建筑与数学
数学与建筑认识数学在建筑设计中的重要性和应用

数学与建筑认识数学在建筑设计中的重要性和应用数学与建筑:认识数学在建筑设计中的重要性和应用在我们日常生活中,建筑设计是无处不在的。
无论是宏伟的高楼大厦,还是温馨的家庭住宅,都离不开仔细计算和精确测量。
而在建筑设计的背后默默奉献的,就是数学。
一、数学在建筑设计中的重要性1. 测量和布局建筑设计的第一步是测量和布局。
精确的测量能够确保建筑物的稳定性和美观性,而这一切都依赖于几何学。
几何学是数学的一个重要分支,它研究空间和形状之间的关系。
在设计建筑时,建筑师需要运用几何学的原理来计算角度、长度、高度等参数,以确保建筑物的各个部分之间的比例和平衡。
2. 强度和结构在建筑物的设计和施工中,强度是一个至关重要的因素。
数学中的力学和结构力学提供了关于物体如何承受载荷和外部力量的理论基础。
通过数学模型和计算方法,建筑师可以确定建筑物的受力情况,并选择合适的材料和结构来保证建筑物的牢固性和安全性。
3. 灯光与声学除了外观和结构,建筑物的灯光和声学效果也是需要精确计算和设计的。
数学中的光学和声学研究了光线和声音如何传播和反射,因此建筑师需要运用这些原理来设计合适的照明和音响系统。
例如,在剧院的设计中,建筑师需要计算光线的折射和反射,以确保每个观众都可以清晰地看到舞台。
而在音乐厅的设计中,声学专家利用数学模型分析声音的传播路径,以确保音乐能够完美地在整个空间中传播。
二、数学在建筑设计中的应用1. 黄金分割比例黄金分割比例是一种在建筑设计中广泛应用的比例关系。
它基于数学中的黄金分割数,即0.618。
建筑师通过运用黄金分割比例,可以创造出更具美感和和谐的建筑形式。
例如,建筑物的立面可以按照黄金分割比例来设计,使得各个部分之间的比例和谐统一,给人一种愉悦的视觉享受。
2. 曲线和曲面的设计数学中的函数和曲线理论帮助建筑师在设计中创造出各种独特的曲线和曲面。
例如,著名的赫尔佐格和德梅隆(Hundertwasser)都是建筑师和艺术家,他们的设计充满了曲线和不规则形状。
数学学习中的数学与建筑设计的应用

数学学习中的数学与建筑设计的应用数学是一门应用广泛的学科,其在各行各业中都有重要的作用。
其中,建筑设计是数学应用的一个重要领域。
在建筑设计中,数学通过几何学、比例和测量等方面的知识,帮助建筑师实现抽象理论与实际建筑之间的无缝衔接。
本文将探讨数学在建筑设计中的应用,并重点介绍数学在建筑设计中的几个关键领域。
一、平面几何学在建筑设计中的应用平面几何学是数学中的一个分支,主要研究平面上的点、线和面之间的关系。
在建筑设计中,平面几何学被广泛应用于建筑物的结构设计以及室内空间的规划布局。
首先,在建筑物的结构设计中,平面几何学的知识可以帮助建筑师进行精确的度量和计算。
例如,在设计一个矩形房间的时候,建筑师需要根据平面几何学的原理计算出房间的长和宽,以确保房间的结构稳定。
此外,平面几何学还可以帮助建筑师设计出不同形状的建筑物,如圆形建筑物和多边形建筑物等,以满足不同的设计需求。
其次,在室内空间的规划布局中,平面几何学的知识同样起到重要的作用。
建筑师需要根据空间大小、家具尺寸等因素,合理地规划室内的布局,以满足人们的使用需求。
通过运用平面几何学的知识,建筑师可以测量房间的尺寸,并根据房间的形状和限制条件进行布局设计,使得空间结构合理、美观且功能齐全。
二、比例在建筑设计中的应用比例是数学中的一个重要概念,在建筑设计中被广泛应用于建筑物的设计和绘图过程中。
在建筑物的设计过程中,建筑师常常需要考虑建筑物各部分之间的比例关系。
