初中排列组合公式例题

初中排列组合公式例题
初中排列组合公式例题

排列组合公式

复习排列与组合

考试内容:两个原理;排列、排列数公式;组合、组合数公式。

考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。

2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。

重点:两个原理尤其是乘法原理的应用。

难点:不重不漏。

知识要点及典型例题分析:

1.加法原理和乘法原理

两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。

例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。

解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。

(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。

(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。

例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射?

分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。”

因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。

2.排列数与组合数的两个公式

排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。

连乘积的形式阶乘形式

Anm=n(n-1)(n-2)……(n-m+1) =

Cnm=

例3.求证:Anm+mAnm-1=An+1m

证明:左边=

∴等式成立。

评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变

形过程得以简化。

例4.解方程.

解:原方程可化为:??

? ? 解得x=3。

评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。

3.排列与组合的应用题

历届高考数学试题中,排列与组合部分的试题主要是应用问题。一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。常用的方法有:一般方法和特殊方法两种。

一般方法有:直接法和间接法。

(1)在直接法中又分为两类,若问题可分为互斥各类,据加法原理,可用分类法;若问题考虑先后次序,据乘法原理,可用占位法。

(2)间接法一般用于当问题的反面简单明了,据A∪=I且A∩ = 的原理,采用排除的方法来获得问题的解决。

特殊方法:

(1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。

(2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。

(3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。

(4)其它方法。

例5.7人排成一行,分别求出符合下列要求的不同排法的种数。

(1)甲排中间;(2)甲不排两端;(3)甲,乙相邻;

(4)甲在乙的左边(不要求相邻);(5)甲,乙,丙连排;

(6)甲,乙,丙两两不相邻。

解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1×=720种不同排法。

(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有种,故共有· =3600种不同排法。

(3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有·=1400种不同的排法。

(4)甲在乙的左边。考虑在7人排成一行形成的所有排列中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有 =2520种。

(5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有· =720种不同排法。

(6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。再将甲、乙、丙插入其中的三个“空”,故共有·=1440种不同的排法。

例6.用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:

(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。

解:(1)奇数:要得到一个5位数的奇数,分成3步,第一步考虑个位必须是奇数,从1,3,5中选出一个数排列个位的位置上有种;第二步考虑首位不能是0,从余下的不是0的4个数字中任选一个排在首位上有种;第三步:从余下的4个数字中任选3个排在中间的3个数的位置上,由乘法原理共有??=388(个)。

(2)5的倍数:按0作不作个位来分类

第一类:0作个位,则有=120。

第二类:0不作个位即5作个位,则 =96。

则共有这样的数为: + =216(个)。

(3)比20300大的数的五位数可分为三类:

第一类:3xxxx, 4xxxx, 5xxxx有3个;

第二类:21xxx, 23xxx, 24xxx, 25xxx, 的4个;

第三类:203xx, 204xx, 205xx, 有3个,

因此,比20300大的五位数共有:3+4 +3 =474(个)。

(4)不含数字0且1,2不相邻的数:分两步完成,第一步将3,4,5三个数字排成一行;第二步将1和2插入四个“空”中的两个位置,故共有=72个不含数字0,且1和2不相邻的五位数。

例7.直线与圆相离,直线上六点A1,A2,A3,A4,A5,A6,圆上四点B1,B2,B3,B4,任两点连成直线,问所得直线最多几条?最少几条?

解:所得直线最多时,即为任意三点都不共线可分为三类:

第一类为已知直线上与圆上各取一点连线的直线条数为=24;

第二类为圆上任取两点所得的直线条数为=6;

第三类为已知直线为1条,则直线最多的条数为N1= ++1=31(条)。

所得直线最少时,即重合的直线最多,用排除法减去重合的字数较为方便,而重合的直线即是由圆上取两点连成的直线,排除重复,便是直线最少条数:N2=N1-2=31-12=19(条)。

解排列组合问题的策略

要正确解答排列组合问题,第一要认真审题,弄清楚是排列问题还是组合问题、还是排列与组合混合问题;第二要抓住问题的本质特征,采用合理恰当的方法来处理,做到不重不漏;第三要计算正确。下面将通过对若干例题的分析,探讨解答排列组合问题的一些常见策略,供大家参考。

一、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略

对于带有特殊元素的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与其他位置,也就是解题过程中的一种主元思想。

例1 用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有()

A.24个 B.30个 C.40个 D.60个

解:因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的“特殊”元素,应优先安排,按0排在末尾和0不排在末尾分为两类:①当0排在末尾时,有个;②当0不排在末尾时,三位偶数有个,据加法原理,其中偶数共有 + =30个,选B。

若含有两个或两个以上的特殊位置或特殊元素,则应使用集合的思想来考虑。这里仅举以下几例:

(1)无关型(两个特殊位置上分别可取的元素所组成的集合的交是空集)

例2 用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数?

