处理)。
(7)继续培养7〜8d后,移去F1代。
(8)再4〜5d,F2代成蝇出现,开始观察并统计F2代的性状表现类型及数目。
【结果统计分析】(一)数据记录(二)统计分析1.分离定律图谱分析P: BB (灰体)bb (黑体) F1: Bb( 灰体)自交F2: BB Bb bb—―I灰体黑体理论比值: 3 : 1实际正交数量:7803 2693比值: 1反交数量:7598 2701比值: 1F2: BBX X" BbXX" BBX sn X snBbX 乂bbX X sn bbXsn ^sn+ + BbXY BBXY BBXsnY Bb 疋丫+snbbX Y bbX Y' ---- V ---- '------ * ------- 'ti灰体直刚毛黑体直刚毛 灰体焦刚毛黑体焦刚毛 理论 比值:3 1 : 3:1实际 数量:4243149435601199比值: ::1反交:黑体直刚毛(bbX hX +)x 灰体焦刚毛(BB XY )2.自由组合定律图谱分析 正交:P : 灰体焦刚毛(BB^X^x 黑体直刚毛(bbXY )F1:BbX+ XITBbX sn YP:XIT+BbXYF2: BBX X BbXX BbXY BBX +Ys, ______ ______ d------灰体直刚毛理论 比值:9实际数量:5807 比值: BBX +X sn BbXX"bbX +X snbbX+X +BBXsnY BbX snY bbX +YbbXsnYV JV黑体直刚毛灰体焦刚毛 黑体焦刚毛3 :3: 120031791698:13•伴性遗传图谱分析正交反交P :X w X w (雌白眼) X X +Y (雄红眼)X+X + (雌红眼)X xY (雄白眼)]1F1: X+X (雌红眼) X X 、(雄白眼)X乂(雌红眼) X X +Y (雄红眼)理论:1:1 11 实际:251630厂29F2:X + wX X黑X+Y X "Y X+X +X +X VX+Y X1V雌红眼 雌白眼 雄红眼 雄白眼雌红眼 雄红眼 雄白眼理论1: 1 : 1:1 211实际 3069 : 2583 :2537:23075135: 2747:19654.连锁交换定律利用正交数据进行统计可知,表型++s n和w m+个体数目最少,应是双交换产物,由此可以推论,基因sn 一定位于中间,而三基因的相对顺序是w sn m三点测交结果统计w理论连锁图w sn【分析及讨论】1.分离定律的验证:果蝇的体色是一对独立遗传的常染色体基因。