11防雷及过电压保护

合集下载

发电厂防雷接地与过电压保护

发电厂防雷接地与过电压保护

发电厂防雷接地与过电压保护一、雷电放电云层受强气流作用,内部剧烈的相对运动使云各部分带有不同极性的电荷,形成雷云。

雷云中的电荷分布不均匀,一般为密集的中心。

当雷云中电荷密集处的场强达到25〜30V/cm时,就会发生放电。

大部分只发生在云间,只有小部分对地放电,对地放电的雷云90%是负极性的。

雷云放电分三个阶段:先导放电、主放电和余光放电。

先导放电延续几毫秒,从雷云开始,以游离方式逐级向下发展,形成一条高温、高电导、高电位的通道(先导通道)伸向大地。

沿先导通道充满密集的电荷,当向下延伸的先导通道与大地接近而将空气间隙击穿短接时,开始主放电,通道产生突发的明亮,并有巨大的雷响,大量电荷对地放电,产生幅值很大的冲击电流(一般几十万安培),时间短,一般不超过0.1毫秒。

然后剩余的电荷沿通道继续放电,亮光很小,称为余光放电,大约再持续几毫秒。

雷过电压又称为大气过电压,分直击雷过电压和感应雷过电压。

二、避雷针与避雷线保护为防止直击雷的破坏,电气设备要采取防雷措施,避雷针和避雷线。

避雷针用于保护发电厂和变电所。

分接闪器(针头)、引下线和接地体。

针头为10mm以上、长1到2m的圆钢制作,引下线不小于10mm的圆钢,接地体2.5m长的钢管或角钢。

避雷线是悬挂线在空中的水平接地导线,也叫架空地线,保护架空线路。

1避雷针的保护范围单支避雷针:当hx N h/2时,rx=(h-hx)p(m);当hx<h/2时,rx=(1.5h-2hx)p(m);式中:h为避雷针高度(m);P为高度影响系数,当h W30m时,p=1;30<h W120m时,p=5.5/限双支避雷针:两支避雷针的保护范围,按经过两个避雷针顶点连线中间的下方一点的圆弧来确定,该点的高度计算如下:=h-D/7phD为避雷针间的距离(m);p与单支的形容一致。

2避雷线避雷线顶部的保护夹角为25°,比避雷针45°小,计算公式为:当hx N h/2时,rx=0.47(h-hx)p(m);当hx<h/2时,rx=(h-1.53hx)p(m);式中:h为避雷针高度(m);P为高度影响系数,当h W30m时,p=1;30<h W120m时,p=5.5/Vh o双避雷线保护:=h-D/4ph三、避雷器限制过电压,保护电气设备的一种装置。

电力系统防雷保护(二)

电力系统防雷保护(二)

可将避雷器上的电压ub近似 为一斜角平顶波。波头上升 部分斜率为侵入波的陡度, 幅值为Ub-5
只要避雷器上电压<变压器冲 击电压,则可保护
17
二、距离效应
由于避雷器离被保护设备有一段距离,在波的折反射过程中,被 保护设备的电压将不同于避雷器上的电压。
at
L
B
T
at
L
B
T l2
l1
(a)
雷电波侵入变电站的典型接线
例题:
一条220kV线路架设在平原地区,绝缘子串13片,正极性50%放电 电压为1410V;杆塔冲击接地电阻为7,避雷线半径为5.5mm, 弧垂fd=7m,导线弧垂fd=12m。求该线路的耐雷水平和雷击跳闸 率。 解:(1) 求耦合系数
避雷线的平均高度
导线的平均高度 h
d
h b 29 . 1
13





对于110kV以下的配电装置,绝缘水平高,可 用构架避雷针,并就近装设辅助接地装置。 对于变压器,由于最重要,因此不能装设构架 避雷针 对于35kV以下的变电站,由于绝缘水平低,故 只能装设独立避雷针,接地电阻不能超过10 发电厂厂房一般不能装设避雷针。 现在国标也推荐采用避雷线。
2 降低杆塔接地电阻
工频接地电阻一般为10-30
3
架设耦合地线
在某些雷击故障频繁的线路上,在导线下方架设一条耦合地线。 可起到分流、增加耦合的作用。
4
采用不平衡绝缘方式
在同塔双回线的情况下,采用不平衡绝缘,可避免双回线同时跳 闸而完全停电。 10
常用措施(二):
5 6 装设自动重合闸
我国110kV以上线路自动重合闸成功率在75%-95%以上