通过合理的比例设计,建筑师可以使建筑物整体呈现出一种和谐、均衡的美感。
例如,在设计一座建筑物的立面时,建筑师需要考虑不同部分(如窗户、楼层等)之间的比例关系,以确保整体的比例协调一致,增加视觉上的美感。
此外,在建筑物的绘图过程中,比例也起到了重要的作用。
建筑师需要根据实际尺寸比例进行绘图,以便建筑师、工程师和施工人员等各个环节能够准确理解和实施设计方案。
借助比例,建筑师可以通过绘制平面图、立面图和剖面图等来呈现建筑物的整体结构和细节,使得设计方案更加清晰明了。
数学文化:建筑中的数学之美

数学文化:建筑中的数学之美当我们漫步在古老的城镇,或是徜徉于现代都市的高楼大厦之间,往往会被那些或宏伟壮观、或精巧别致的建筑所吸引。
然而,在这些建筑的背后,隐藏着一门古老而又深邃的学问——数学。
数学不仅为建筑提供了坚实的理论基础,更赋予了它们独特的美学价值。
建筑与数学的渊源可以追溯到古代文明时期。
古埃及的金字塔,以其精确的几何形状和比例,展示了人类早期对数学的深刻理解和运用。
金字塔的底边呈正方形,四个侧面则是等腰三角形,其高度和底边长度之间的比例经过精心计算,以确保结构的稳定性和视觉上的平衡。
同样,古希腊的建筑也充满了数学的智慧。
雅典卫城的帕特农神庙,其立柱的间距、高度和直径都遵循着严格的数学比例,营造出一种和谐、庄重的美感。
在中世纪的欧洲,哥特式建筑以其高耸入云的尖顶和复杂的拱券结构而闻名。
哥特式教堂的尖拱和飞扶壁的设计,不仅在结构上实现了更大的跨度和更高的高度,同时也体现了数学中的几何原理。
尖拱的形状使得建筑能够承受更大的压力,而飞扶壁的运用则通过力学原理分散了建筑的重量,保证了整体的稳定性。
这些数学原理的应用,使得哥特式建筑在视觉上给人一种向上的升腾感,仿佛要通向天堂。
进入现代社会,数学在建筑中的应用更是达到了前所未有的高度。
以摩天大楼为例,其设计和建造需要考虑众多的数学因素。
首先是结构力学,工程师们需要运用数学公式计算出建筑在各种荷载作用下的受力情况,以确定合适的结构形式和材料强度。
例如,框架结构、筒体结构和桁架结构等,都是基于数学模型的优化选择。
其次是几何形状的设计,现代建筑常常采用曲线、曲面等复杂的几何形状,以实现独特的外观和良好的采光、通风效果。
这些形状的设计需要借助数学中的微积分、拓扑学等知识,通过精确的计算和模拟来实现。
数学在建筑美学中的体现不仅仅在于结构和形状的设计,还包括比例和尺度的把握。
黄金分割比例,即约 1:1618,被广泛认为是一种具有美学价值的比例关系。
在建筑中,许多经典的作品都运用了黄金分割比例,如巴黎圣母院的正面宽度与高度之比,以及古罗马万神庙的穹顶直径与高度之比等。
古代建筑与数学融合的方法

古代建筑与数学融合的方法古代建筑是中国传统文化的重要组成部分,其融合了丰富的数学原理和技术。
这种融合使得古代建筑不仅拥有美观的外观,而且具备出色的结构稳定性和功能性。
本文将探讨古代建筑与数学融合的一些方法和技巧。
1. 结构设计中的数学运用在古代建筑的结构设计中,数学扮演了重要的角色。
首先,数学几何学原理被广泛运用在建筑的布局和设计中。
典型的例子是中国的古代庭院,其布局通常遵循几何学中的对称和比例原则,以实现整体的平衡和美观。
其次,数学中的力学原理也被应用在古代建筑的结构设计中。
例如,在悬挂屋顶结构的设计中,古代建筑师运用了杠杆原理和牛顿第二定律,以保证结构的平衡和稳定。
同时,利用数学模型进行力学分析,可以有效预测建筑物在不同外力作用下的变形情况,从而进行相应的加固和改进。
2. 砖木结构中的数学运算古代建筑中常见的材料是砖和木料,而在其构建过程中,数学运算发挥了重要作用。