解:由题意可知,两个特殊位置在首位和末位,特殊元素是“0,首位可取元素的集合A={1,2,3,4,5},末位可取元素的集合B={0},A∩B= 。如图1所示。

??

末位上有种排法,首位上有种不同排法,其余位置有种不同排法。所以,组成的符合题意的六位数是? ?=120(个)。

说明:这个类型的题目,两个特殊位置上所取的元素是无关的。先分别求出两个特殊位置上的排列数(不需考虑顺序),再求出其余位置上的排列数,最后利用乘法原理,问题即可得到解决。

(2)包合型(两个特殊位置上分别可取的元素所组成集合具有包合关系)

例3 用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?

解:由题意可知,首位、末位是两个特殊位置,“0”是特殊元素,首位可取元素的集合

A={1,2,3,4,5},末位可取元素的集合B={5},B A,用图2表示。

末位上只能取5,有种取法,首位上虽然有五个元素可取但元素5已经排在末位了,故只有种不同取法,其余四个位置上有种不同排法,所以组成的符合题意的六位数有? ?=96(个)。

说明:这个类型的题目,两个特殊位置上所取的元素组成的集合具有包含关系,先求被包合的集合中的元素在特殊位置上的排列数,再求另一个位置上的排列数,次求其它位置上排列数,最后利用乘法原理,问题就可解决。

(3)影响型(两个特殊位置上可取的元素既有相同的,又有不同的。这类题型在高考中比较常见。)

例4 用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?

解:由题意可知,首位和百位是两个特殊位置,“3”是特殊元素。首位上可取元素的集合 A={2,3,4,5},百位上可取元素的集合B={1,2,4,5}。用图3表示。

从图中可以看出,影响型可分成无关型和包含型。①首先考虑首位是3的五位数共有:个;②再考虑首位上不是3的五位数,由于要比20000大,∴首位上应该是2、4、5中的任一个,种选择;其次3应排在千位、十位与个位三个位置中的某一个上,种选择,最后还有三个数、三个位置,有种排法,于是首位上不是3的大于20000的五位数共有个? ?。

综上①②,知满足题设条件的五位数共有: +? ?=78个。

二、解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略

解含有约束条件的排列组合问题,应按元素的性质进行分类,按事件发生的连贯过程分步,做到分类标准明确、分步层次清楚,不重不漏。

例5 平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有________个。

简析:按构成矩形的过程可分为如下两步:第一步.先在4条平行线中任取两条,有种取法;第二步再在5条平行线中任取两条,有种取法。这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有· =60个。

例6 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少?

解:依题意,共线的三点组可分为三类:两端点皆为顶点的共线三点组共有 =28(个);两端点皆为面的中心的共线三点组共有 =3(个);两端点皆为各棱中点的共线三点组共有 =18(个)。

所以总共有28+3+18=49个。

例7 某种产品有4只次品和6只正品(每只产品均可区分)。每次取一只测试,直到4只次品全部测出为止。求第4只次品在第五次被发现的不同情形有多少种?

解:先考虑第五次测试的产品有4种情况,在前四次测试中包含其余的3只次品和1只正品,它们排列的方法数是6 。依据乘法原理得所求的不同情形有4×6 =576种。

有些排列组合问题元素多,取出的情况也有多种,对于这类问题常用的处理方法是:可按结果要求,分成不相容的几类情况分别计算,最后计算总和。

例8 由数字0,1,2,3,4,5组成没有重复的6位数,其中个位数字小于十位数字的共有()