变电运行安全常识

变电运行安全常识

变电运行安全常识变电运行安全是电力系统中非常重要的环节,关乎着电力设备的正常运行、人员的生命安全以及社会的稳定发展。

为了确保变电运行安全,以下是一些关于变电运行安全的常识,供大家参考。

1. 定期巡视检查:定期对变电所进行巡视检查,包括设备的外观、线路的接头、绝缘子等的检查。

发现问题要及时处理,确保设备的正常运行和用电安全。

2. 防止电器设备过载:各类电气设备的额定功率是有限的,如果超过了额定功率,则容易发生设备过载甚至烧毁的情况。

在使用电气设备时,要根据设备的额定功率合理分配电力负荷。

3. 绝缘电阻测试:定期对变电所的设备进行绝缘电阻测试,检测绝缘电阻的变化情况,及时发现并修复绝缘材料破损或老化等问题。

保持设备的绝缘状态良好,防止电击事故的发生。

4. 防雷和过电压保护:变电站是电力系统中容易受雷击和过电压影响的地方,为了保护设备和人员的安全,要安装合适的防雷设施,并加装过电压保护装置,防止雷击和过电压对设备造成损坏。

5. 严禁擅自操作设备:在变电所内操作设备必须有相关的操作资格,不得接触和操作自己未熟悉和不具备操作资格的设备。

严禁擅自操作设备,避免因操作不当而导致事故的发生。

6. 定期保养维护设备:定期对变电所内的设备进行保养维护,包括设备的清洁、调试、油浸,防止设备因长期使用而产生的老化和故障。

定期保养维护设备可以提前发现问题,并进行修复或更换,确保设备的正常运行。

7. 做好火灾防范工作:变电所是一个密闭的空间,容易引发火灾。

要做好火灾防范工作,包括设备周围的清洁、通风和防火措施的设置等。

定期组织消防演练,提高员工的消防意识和应对火灾的能力。

8. 紧急情况应急预案:制定变电所的紧急情况应急预案,明确员工的职责和逃生路线等。

定期组织演练,提高员工应对紧急情况的能力和反应速度。

9. 注重安全教育培训:定期开展安全教育培训,提高员工的安全意识和应对突发事件的能力。

教育培训内容包括变电所的安全操作规程、火灾防范知识、急救常识等。

防雷相关以及注意事项

防雷相关以及注意事项

防雷有关以及注意事项防雷,是指通过构成拦截、疏导最后泄放入地旳一体化系统方式以避免由直击雷或雷电旳电磁脉冲对建筑物自身或其内部设备导致损害旳防护技术。

一、室外防雷在户外遇到雷雨,都应当迅速到附近干燥旳住房中去避雨,如果在山区找不到房子,可以躲到山洞中去。

据《中国防雷行业市场前瞻与投资战略规划分析报告前瞻》分析,室外防雷要注意如下5点:1、不要停留在山顶、山脊或建(构)筑物顶部。

2、不要停留在铁门、铁栅栏、金属晒衣绳、架空金属体以及铁路轨道附近。

3、应迅速躲入有防雷保护旳建(构)筑物内,或有金属壳体旳多种车辆及船舶内。

不具有上述条件时,应立即双脚并拢下蹲,头部向前弯曲,减少自己旳高度,以减少跨步电压带来旳危害。

由于雷电流经落雷点会沿着地面逐渐向四周释放能量。

此时,行走之中人旳前脚和后脚之间就也许因电位差不同,而在两步间产生一定旳电压。

[1]4、不要在大树、电线杆、广告牌、各类铁塔底下避雨。