在砖制建筑中,数学的测量原理被应用于确定砖块的尺寸和摆放位置,以确保整体结构的均衡和稳定。
同时,研究建筑物的荷载平衡和承重能力也需要运用数学方法进行计算和验证。
在木质建筑中,数学的几何学原理和测量技术被广泛应用于确定梁、柱和榫卯的尺寸和位置。
例如,在木质屋顶的设计中,利用三角学原理可以准确计算出梁的倾角和长度,提高结构的稳定性和承重能力。
3. 数学模型在建筑空间的优化中的应用古代建筑中的空间规划与数学模型的应用密不可分。
通过数学模型,建筑师可以对空间进行细致的分析和优化,以满足特定的功能需求。
例如,在古代园林的设计中,数学模型可以帮助设计师确定园林道路的曲线和弧度,以实现景观的连贯和和谐。
此外,数学模型的应用还可以优化建筑物的采光、通风和导热性能。
通过运用数学模型,建筑师可以确定窗户的位置和尺寸,以最大程度地利用自然光线和空气流动,提高建筑物的舒适性和能源效益。
4. 数学工艺与建筑装饰的融合古代建筑的装饰也离不开数学的运算和工艺。
数学在建筑中的应用

数学在建筑中的应用建筑是人类文明的重要组成部分,它不仅是人们生活、工作和学习的场所,更是反映社会文化和艺术审美的重要载体。
在建筑的设计和建造过程中,数学发挥着至关重要的作用。
本文将从建筑的几何形态、结构力学和建筑材料等方面,探讨数学在建筑中的应用。
一、几何形态建筑的几何形态是建筑设计的重要组成部分,它直接关系到建筑的美观性、实用性和经济性。
在建筑的几何形态设计中,数学的应用体现在以下几个方面:1.平面形态的设计建筑设计中最基本的形态是平面形态,它是建筑设计的基础。
在平面形态的设计中,数学的应用主要体现在建筑的长度、宽度和高度的比例关系、建筑的对称性和重心的位置等方面。
例如,在古希腊建筑中,建筑师们运用黄金分割原理,将建筑的比例关系设计得恰到好处,使得建筑在视觉上更加和谐美观。
2.曲线形态的设计曲线形态是建筑设计中的一种重要形态,它能够使建筑更加丰富多彩,具有更强的视觉冲击力。
在曲线形态的设计中,数学的应用主要表现在曲线的方程、曲线的半径和圆心位置等方面。
例如,在建筑立面的设计中,建筑师们常常使用正弦曲线和余弦曲线等函数图像,来设计建筑的立面形态,使得建筑在视觉上更加流畅自然。
3.立体形态的设计立体形态是建筑设计中最具有挑战性和创造性的形态,它需要建筑师具备丰富的几何学知识和创新能力。
在立体形态的设计中,数学的应用主要表现在建筑的体积、表面积、空间位置和角度等方面。
例如,在建筑的立面设计中,建筑师们常常使用三角函数图像,来设计建筑的外形和内部空间,使得建筑在视觉上更加立体感强烈。
二、结构力学建筑的结构力学是建筑设计中的重要环节,它直接关系到建筑的稳定性、安全性和耐久性。
在结构力学的设计中,数学的应用体现在以下几个方面:1.受力分析受力分析是建筑结构力学的基础,它需要建筑师具备扎实的数学物理基础和丰富的实践经验。
在受力分析中,数学的应用主要表现在建筑结构的强度、刚度和稳定性等方面。
例如,在钢结构的设计中,建筑师需要使用杨氏模量、泊松比等物理参数,来计算钢材的强度和刚度,从而保证建筑的安全性。
十大建筑中的数学美

十大建筑中的数学美体现在以下几个方面:
1.黄金分割:许多建筑都采用了黄金分割的比例,这种比例在视
觉上具有美感,也符合人们的审美习惯。
例如,上海东方明珠
电视塔的设计就运用了黄金分割的比例,使其更加协调美观。
2.斐波那契数列:斐波那契数列在建筑设计中也经常被运用,这
种数列的特性使其在建筑设计中具有很强的视觉冲击力。
