正态分布随机数生成算法
matlab中正态随机数生成

在MATLAB中生成正态随机数是一个常见的需求,特别是在统计分析和模拟实验中。
正态分布(也被称为高斯分布)是一种连续概率分布,具有很多实际应用,比如在自然科学、社会科学和工程领域中都能找到它的身影。
下面我将从生成正态随机数的基本方法开始,逐步向你介绍MATLAB中有关正态分布的相关知识,以便你能更深入地理解这一主题。
1. 基本方法MATLAB提供了几种方法来生成正态随机数。
最常用的是使用randn 函数,该函数可以生成符合标准正态分布(均值为0,标准差为1)的随机数。
要生成100个符合标准正态分布的随机数,可以使用下面的代码:```matlabdata = randn(1, 100);```这将生成一个1x100的向量,其中包含了100个符合标准正态分布的随机数。
2. 自定义均值和标准差如果你需要生成均值和标准差不为1的正态随机数,可以使用一些其他的函数。
使用normrnd函数可以生成符合指定均值和标准差的正态随机数。
以下是一个示例:```matlabmu = 10; % 均值sigma = 2; % 标准差data = normrnd(mu, sigma, 1, 100);```这将生成一个1x100的向量,其中包含了100个均值为10、标准差为2的正态随机数。
3. 应用举例正态随机数在实际应用中有着广泛的用途。
比如在财务领域,可以使用正态随机数来模拟股票价格的波动;在工程领域,可以使用正态随机数来模拟材料的强度分布。
生成正态随机数是很多模拟实验和统计分析的基础,掌握了这项技能对于进行科学研究和工程设计有着重要的意义。
4. 个人观点和理解在我看来,生成正态随机数虽然在MATLAB中可以很方便地实现,但在实际应用中需要注意一些问题。
比如生成的随机数是否符合所需的分布特性、样本大小是否足够大等,都需要认真考虑。
对正态分布的理解和应用也需要结合具体的领域知识来进行,不能仅仅停留在生成随机数的层面。
总结回顾通过这篇文章,我们对在MATLAB中生成正态随机数有了一定的了解。
各种随机变量的生成方法

各种随机变量的生成方法(1).随机数的计算机生成一个常用的生成任意分布的随机变量的方法是先生成均匀分布的随机变量,再由它生成任意分布的随机变量。
基本原理是:若随机变量x的累积概率分布函数(即概率密度函数的积分)为Phi(x),则Phi(x)是[0,1]区间的非减函数,Phi(x)的反函数Phi^{-1}(x)定义域为[0,1]。
设u为[0,1]区间均匀分布的随机变量,可以证明Pr(Phi^{-1}(u)<=y)=Pr(u<=Phi(y))=Phi(y)也就是说,令x=Phi^{-1}(u)的话,x的累积概率分布函数就是我们指定的Phi(.)。
则为了得到累积概率分布函数为Phi(.)的随机变量x,我们需要经过如下步骤:1.生成[0,1]区间的均匀分布的随机变量u2.令x=Phi^{-1}(u)这种方法被成为逆变换方法。
但在实际工作中,我们往往对某些常用分布用一些直接生成方式来产生,以代替逆变换方法。
以下就介绍了一些典型的分布的生成方法。
这些生成方法都是以生成均匀分布的随机变量为基础的,关于均匀分布随机变量的生成另文叙述。
(2)伯努利分布/0-1分布(Bernouli Distribution)生成离散0-1随机变量x,符合参数为p(0<p<1)的Bernouli分布BE(p)。
其累积概率分布函数为:F(x)=p if x=1F(x)=1-p if x=0生成算法:1.产生随机变量u符合(0,1)区间的均匀分布2.if u<=p then x=1;else x=03.返回x(3)二项分布(Binomial Distribution)生成离散随机变量x,符合参数为n,p的Bernouli分布BE(n,p)。
其累积概率分布函数为F(x)=\frac{n!}{(n-x)!x!}*p^x*(1-p)^{n-x},x=0,1,2,...,n生成算法:1.产生y_1,y_2,...,y_n符合Bernouli分布BE(p)2.返回x=y_1+y_2+...+y_n(4)柯西分布(Cauchy Distribution)生成随机变量x,符合参数为alpha,beta的Cauchy分布C(alpha,beta)。
正态分布的概率计算

正态分布的概率计算正态分布是统计学中最常用的分布之一,也被称为高斯分布。
在自然界和社会科学中,许多现象都服从于正态分布。
例如,身高、体重、智力、成绩等等。
正态分布具有许多优良的性质,使得其在实际应用中得到广泛的应用。
本文将介绍正态分布的概念、性质、参数估计、假设检验以及在实际问题中的应用。
正态分布的概念正态分布是一种连续型概率分布,其概率密度函数为:$$f(x)=frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}} $$其中,$mu$ 是分布的均值,$sigma$ 是分布的标准差,$pi$ 是圆周率。
正态分布的图像呈钟形曲线,以均值为对称轴,标准差越小,曲线越尖锐。
正态分布的性质1. 正态分布的均值和标准差唯一确定了整个分布。
2. 正态分布的概率密度函数在均值处取得最大值,即$f(mu)=frac{1}{sqrt{2pi}sigma}$。
3. 正态分布的标准差越大,分布的形状越平坦,标准差越小,分布的形状越尖锐。
4. 正态分布的面积为1,即 $int_{-infty}^{+infty}f(x)dx=1$。
5. 正态分布的累积分布函数可以用标准正态分布的累积分布函数来表示,即 $F(x)=Phi(frac{x-mu}{sigma})$,其中,$Phi(z)$ 表示标准正态分布的累积分布函数。
正态分布的参数估计在实际应用中,我们常常需要根据样本数据来估计正态分布的参数,即均值和标准差。
下面介绍两种参数估计方法。
1. 极大似然估计假设我们有 $n$ 个来自正态分布 $N(mu,sigma^2)$ 的独立观测值 $x_1,x_2,cdots,x_n$。
它们的联合概率密度函数为:$$L(mu,sigma^2)=prod_{i=1}^{n}frac{1}{sqrt{2pi}sigma}e^{-fr ac{(x_i-mu)^2}{2sigma^2}}$$对 $L(mu,sigma^2)$ 取对数,得到对数似然函数:$$lnL(mu,sigma^2)=-frac{n}{2}ln(2pi)-nlnsigma-sum_{i=1}^{n}frac {(x_i-mu)^2}{2sigma^2}$$极大似然估计就是找到可以最大化对数似然函数的参数值。
随机数生成公式