由于此时,大树潮湿旳枝干相称于一种引雷装置,如果用手接触大树、电线杆、各类铁塔就仿佛手握防雷装置引下线同样,就很也许会被雷击。

5、不要在水边(江、河、湖、海、塘、渠等)、游泳池、洼地停留,要迅速到附近干燥旳住房中去避雷雨。

二、防雷接地防雷接地分为两个概念,一是防雷,避免因雷击而导致损害;二是接地,保证用电设备旳正常工作和人身安全而采用旳一种用电措施。

1、防雷接地旳概念及分类1、接地装置是接地体和接地线旳总称,其作用是将闪电电流导入地下,防雷系统旳保护在很大限度上与此有关。

接地工程自身旳特点就决定了周边环境对工程效果旳影响,脱离了工程所在地旳具体状况来设计接地工程是不可行旳。

实践规定要有系统旳接地理论来对工程实际进行指引。

而设计旳优劣取决于对本地土壤环境旳诸多因数旳综合考虑。

土壤电阻率、土层构造、含水状况以及可施工面积等因数决定了接地网形状、大小、工艺材料旳选择。

因此在对人工接地体进行设计时,应根据地网所在地旳土壤电阻率、土层分布等地质状况,尽量进行精确设计。

通信局(站)雷电过电压保护

通信局(站)雷电过电压保护

中华人民共和国通信行业标准通信局(站)雷电过电压保护工程设计规范1. 总则1.0.1 为了解决综合通信大楼、交换局、数据局、模块局、接入网站、IP网站、移动通信基站、卫星地球站、微波站等因雷电感应通过电源线、信号线、网络数据线、天馈线、遥控系统、监控系统引入的雷害,确保通信设备的安全和正常工作,特制定本规范。

1.0.2本规范适用于新建、扩建、改建及原有通信局(站)的雷电过电压保护工程设计。

1.0.3通信局(站)雷电过电压保护工程应建立在联合接地、均压等电位分区保护的基础上。

1.0.4 通信局(站)雷电过电压保护设计应根据电磁兼容原理,按防雷区划分,对电涌保护器的安装位置进行合理规划。

1.0.5通信局(站)雷电过电压保护设计应以现场调查、局址地理环境、年雷暴日分布及通信局(站)类型为依据。

1.0.6本规范是通信局(站)雷电过电压保护工程设计、施工、监理、维护和各类保护器件选择的技术依据,通信局(站)雷电过电压保护工程所选用的电涌保护器应符合国家标准及通信行业标准或参照IEC、ITU-T-K系统等国际相关建议,经信息产业部认可的检测部门测试合格的产品。

1.0.7本规范年雷暴日的确定,一般应依椐通信局(站)所在地区的气象部门提供的数据,或者参照本规范附录 C和附录D 的范围确定。

1.0.8通信局(站)雷电过电压保护工程除应执行本规范以外,还应符合国标GB50057-94《建筑物防雷设计规范》及通信行业防雷接地标准。

2. 术语2.0.1防雷区将一个易遭雷击的区域,按照通信局(站)建筑物内外、通信机房及被保护设备所处环境的不同,进行被保护区域划分,这些被保护区域称为防雷区(Lightning Protection Zones 英文缩写LPZ,详见附录B)。

2.0.2雷电活动区根据年平均雷暴日的多少,雷电活动区分为少雷区、中雷区、多雷区和强雷区:少雷区为一年平均雷暴日数不超过25的地区;中雷区为一年平均雷暴日数在25~40以内的地区;多雷区为一年平均雷暴日数在40~90以内的地区;强雷区为一年平均雷暴日数超过90的地区。