3.对称与平衡:许多建筑都采用了对称的设计,这种对称不仅使
建筑更加稳定,也增加了建筑的视觉美感。
4.几何形状:建筑中的几何形状也是数学美的重要体现。
例如,
埃及的金字塔就是由几何形状构成的,其线条简洁明了,具有
很强的视觉冲击力。
总的来说,十大建筑中的数学美主要体现在黄金分割、斐波那契数列、对称与平衡以及几何形状等方面。
这些数学元素在建筑设计中被巧妙运用,不仅增加了建筑的视觉美感,也体现了建筑师对数学美的追求和运用。
小学数学奇妙建筑认识数学和建筑的关系

小学数学奇妙建筑认识数学和建筑的关系在我们的日常生活中,我们经常会遇到各种各样的建筑物。
不论是高楼大厦、桥梁还是古老的城堡,它们都是建筑艺术的杰作。
而数学,作为一门普遍存在的学科,与建筑之间有着密切的关系。
在本文中,我们将一同探索小学数学是如何与奇妙的建筑世界相联系的。
第一,数学在建筑设计中的应用在建筑设计过程中,数学起到了至关重要的作用。
比如,建筑师在设计一个高楼时,需要考虑其结构的稳定性。
这就需要运用到数学中的静力学原理,通过计算物体的重力与支撑力之间的平衡关系,确保建筑物能够稳定地存在。
除了结构稳定性外,建筑设计还需要考虑空间利用效率。
在设计居住区时,建筑师需要根据数学原理来确定房间的大小、布局以及间距,使得每个房间都能够充分利用空间,同时又不会显得拥挤。
此外,对于斜塔、拱桥等特殊形状的建筑,也需要借助于数学的几何学原理来确保其稳定和美观。
通过数学的几何计算,可以确定特殊形状的建筑在各个方向上的平衡点,进而保证建筑物具备良好的结构性能。
第二,建筑中的数学元素除了在设计过程中的应用,建筑中很多元素本身就蕴含着数学的韵味。
举个例子,金字塔这一古老的建筑形式就是由数学原理构成的。
它的四个侧面是四个等边三角形,顶部则是一个四面体。
这种崇高的几何形状不仅赋予了金字塔独特的美感,也使其在空间布局和结构上更加稳定。
另外,我们还可以发现很多建筑物中采用的螺旋形结构,比如著名的“比萨斜塔”。
这种结构不仅具备美观性,同时也大大增加了建筑物的稳定性。
而螺旋形结构正是由数学中的斐波那契数列定义的。
斐波那契数列是由0和1开始,后续的每个数都是前两个数的和。
螺旋形结构正是通过将斐波那契数列中的数按一定规律排列而形成的。
第三,建筑对于数学学习的启发建筑物作为数学的实际应用之一,不仅为我们提供了观察和学习的机会,更激发了我们对数学的兴趣。
比如,在参观一座大桥时,我们可以观察到桥下的支撑结构,并尝试用数学的方式思考桥梁的稳定性。
探究数学在建筑中的运用

探究数学在建筑中的运用数学是一门抽象而具有普适性的学科,它在生活中的应用无处不在,而建筑领域则是数学运用的一个重要领域之一。
数学在建筑中的应用涉及到面积、体积、角度、比例等多个方面。
本文将深入探究数学在建筑中的具体运用。
一、比例的运用在建筑设计中,比例是一个极其重要的概念。
比例不仅能够保持建筑物的美观,还能保持其结构的稳定。
例如,在设计一幢建筑物时,首先需要确定整个建筑物的比例尺寸,然后再根据需求确定各个部分的比例关系。
通过合理运用比例,建筑师能够创造出符合人类审美和使用需求的建筑。
二、面积和体积的计算面积和体积是建筑设计中经常涉及到的概念。
数学通过一系列的计算公式和方法,帮助建筑师准确计算出建筑物的面积和体积。
例如,在设计室内装修时,面积的计算对于规划家具布局和选择地板材料起到至关重要的作用。
而在设计建筑物的结构时,体积的计算则能帮助工程师确定材料的用量和结构的稳定性。
三、角度的运用角度是建筑设计中常用的一种技巧。
通过合理运用角度,建筑师能够打造出独特而富有动感的建筑形态。