A、210个

B、300个

C、464个

D、600个

分析:按题意个位数字只可能是0,1,2,3,4共5种情况,符合题的分别有,,,,个。

合并总计,共有 + + + + =300(个)。

故选B。

说明:此题也可用定序问题缩位法求解,先考虑所有6位数:个,因个位数字须小于个位数字,故所求6位数有( )/ =300(个)。

处理此类问题应做到不重不漏,即每两类的交集为空集,所有类的并集为合集,因此要求合理分类。

例9 已知集合A和集合B各含12个元素,A∩B含有4个元素,试求同时满足下面的两个条件的集合C的个数:

(1)C A∪B,且C中含有3个元素;

(2)C∩A≠(表示空集)。

分析:由题意知,属于集合B而不属于集合A元素个数为12-4=8,因此满足条件(1)、(2)的集合C可分为三类:

第一类:含A中一个元素的集C有个;

第二类:含A中二个元素的集C有个;

第三类:含A中三个元素的集C有个。

故所求集C的个数是 + + =1084。

有序分配问题是指把元素按要求分成若干组,分别分配到不同的位置上,对于这类问题的常用解法,是先将元素逐一分组,然后再进行全排列、但在分组时要注意是否为均匀分组。

例10 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护土,不同的分配方法共有 ( )。

A.90种B.180种C.270种D.540种

分析:(一)先分组、后分配:

第一步:将3名医生分成3组,每组一人只有一种分法。

第二步:将6名护士分成3组,每组2人有:( )/ 种分法。

第三步:将医生3组及护士3组进行搭配,使每组有一名医生、2名护士,有种搭配方法。

第四步:将所得的3组分配到3所不同的学校有种分配法。

故共有不同的分配方法:· =540(种)。故选(D)。

分析:(二)第一步:先将6名护士分配到3所不同学校,每所学校2名,则有 (种)分法。

第二步:再将3名医生分配到3所不同的学校,每所学校1人,有种分法。

故共有??=540(种)故选(D)。

说明:处理此类问题应注意准确分步。

三、解排列组台混合问题——采用先选后排策略

对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。

例11 4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有_________种。

简析:这是一个排列与组合的混合问题。因恰有一个空盒,所以必有一个盒子要放2个球,故可分两步进行:第一步选,从4个球中任选2个球,有种选法。从4个盒子中选出3个,有种选法;第二步排列,把选出的2个球视为一个元素,与其余的2个球共3个元素对选出的3个盒子作全排列,有种排法。所以满足条件的放法共有??=144种。

四、正难则反、等价转化策略

对某些排列组合问题,当从正面入手情况复杂,不易解决时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理。即采用先求总的排列数(或组合数),再减去不符合要求的排列数(或组合数),从而使问题获得解决的方法。其实它就是补集思想。

例12 马路上有编号为1、2、3、…、9的9只路灯,为节约用电,现要求把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的路灯,则满足条件的关灯方法共有_______种。

简析:关掉一只灯的方法有7种,关第二只、第三只灯时要分类讨论,情况较为复杂,换一个角度,从反面入手考虑。因每一种关灯的方法唯一对应着一种满足题设条件的亮灯与暗灯的排列,于是问题转化为在6只亮灯中插入3只暗灯,且任何两只暗灯不相邻、且暗灯不在两端,即从6只亮灯所形成的5个间隙中选3个插入3只暗灯,其方法有=10种。故满足条件的关灯的方法共有10种。

例13 甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘

汰,胜者再与负方2号队员比赛,……直到有一方队员全被淘汰为止,另一方获胜,形成—种比赛过程,那么所有可能出现的比赛过程共有多少种?

解:设甲队队员为a1,a2,…a7,乙队队员为b1,b2,……,b7,下标表示事先安排好的出场顺序,若以依次被淘汰的队员为顺序,比赛过程可类比为这14个字母互相穿插的一个排列,最后是胜队中获胜队员和可能未参赛的队员。如a1a2b1b2a3b3b4b5a4b6b7a5a6a7。所表示为14个位置中取7个位置安排甲队队员,其余位置安排乙队队员,故比赛过程的总数为 =3432。

例14 有2个a,3个b,4个c 共九个字母排成一排,有多少种排法?