输电线路的雷闪过电压及其防护

输电线路的雷闪过电压及其防护

用绝缘的50%冲击闪络电压U50%代替Ug,那么IL就能 代表引起绝缘闪络的雷电流幅值,通常称为线路在这
情况下的耐雷水平。:IL= U50%/100
绕击率:
lg Pa a h 3.9
对平原地区:
86
对山区地区: lg Pa a h 3.35 86
山区的绕击率为平原的3倍,或保护角增大80
减少绕击率:减小保护角,降低杆塔高度
二、变电所的进线保护
如无避雷线,当雷击于变电所附近线路的导线上时, 沿线路入侵流经避雷器的雷电流可能超过5kA,且 陡度也可能超过允许值,因此在靠近变电所的一段 进线上,必须装设避雷线,称为进线段保护。
三、三绕组变压器和自耦变压器的雷闪过电压保护
1、三绕组变压器的保护
一般在低压绕组任一相的直接出口处加装一只避雷器
输电线路的雷闪过电压及其防护
衡量指标:耐雷水平和雷击跳闸率 耐雷水平:雷击线路时,线路绝缘不发生闪络的最 大雷电流幅值。
雷击跳闸率:每100km线路每年由雷击引起的线路 跳闸次数。
防雷的原则及措施:防止雷击导线
防止避雷线受雷击后引绝缘闪络
防止雷击闪络后建立工频短路电弧 防止线路中断供电
一、输电线路的感应雷击过电压
电机的绝缘裕度小:为了保护匝间绝缘,必须将入 侵波陡度限制在5kV/μS以下;60000kW以上的发电 机不允许与架空线直接要连。
作用电压类型:一是与电机相连的线路上的感应雷 过电压;二是雷直接击于与电机相连的架空线而引 起的过电压。
2、防雷措施
1)在每台发电机出线的母线处装设一组电站型氧 化锌避雷器,以限制侵入波幅值
2、自耦变压器的防雷保护
考虑各种运行方式下:如高低绕组运行,中压开路,这时 中压侧套管与断路器之间装设一组避雷器。高压侧开路时, 中压侧来波,高压侧感应kU电压,这时高压侧套管与断路 器之间也应加装一组避雷器。

注册电气工程师专业考试(发输电、供配电)大纲

注册电气工程师专业考试(发输电、供配电)大纲

注册电气工程师(发输变电)执业资格考试专业考试大纲1.安全1.1熟悉工程建设标准强制性条文(电力工程部分);1.2掌握电力工程电气保护的要求和主要防护措施;1.3掌握危险环境电力装置的设计要求;1.4了解劳动、安全、卫生的有关规定。

2.环境保护与节能2.1掌握电力工程对环境的影响及防治措施;2.2熟悉电力工程的节能措施;2.3掌握电力工程节能型产品的选用方法;2.4熟悉提高电能质量的措施;2.5了解清洁能源发电的特点。

3.消防3.1熟悉电气设备消防安全的要求和措施;3.2掌握电缆防火的要求和措施;3.3熟悉电力工程火灾报警系统的设计要求。

4.电气主接线4.1掌握电气主接线设计的基本要求(含接入系统设计要求);4.2掌握各级电压配电装置的基本接线设计;4.3熟悉各种电气主接线型式设计;4.4掌握主接线设计中的设备配置;4.5了解发电机及变压器中性点的接地方式。

5.短路电流计算5.1掌握短路电流的计算方法(实用计算法);5.2掌握短路电流计算结果的应用;5.3熟悉限制短路电流的设计措施。

6.设备选择6.1熟悉电气主设备选择的技术条件和环境条件;6.2熟悉发电机、变压器、电抗器、电容器的选择;6.3掌握开关电器和保护电器的选择;6.4掌握电流互感器、电压互感器的选择;6.5熟悉成套电器的选择;6.6掌握高压电瓷及金具的选择;6.7掌握中性点设备的选择;6.8了解发电机励磁系统的选择。

7.导体及电缆的设计选择7.1掌握导体的选择及设计要求;7.2熟悉电缆的选择;7.3掌握电缆敷设设计要求。

8.电气设备布置及配电装置设计8.1熟悉电气设备布置的要求;8.2掌握高压配电装置的设计;8.3了解特殊地区的电气设备布置及配电装置设计。

9.过电压保护和绝缘配合9.1熟悉电力系统过电压种类和过电压水平;9.2掌握雷电过电压的特点及相应的限制和保护设计;9.3掌握暂时过电压的特点及相应的限制和保护设计;9.4掌握操作过电压的特点及相应的限制和保护设计;9.5了解输电线路、配电装置及电气设备的绝缘配合方法及绝缘水平的确定。