例如,在设计摩天大楼时,建筑师会倾斜建筑物的外墙,并赋予其一定的角度,以增加楼层之间的空间感和美学效果。
另外,在室内设计中,利用角度可以打破传统平面设计的单调,在空间上创造出丰富的层次感。
四、几何学的应用几何学在建筑设计中有着广泛的运用,尤其是平面几何和立体几何。
在设计建筑物的外形和造型时,建筑师需要考虑到几何形状对于建筑结构的影响。
例如,在圆形建筑物的设计中,建筑师需要合理运用圆的几何性质,确保其结构的稳定并优化空间的利用。
另外,在立体几何的运用中,建筑师常常利用多面体的结构特点来创造出独特的建筑形态。
五、数学模型的建立在建筑工程中,数学模型的建立对于工程师的设计和施工具有重要的指导作用。
通过建立数学模型,工程师可以模拟和预测建筑结构的受力情况、荷载分配等关键参数。
这样一来,工程师就可以在设计过程中提前发现潜在的问题,进行相应的调整和优化,从而确保建筑物的安全性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与建筑【摘要】当我们在欣赏一座座建筑时,我们有没有真正的去了解它,如果我们真正的去认识建筑,可曾想到这些宏大的建筑珍品里面隐藏着一门学科的奥秘——数学?本文主要详细介绍了建筑中普遍包含的一些数学知识,数学在建筑形式中的表现,以达到更深入了解建筑美的目,展现出建筑与数学这两门学科独特而又不可分割的美。
【关键词】建筑设计数学之美黄金分割几何学数列1.数学对建筑设计的影响我们知道路由曲直宽窄,房有大小高低。
建筑必须与形和数打交道。
于是建筑就与数学结下不解之缘。
建筑里面讲数学,数学里面讲建筑,你中有我,我中有你。
数学和建筑有着紧密的关系,数学可以说是建筑设计上的基础;而建筑可以说是实在的数学概念。
除了数学,建筑还包含了美术和物理的元素,而美术和物理也是基于数学公式或数学理论为基础。
可想而知,数学在建筑学上占着一个重要的地位。
数学美是一种客观存在,是自然美在数学中的反映。
建筑在数学思维的启发下不断发展为世界创造和谐美。
早在古代建筑里就有许多建筑师就将数学中的几何体和建筑完美的组合,像古代一些圆形及其他形式的神庙,比如蒂沃里的圆形神庙,尼姆的卡列神庙;这些建筑不是简单的以几何学就能够组合的,还要通过数学的精密计算使其符合建筑设计的。
随着社会的不段进步,建筑根据功能和美感的需求,对土地、材料和结构进行堆积与组合,比例决定着建筑中个体、局部与整体的数学关系,因此比例是建筑的核心和灵魂。
比例在数学上并不具有美感,但“黄金分割”的比例分割之美在各种艺术作品都得到充分的展现。
现代设计师仍然最常见地使用黄金分割法则构造着适用性和艺术性统一的新颖建筑。
2.建筑设计中所包含的数学知识2.1建筑设计中的几何学几何学(Geometry)这个词就来自古埃及的“测地术”,它是为在尼罗河水泛滥后丈量地界而产生的。
自然界中常见的简单几何形状是圆、球、圆柱,如太阳、月亮、植物茎干、果实等等,而几乎找不到矩形和立方体。
矩形和立方体是人类的创造,而这正是和建筑活动有关的,因为方形可以不留间隙地四方连续地延展或划分,立方体可以平稳地堆垒和架设。
金字塔在如此巨大的尺度下做到精确的正四棱锥,充分显示了古埃及人的几何能力。
希腊人在发展欧几里德几何的同时,写下了建筑史上最辉煌的一页。
希腊建筑的美在很大程度上取决于尺度和比例,“帕提农给我们带来确实的真理和高度数学规律的感受”(勒·柯布西埃)。
几何学的产生则是和建筑活动密切有关的。
到了文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。