分析:若将字母作为元素,1—9号位置作为位子,那么这是一个“不尽相异元素的全排列”问题,若转换角色,将1—9号位置作为元素,字母作为位子,那么问题便转化成一个相异元素不许重复的组合问题。

即共有 =1260(种)不同的排法。

有些问题反面的情况为数不多,容易讨论,则可用剔除法。

对有限制条件的问题,先以总体考虑,再把不符合条件的所有情况剔除。这是解决排列组合应用题时一种常用的解题策略。

例15 四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有( )

A.150种B.147种C.14种D.141种

分析:在这10个点中,不共面的不易寻找,而共面的容易找。因此,采用剔除法,由10个点中取出4个点的组合数( 减去4个点共面的个数即为所求)。4点共面情形可分三类:

第一类:四面体每个面中的四个点共面,共有 4× =60种;

第二类:四面体的每2组对棱的中点构成平行四边形,则这四点共面,共有3种;

第三类:四面体的一条棱上三点共线,这三点与对棱中点共面,共有6种。故4点不共面的取法有

-(4 +6+3)=141种。

例16 从0、1、2、3、4、5、6、7、8、9这10个数中取出3个数,使和为不小于10的偶数,不同的取法有多少种。

解:从这10个数中取出3个不同的偶数的取法有种;取1个偶数和2个奇数的取法有种。另外,从这10个数中取出3个数,使其和为小于10的偶数,有9种不同取法。

因此,符合题设条件的不同取法有 + -9=51种。

五、解相邻问题——采用“捆绑”策略

对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来看作一个元素与其他元素排列,然后再在相邻元素之间排列。

事实上,这种方法就是将相邻的某几个元素,优先考虑。让这些特殊元素合成一个元素,与普通元素排列后,再松绑。

例17 A,B,C,D,E五人并排站成一排,如A,B必相邻,且B在A右边,那么不同排法有()A.24种 B.60种 C.90种 D.120种

分析:将特殊元素A,B按B在A的右边“捆绑”看成一个大元素,与另外三个元素全排列,由A,B不能交换,故不再“松绑”,选A。

例18 5人成一排,要求甲、乙相邻,有几种排法?

解:将甲、乙“捆绑”成一个元素,加上其他3元素,共4元素,全排列有种,甲、乙内部的排列有种。故共有??=48种。

也可以这样理解:先让甲、丙、丁、戊,排成一列有种,再将乙插入甲的左边或右边,有种,共 =48种。

例19 计划展出10幅不同的画,其中一幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种? ( )

A、B、C、D、??

分析:先把3种品种的画各看成整体,而水彩画不能放在头尾,故只能放在中间,又油画与国画有种放法,再考虑油画与国画本身又可以全排列,故排列的方法为,故选D。

例20 5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有________种。

简析:将3名老师捆绑起来看作一个元素,与5名学生排列,有种排法;而3名老师之间又有种排法,故满足条件的排法共有 =4320种。

用“捆绑”法解题比较简单,实质是通过“捆绑”减少了元素,它与下面要提到的“插孔”法结合起来,威力便更大了。

六、解不相邻问题——采用“插孔”策略

对于某几个元素不相邻的排列问题,可先将其他元素排列好,然后再将不相邻的元素在这些排好的元素之间及两端的空隙中插入。

例21 7人站成一行,如果甲、乙两人不相邻,则不同的排法种数是 ( )

A.1440种B.3600种C.4320种D.4800种

简析:先让甲、乙之外的5人排成一行,有种排法,再让甲、乙两人在每两人之间及两端的六个间隙中插入,有种方法。故共有· =3600种排法,选B。

例22 要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈不相邻,问有多少种不同排法?

分析:先将6个歌唱节目排成一排有种排法,6个歌唱节目排好后包括两端共有7个“间隔”可以插入4个舞蹈节目有种,故共·6!=604800种不同排法。

例23 从1,2,3,…,2000这2000个自然数中,取出10个互不相邻的自然数,有多少种方法?

解:将问题转化成把10名女学生不相邻地插入站成一列横列的1990名男生之间(包括首尾两侧),有多少种方法?

因为任意相邻2名男学生之间最多站1名女学生,队伍中的男学生首尾两侧最多也可各站1名女学生。于是,这就是1991个位置中任选10个位置的组合问题,故共有种方法。

利用“插孔”法,也可以减少元素,从而简化问题。

例24 一排6张椅子上坐3人,每2人之间至少有一张空椅子,求共有多少种不同的坐法?