11 过电压保护和绝缘配合

11 过电压保护和绝缘配合

11.1.3 电力系统过电压水平
1113.1 工频过电压的允许水平 110kV及以下电力系统的工频过电压一般不超过下列数值: 110kV系统 1.3 p.u. 35kV~66 kV系统 √3 p.u. 3kV~10 kV系统 1.1√3 p.u. 1113.2 操作过电压的允许水平 目前,在选择配电装置及电气设备绝缘水平时,计算用最大操作过 电压水平为: 相对地:110kV(有效接地系统) 3.0 p.u. 66 kV及以下(除低电阻接地系统外) 4.0 p.u. 35 kV及以下(低电阻接地系统) 3.2 p.u. 相间:3kV~110 kV系统相间操作过电压宜取相对地过电压的 1.3~1.4倍。 当采用金属氧化物避雷器限制操作过电压时,相对地及相间计算用 最大操作过电压的标幺值需经研究确定。
11 过电压保护和绝缘配合
11.0.0 有关规范 -1 DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》: 高压电力系统过电压保护(包括防雷)的现行依据。 ( GB 50064-201X《交流电气装置的过电压保护和绝缘配合 》只有 征求意见稿) -2 GB 311.1-1997《高压输变电设备的绝缘配合》:侧重设备制造。 ( GB 311.1-2012《绝缘配合 第一部分:定义、原则和规则》 2013-05-01实施!) -3 GB/T 16895.10-2010《低压电气装置 第44部分:安全防护 电 压骚扰和电磁骚扰的防护》 2010-07-01实施 (代替 GB/T 16895.10-2001《第45章:欠电压防护》、GB/T 16895.11《第44章:过电压保护 第442节:低压电气装置对暂时过 电压和高压系统与地之间的故障的防护 》、 GB/T 16895.12 《 第 44章:过电压保护 第443节:大气过电压或操作过电压的保护》、 GB/T 16895.16《 《 第44章:过电压保护 第443节: 电磁干扰防 护》) -4 GB/T 16935.1-2008 《低压系统内设备的绝缘配合 第1部分:原 理、要求和试验》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作过电压保护 (续)
(4)操作空载变压器和并联电抗器等的过电压 1) 开断空载变压器由于断路器强制熄弧(截流)产生的过电压,与断路
器型式、变压器铁芯材料、绕组型式、回路元件参数和系统接地方式 等有关。
当开断具有冷轧硅钢片铁芯的空载变压器时,过电压一般不超过 2.0p.u.,可不采取保护措施。
开断具有热轧硅钢片铁芯的110kV变压器的过电压一般不超过 3.0p.u.;66kV及以下变压器一般不超过4.0p.u.。
采用熄弧性能较强的断路器开断激磁电流较大的变压器以及并联电 抗补偿装置产生的高幅值过电压,可在断路器的非电源侧装设阀式避 雷器加以限制。保护变压器的避雷器可装在其高压侧或低压侧。但高、 低压侧系统接地方式不同时,低压侧宜装设操作过电压保护水平较低 的避雷器。 2)在可能只带一条线路运行的变压器中性点消弧线圈上,宜用阀式避 雷器限制切除最后一条线路两相接地故障时,强制开断消弧线圈电的操作过电压一般不超过 2.0p.u.,可不采取保护措施。
* 3~66kV非有效接地系统,应采用性能良好的设备并提高运行维护水平。
* 适当选择消弧线圈的脱谐度,无消弧线圈时增大系统对地电容,以防 传递过电压。
11.2.3 操作过电压保护
(1) 线路合闸和重合闸过电压
110kV及以下系统的线路合闸和重合闸过电压一般不超过3.0p.u.,通 常无需采取限制措施。
(3 ) 3~66kV系统开断并联电容补偿装置如断路器发生单相重击穿 时,电容器高压端对地过电压可能超过4.0p.u.。开断前电源侧有单 相接地故障时,该过电压将更高。开断时如发生两相重击穿,电容器 极间过电压可能超过电容器的额定电压的3.54倍。
操作并联电容补偿装置,应采用开断时不重击穿的断路器。对于 需频繁投切的补偿装置,宜装设并联电容补偿装置金属氧化物避雷器。
11.1.3 电力系统过电压水平
1113.1 工频过电压的允许水平