“比例”成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。
在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。
17世纪科学革命所揭示的宇宙是一部数学化的机器。
这一时期法国最重要的建筑理论家都是科学家,在笛卡尔理性主义精神的引导下,一切问题讨论的基础都以理性为原则,数学被认为是保证“准确性”和“客观性”的唯一方法。
笛卡尔通过解析几何沟通了代数与几何,蒙日则将平面上的投影联系起来,在《画法几何》中第一次系统地阐述了平面图式空间形体方法,将画法几何提高到科学的水平。
与传统的模拟视觉感受方式不同,画法几何切断了视觉与知识之间的直接联系,赋予建筑以不受个人主观认识影响的客观真实性,时至今日仍然是建筑学交流最重要的媒介。
建筑的几何学价值首先表现在简洁美。
几何学的理论基础在于格式塔心理学的视觉简化规律,简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,使不同的形体组合具有统一美感。
新古典主义的乃是对巴洛克、洛可可风格的夸张豪华、过度装饰的风格产生反感,受到意大利庞贝城出土的影响,开始企图恢复希腊与罗马的建筑特质,特别重视几何学的构成关系将几何形式带入建筑设计中,文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。
“比例”成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。
在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。
例如上海的东方明珠电视塔,就是几何学中的圆柱与球的结合。
三根竖直的圆柱形通天巨柱,是一个球体完美的结合。
东方明珠电视塔利用球和圆柱的巧妙结合,将数学的严谨与艺术的浪漫融为一体,创造了纯洁的、充满诗情画意的建筑形象。
2.2建筑设计中的黄金分割黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割〔Golden Section〕是一种数学上的比例关系。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧。
以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
黄金分割被认为是建筑和艺术中最理想的比例。
建筑师们对数字0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。
黄金分割与大多数门窗的宽长之比也是0.618;还有,在古希腊神庙的设计中就用到了黄金分割。
在古代建筑艺术的杰作中,也存在着隐藏黄金分割的建筑,那就是位于希腊雅典卫城最高处,用来雅典的护身雅典娜的古代希腊的帕特农神庙(Parthenon)。
如图可以看出,帕特农神庙的各部分尺寸比例中,有很多是符合黄金比的。
由于多处符合黄金比,使帕特农神庙显得比例匀称,美丽庄严。
由于黄金比在建筑中展示了和谐、独特的美,因此他在数学里也受到了充分重视。
帕特农神庙的例子表明只古以来,数学与建筑就有着密切的联系。
2.3建筑设计中的等差数列数列按一定次序排列的一列数列为数列(sequence of number)。
数列中的每一个数都叫做这个数列的项。
排在第一位的数列为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数列为这个数列的第n项。