解:将问题转化成把3个人坐5张椅子,然后插一把空椅子问题。

3个人若坐5张椅子,每2人之间一张空椅子。坐法是固定的有种不同的坐法,然后,将余下的那张椅子插入3个坐位的4个空隙,有4种插法。所以共有4 =24种不同的坐法。

七、解定序问题——采用除法策略

对于某几个元素顺序一定的排列问题,可先把这几个元素与其它元素一同进行排列,然后用总排列数除以这几个元素的全排列数,这其实就是局部有序问题,利用除法来“消序”。

例25 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数小于十位数字的共有()A.210个B.300个 C. 464个D.600个

简析:若不考虑附加条件,组成的六位数共有个,而其中个位数字与十位数字的种排法中只有一种符合条件,故符合条件的六位数共 =300个,故选B。

例26 信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是 ________(用数字作答)。

分析:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故共有不同的信号种数是 =10(种)。

说明:此题也可以用组合来解,只需5个位置中确定3个,即 =10。

例27 有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?

分析:先在7个位置上任取4个位置排男生,有种排法,剩余的3个位置排女生,因要求“从矮到高”,只有一种排法,故共有 =840种。

在处理分堆问题时,有时几堆中元素个数相等,这时也要用除法,

例28 不同的钢笔12支,分3堆,一堆6支,另外两堆各3支,有多少种分法?

解:若3堆有序号,则有·,但考虑有两堆都是3支,无须区别,故共有 / =9240种。

例29 把12支不同的钢笔分给3人,一人得6支,二人各得3,有几种分法?

解:先分堆:有 / 种。再将这三堆分配给三人,有种。共有· / =3 种。

本题亦可用“选位,选项法”,即:??=3 。

八、解分排问题—采用直排处理的策略

把n个元素排成前后若干排的排列问题,若没有其他特殊要求,可采取统一排成一排的方法来处理。

例30 两排座位,第一排3个座位,第二排5个座位,若8位学生坐(每人一个座位)。则不同的坐法种数是()

A、B、C、D、??

简析:因8名学生可在前后两排的8个座位中随意入坐,再无其他条件,所以两排座位可看作一排来处理,其不同的坐法种数是,故应选D。

九、解“小团体”排列问题——采用先整体后局部策略

对于“小团体”排列问题,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。

例31 三名男歌唱家和两名女歌唱家联合举行一场音乐会,演出的出场顺序要求两名女歌唱家之间恰有一名男歌唱家,其出场方案共有 ( )

A.36种B.18种C.12种D.6种

简析:按要求出场顺序必须有一个小团体“女男女”,因此先在三名男歌唱家中选一名(有种选法)与两名女歌唱家组成一个团体,将这个小团体视为一个元素,与其余2名男歌唱家排列有种排法。最后小团体内2名女歌唱家排列有种排法,所以共有? ?=36种出场方案,选A。

十、简化计算繁琐类问题——采用递归策略

所谓递归策略,就是先建立所求题目结果的一个递推关系式,再经简化题目条件得出初始值,进而递推得到所求答案。

例32 有五位老师在同一年级的6个班级中,分教一个班的数学,在数学会考中,要求每位老师均不在本班监考,共有安排监考的方法总数是多少?

解:记n元安排即a1、a2、…、an个元素的排列,且满足“ai不在第i位上的方法总数为an。

固定n-1个元素不动的排法是1;

固定n-2个元素不动的排法是;

固定n-3个元素不动的排法是;

……

固定1个元素不动的排法是·an-1;

an=n!-1- - ……- ·an-1(n≥3, n∈N)

容易计算得a2=1,由上式递推可得:a3=2,a4=9,a5=44。

因此,共有安排监考的方案总数为44种。

十一、解较复杂的排列问题——采用构造型策略

对较复杂的排列问题,可通过构造一个相应的模型来处理。

例33 某校准备组建一个18人的足球队,这18人由高一年级10个班的学生组成,每个班级至少1人,名额分配方案共有_________种。

??

简析:构造一个隔板模型。如图,取18枚棋子排成一列,在相邻的每两枚棋子形成的17个间隙中选取9个插入隔板,将18枚棋子分隔成10个区间,第i(1≤i≤10)个区间的棋子数对应第i个班级学生的名额,因此名额分配方案的种数与隔板插入数相等。因隔板插入数为,故名额分配方案有 =24310种。

例34 将组成篮球队的12个名额分给7所学校,每所学校至少1个名额,问名额分配方法有多少种?