110kV及以下电力系统的工频过电压一般不超过下列数值:
110kV系统
1.3 p.u.
35kV~66 kV系统 √3 p.u.
3kV~10 kV系统
1.1√3 p.u.
1113.2 操作过电压的允许水平
目前,在选择配电装置及电气设备绝缘水平时,计算用最大操作过 电压水平为:
* 工频运行电压下电气装置外绝缘的爬电距离应符合相应环境污秽分 级条件下的爬电比距要求。
* 变电所电气设备应能承受一定幅值和时间的工频过电压和谐振过电 压。 (3)操作过电压下的绝缘配合
* 架空线路和变电所绝缘子串、空气间隙的操作过电压要求的绝缘水 平,以计算用最大操作过电压为基础进行绝缘配合。将绝缘强度作为随 机变量处理。
11.2 过电压保护设计要求及限制措施
11.2.2 暂时过电压保护
1122.1 工频过电压:110kV及以下电力网不需要采取专门措施。
对可能偶然形成局部不接地系统、低压侧有电源的110kV变压器不接地 的中心点,应装设间隙。
1122.2 谐振过电压:基本原则是避免出现谐振的条件。
* 110kV系统采用带均压电容的断路器开断连接有电磁式电压互感器的 空载母线,经验算有可能产生铁磁谐振时,宜选用电容式电压互感器。
(2) 空载线路分闸过电压
* 110kV开断架空线路,该过电压不超过3.0p.u.;开断电缆线路,可 能超过3.0p.u.。
开断空载架空线路宜采用不重击穿的断路器;开断电缆线路应该采用 不重击穿的断路器。
* 66kV及以下系统中,开断空载线路断路器发生重击穿的过电压一 般不超过3.5p.u.;开断前系统已有单相接地故障,使用一般断路器 操作时产生的过电压可能大于4.0p.u.。为此,选用操作断路器时, 应使其开断空载线路过电压不超过4.0p.u.。
* 当需用避雷器限制某些操作过电压的场合,则以避雷器的相应保护 水平为基础进行绝缘配合,(对操作冲击的配合系数一般取≥1.15)。
110kV及以下电气装置承受暂时过电压及操作过电压的作用,以电气 设备的短时(1min)工频耐受电压来表征。
绝缘配合 (续)
(4)雷电过电压下的绝缘配合
变电所中电气设备、绝缘子串和空气间隙的雷电冲击强度,以避 雷器雷电保护水平为基础进行配合,雷电过电压的配合系数取≥1.4。
* 经验算如断路器操作中因操动机构故障出现非全相或严重不同期所产 生的铁磁谐振过电压,可能危及中性点为标准分级绝缘、运行时中性点 不接地的110kV变压器的中性点绝缘时,宜在中性点装设间隙。
* 3~66kV电磁式电压互感器:应选用饱和点较高者;其高压绕组中性点 尽可能不接地,或经电阻接地(10kV及以下者);在三角形开口绕组装 设电阻;装设消谐器。
雷电过电压下电气设备的绝缘强度,以电气设备的额定雷电冲击 耐受电压来表征。 (5)绝缘配合的波形
* 操作冲击电压波:至最大值时间250μs,波尾2500 μs。 * 雷电冲击电压波:波头1.2μs,波尾50μs。 * 雷电流幅值一般不超过100kA,我国一般地区雷电流幅值超过I 的 概率P为lgP=- I /88,年雷暴日数 ≤ 20的地区,分母可取44。 (5)110kV及以下电气装置一般由雷电过电压决定绝缘水平。 (7)高海拔地区(>1000m)的电气装置外绝缘爬电距离和空气间 隙,应按海拔进行校正。可采取加强绝缘或选用高原型电器。 1114.2 绝缘配合要求 海拔不超过1000m地区的绝缘配合计算结果见表11-1-1、11-1-3、 11-1-4和11-1-5。
11.1.4 绝缘配合
1114.1 绝缘配合原则 (1)绝缘配合:是按系统中出现的各种电压和保护装置的特性来确定设
备的绝缘水平。 原则要求:把各种过电压所引起的设备损害和影响连续运行的概率,
降低到经济上和技术上能接受的水平。(工程造价、维修费用、故障损 失) (2)工频运行电压和暂时过电压下的绝缘配合
相对地:110kV(有效接地系统)
3.0 p.u.
66 kV及以下(除低电阻接地系统外) 4.0 p.u.
35 kV及以下(低电阻接地系统) 3.2 p.u.
相间:3kV~110 kV系统相间操作过电压宜取相对地过电压的1.3~ 1.4倍。
当采用金属氧化物避雷器限制操作过电压时,相对地及相间计算用 最大操作过电压的标幺值需经研究确定。
相关文档
最新文档