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(commondifference),公差通常用字母d表示,前N项和用Sn表示。
在中国现存的排列最整齐的大型塔群宁夏一百零八塔,着108座塔,排列成12行.从上往下,各行塔数次为1,3,3,5,5,7,9,11,13,15,17,19.这些都是奇数。
在这其中就隐藏着数学的规律,在数学里,利用等差数列可知:连续前n奇数的和,等取n=10,得1+3+5+7+9+11+13+15+17+19=100,总共要建108座塔,其中100座可以安排成连续奇数1至19的和。
剩下8座可以拆成3+5,也是奇数的和。
由此得出分拆表达式108=1+3+3+5+5+7+9+11+13+15+17+19,正好是一百零八塔自上而下各排塔的个数。
2.4列举一些建筑中的数学原理2.41利用悬链线原理设计的圣路易斯大拱门(图一)2.42利用凸曲面的赵州桥(图二)2.43数学拓扑学中的圆明园迷宫(图三)2.44建筑中的对称泰姬陵(图四)图一图二图三图四3.数学之美在建筑设计中的表现在建筑几何美中,建筑的整体和部分以某种统一的几何形式反映其共同本质特征,这种“统一的几何形式”可视之为全息胚。
建筑全息胚不仅是一种几何形式,也可以是一种空间形态,一种逻辑关系或者是它们的混合体等。
高层建筑几何美蕴育着全息美学价值,主要体现在:一方面,建筑几何形式的全息胚反映高层建筑几何特征的本质或内容,强调几何形式和本质特征、内容的相关性,是建筑和外部条件的统一;另一方面,建筑的整体与部分之间以及部分与部分之间应以某种几何形式的全息胚得到统一,突出形式和形式的自相似性,是建筑对自身的统一。
历史上许多建筑都表达了全息美,如古罗马斗兽场的主要功能是观演,采用了圆的几何形式,在相同的周长中,圆形所能围成的面积最大;而就观看效果而言,圆形看台比较理想。
所以,斗兽场的功能内容决定了它的基本形式是圆,圆的几何特征也构成了它的全息胚。
如圆形甬道、放射形的筒形拱、圆拱券和圆形壁柱等。
斗兽场几何空间、形式、装饰等表现都因为具有了圆形的几何特征而得到了统一。
建筑,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。
千百年来,数学已成为设计和构图的无价工具.它既是建筑设计的智力资源,也是减少试验、消除技术差错的手段。
建筑的抽象形式包含着丰富的意蕴,这就是隐藏在其抽象几何形式背后的意义、思想、情感和精神等内在因素及其人们的生活内涵。
任何几何抽象的高层建筑都是艺术自由美的表现,它挣脱了具象形态的羁绊,但并没有因此而失去意义,反而具有更为广阔的遐想空间,俄国着名画家康定斯基充分论证这个观点。
因此,抽象构图的高层建筑剔除了具象模仿,代之以几何图形,通过几何秩序和规则的体现,表达了某种时代精神,打破了物象意义的羁绊,意蕴自由而丰富。
在意向体验中,高层建筑几何抽象的意蕴美是通过视域的连续交融而直接构成几何图形的非具象的价值意义,如崇高、神秘、骚动和平静等。
几何抽象把美的规律和要素提炼、浓缩、凝聚起来,像醇酒、像干酪,越品越嚼越有味,这需要审美者有深厚的功力,谙熟其艺术规律,方能超凡脱俗,潇洒自如。
胡塞尔的意向学理论证实了这种说法,其理论中的“构成边缘域”思想认为直观体验中达到对某物的意识,体验的根本方式不可能是感觉表象的,也不会是概念规范的,而只能是在一个有边缘视野的意向境域中进行的,这实质上就说明了抽象的不确定性所包含的意蕴丰度。