解:将问题转化成一把排成一行的12个0分成7份的方法数,这样用6块闸板插在11个间隔中,共有 =462种不同方法。所以名额分配总数是种。

例35 6人带10瓶汽水参加春游,每人至少带1瓶汽水,有多少种不同的带法?

解:将问题转化成把10个相同的球放到6个不同的盒子里,每个盒子里至少放1个球,有多少种不同的放法?

即把排成一行的10个0分成6份的方法数,这样用5块闸板插在9个间隔中,共有 =126种。

即原问题中有126种不同带法。

例36 对正方体的8个顶点作两两连线。其中异面直线的有( )对。

A.156 B.174 C.192 D.210

分析:由于每一个三棱锥对应于3对异面直线,故可构造三棱锥,问题即特化为正方体8个顶点构成三棱锥的个数,易得异面直线有( -6-6)×3=174(对),选B。

十二、建立排列组合与集合之间的对应关系的策略

排列组合问题往往因其文字叙述抽象而使学生理解困难,在解决这类问题时,我们通常是根据加法或乘法原理将问题分类或分步逐一计算,然而由于问题的抽象性与复杂性,我们在分类或分步的过程中,经常会出现重复或遗漏的现象。如果我们运用集合与对应的思想来分析和处理这类问题,则能有效地解决上述矛盾。

例37 由数字1,2,3,4,5可以组成多少个无重复数字的

(1)1不在首位、5在末位的五位数? (2)2,3都与4不相邻的五位数?

解:(1)A={1 在首位的五位数},B={5 在末位的五位数},

则原题即求 n( )。

已知n( )=n(B)-n(A∩B),

易知n(B)= ,n(A∩B)= ,

(即1在首位,5在末位的五位数的个数),n( )= - =18,

因而满足已知条件的五位数有18个。

(2)设A={2与4相邻的五位数},B={3与4相邻的五位数},则原题即求n( )。

由摩根律、容斥原理及性质2,

有n( )=n( )=n(I-A∪B)=n(I)-n(A∪B)=n(I)-n(A)-n(B)+n(A∩B)

= =36,即有36个满足已知条件的数。

说明:其中n(I)表示由数字1,2,3,4,5组成的无重复数字的五位数的个数,即它们的全排列数,n(A∩B)表示2与4相邻且3与4相邻的五位数的个数,那么4一定排在2与3之间,且2,4,3相邻,故有种排法。

例38 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不同的填法有多少种?

解:设Ai(i=1,2,3,4)表示i填在标号为i的方格内,且其余格子都填满的所有填法的集体,

则原题即求n ,由摩根律及容斥原理,有

n

=n( )

=n(I)-n(A1∪A2∪A3∪A4)

=n(I)- (Ai∩Ah∩Aj)+n(A1∩A2∩A3∩A4)

= 。

即有9种填法。

说明:系数代表从集合A1、A2、A3、A4中每次取出1个、2个、3个、4个组成交集的个数,

例39 男运动员6名,女运动员4名,其中男女队长各1人,选派5人外出比赛,在下列情形下各有多少种选派方法?

(1)队长至少有1人参加;(2)既要有队长,又要有女运动员。

解:(1)设A={选派5人有男队长参加的},B={选派5人有女队长参加的},则原题即求n(A∪B),

而n(A∪B)=n(A)+n(B)-n(A∩B),

n(A)= =n(B), n(A∩B)= ,

故n(A∩B)=2 - =196。

另解:设A={选派5人有1个队长参加的},B={选派5人有2个队长参加的},则原题即求n(A∪B), n(A)= , n(B)=, n(A∩B)=n()=0,

因此n(A∪B)=n(A)+n(B)=+=196。

说明:A∩B即选派5人既要有1个队长参加又要有2个队长参加这件事,这是不可能事件。

(2)设A={选派5人有队长参加的},B={选派5人有女运动员参加的},则原题即求n(A∩B),

又n(A∩B)=n(I)-n()=n(I)-n()

=n(I)-n()-n()+n()==191。

即有191种选派方法。

说明:即选派5人,既无队长又无女运动员参加。

从以上3例我们可以看出,用集合与对应思想分析处理排列组合问题,实质上就是将同一问题中满足不同限制条件的元素的排列或组合的全体与不同的集合之间建立相应的对应关系,而将各限制条件之间的关系转化为集合与集合之间的运算关系,通过计算集合的元素个数来计算排列或组合的个数,这有助于将带有多个附加条件的排列或组合问题分解为只有1个或简单几个附加条件的排列或组合问题来处理,这可大大简化复杂的分类过程,从而降低了问题的难度。

例40 如果从数1,2,…,14中,按从小到大的顺序取出a1,a2,a3,使同时满足a2-a1≥3与a3-a2≥3,那么所有符合上述要求的不同取法共有多少中?

解:设S={1,2,……,14},T={1,2,……,10};

P={(a1,a2,a3)|a1,a2,a3∈S, a2-a1≥3, a3-a2≥3},

Q={(b1,b2,b3)|b1,b2,b3∈T, b1

f: (a1, a2,a3)→(b1,b2,b3),其中b1=a1,b2=a2-2,b3=a3-4。

易证f是P和Q之间的一个一一对应,所以题目所求的取法种数恰好等于从T中任意取出三个不同数的取法种数,共 =120种。

例41 在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场?

分析:要产生一名冠军,需淘汰掉冠军以外的所有其它选手,即要淘汰99名选手,要淘汰一名选手,必须进行一场比赛;反之,每比赛一场恰淘汰一名选手,两者之间一一对应,故立即可得比赛场次99次。

十三、特征分析、试验策略

研究有约束条件的排列数问题,须紧扣题目所提供的数字特征、结构特征,进行推理、分析求解。

例42 由1,2,3,4,5,6六个数可组成多少个无重复且是6的倍数的五位数。

分析数字特征:6的倍数既是2的倍数,又是3的倍数。其中3的倍数又满足“各个数位上的数字和是3的倍数”的特征,把6个数分成4组(3),(6),(1,5),(2,4),每组的数字和都是3的倍数,因此可分成两类讨论:第一类:由1,2,4,5,6作数码:首先从2,4,6中任选一个作个位数字有,然后其余四个数在其它数位上全排列有,所以N1= ·。第二类:由1,2,3,4,5作数码,依上法有N= ·。故N=N1+N2=120(个)。

例43 从1到100的自然数中,每次取出不同的两个数,使它们的和大于100则不同的取法有()A.50种种C.1275种D.2500种

分折:此题数字较多,情况也不一样,需要分拆摸索其规律。为了方便,两个加数中以较小的数为被加数,因为1+100=101>100,1为被加数的有1种;同理,2为被加数的2种;…;49为被加数有49种;50为被加数的有50种,但51为被加数只有49种;52为被加数只有48种;…;99为被加数的只有1种。故不同的取法共有:(1+2+…+50)+(49+48+…+1)=2500种,选D。

例44 将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个格填1个,则每个方格的标号与所填数字均不相同的填法有 ( )

A.6种B.9种 C. 11种 D. 23种

分析:考察排列的定义,由于附加条件较多,解法较为困难,可用试验法逐步解决。

第一方格内可填2或3或4,如填2,则第二方格内可填1或3或4。若第二方格内放1,则第三方格只能填4,第四方格填3。若第二方格填3,则第三方格应填4,第四方格应填1。同理,若第二方格填4,则第三、四方格应分别填1、3,因而,第一方格放2共有3种方法。同理,第一格放3或4也各有3种,所以共有9种方法,选B。这里用到了试验的技巧。

十四、解决允许重复排列问题——采用“住店”转化策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解的方法称为“住店法”。

例45 七名学生争夺五项冠军。获得冠军的可能的种数有 ( )

A.75 B.57 C.D.

分析:因同一学生可同时夺得几项冠军,故学生可重复排列。将七名学生看作七家“店”,五项冠军看作5名“客”。每个“客”有7种住宿法,由乘法原理得75种,选A。

以上介绍了排列组合应用题的几种常见求解策略。这些策略不是彼此孤立的,而是相互依存、相互为用的。有时解决某一问题时综合运用几种求解策略,此外有特殊、优序、类比等策略,限于篇幅不一一赘述。

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合计算公式

1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

相关文档
最新文档