随机数生成公式随机数生成公式是一种计算机程序中常用的技术,可以生成随机的数字,用于模拟和实验等场景中。
本文将介绍几种常见的随机数生成公式及其应用场景。
一、线性同余法(Linear Congruential Method)线性同余法是一种简单而又高效的随机数生成方法,其公式为:Xn+1 = (aXn + c) mod m其中Xn为当前随机数,a、c、m为常数,mod为模运算符。
该公式的原理是通过不断迭代计算,每次得到一个新的随机数。
该方法的优点是计算速度快,缺点是会产生周期性重复的随机数序列。
该方法常用于模拟和实验场景中。
二、梅森旋转算法(Mersenne Twister)梅森旋转算法是一种广泛应用的随机数生成方法,其公式为:Xn+1 = Xn⊕(Xn >> u)其中Xn为当前随机数,⊕为异或运算符,>>为右移运算符,u为常数。
该公式的原理是通过对当前随机数进行位运算,得到一个新的随机数。
该方法的优点是生成的随机数序列较为均匀,缺点是计算速度较慢。
该方法常用于加密和安全场景中。
三、高斯分布随机数生成公式(Gaussian Distribution)高斯分布随机数生成公式是一种生成符合正态分布(高斯分布)的随机数的方法,其公式为:X = μ + σ * Z其中μ为均值,σ为标准差,Z为符合标准正态分布的随机数。
该公式的原理是通过对标准正态分布进行线性变换,得到符合正态分布的随机数。
该方法的优点是生成的随机数符合实际分布规律,缺点是计算量较大。
该方法常用于金融和统计场景中。
四、指数分布随机数生成公式(Exponential Distribution)指数分布随机数生成公式是一种生成符合指数分布的随机数的方法,其公式为:X = -ln(U) / λ其中U为符合均匀分布的随机数,ln为自然对数函数,λ为指数分布的参数。
该公式的原理是通过对均匀分布进行变换,得到符合指数分布的随机数。
产生正态分布随机数的matlab方法random

产生正态分布随机数的matlab方法random在Matlab中生成正态分布随机数有多种方法,下面将介绍其中几种常用的方法,并对它们进行全面评估。
1. 使用randn函数生成正态分布随机数- randn函数是Matlab中用于生成符合标准正态分布的随机数的函数。
- 该方法的优点是简单易用,一行代码就可以生成所需的随机数序列。
- 但是,这种方法生成的随机数序列可能不够随机,存在一定的偏差。
2. 使用Box-Muller变换生成正态分布随机数- Box-Muller变换是一种经典的生成正态分布随机数的方法,通过均匀分布的随机数生成正态分布的随机数。
- 这种方法生成的随机数更加符合正态分布的特性,具有更好的随机性和分布性。
- 但是,实现Box-Muller变换需要一定的数学基础和编程技巧,相对复杂一些。
3. 使用truncated normal distribution生成截尾正态分布随机数- 有时候我们需要生成一定范围内的正态分布随机数,这时可以使用truncated normal distribution方法。
- 这种方法可以有效地控制生成的随机数范围,使其符合实际应用需要的要求。
- 但是,对于一些特殊情况,需要考虑truncated normal distribution生成的随机数是否符合实际问题的分布需求。
总结回顾:在Matlab中生成正态分布随机数有多种方法,每种方法都有各自的优点和局限性。
根据实际需求,选择合适的方法是非常重要的。
在编写程序时,需要根据具体情况综合考虑随机性、分布性和实际应用需求,选择最合适的方法来生成正态分布随机数。
个人观点和理解:在实际编程中,生成符合实际需求的随机数是非常重要的。
对于正态分布随机数的生成,需要考虑到数据的随机性和分布特性,才能更好地应用于实际问题中。
也要注意选择合适的方法,并在实际应用中进行验证和调整,以确保生成的随机数符合实际需求。
正态分布是自然界和社会现象中广泛存在的一种分布形式,它具有许多重要的统计特性,如均值、标准差和形态等。
正态分布随机数生成算法

正态分布随机数生成算法正态分布(也称为高斯分布)是统计学中非常重要的概率分布之一、生成服从正态分布的随机数是许多应用程序和模型的基本要求之一、下面将介绍几种常见的正态分布随机数生成算法。
1. Box-Muller算法:Box-Muller算法是最常见的生成服从标准正态分布(均值为0,标准差为1)的随机数的方法之一、它的基本思想是利用两个独立的、均匀分布的随机数生成一个标准正态分布的随机数对。
具体步骤如下:-生成两个独立的、均匀分布在(0,1)区间的随机数u1和u2- 计算z1 = sqrt(-2 * ln(u1)) * cos(2 * pi * u2)和z2 =sqrt(-2 * ln(u1)) * sin(2 * pi * u2)两个服从标准正态分布的随机数。
2. Marsaglia极坐标法:Marsaglia极坐标法也是一种生成服从标准正态分布随机数的方法。
它基于极坐标系的性质,即生成的随机数对所对应的点的距离(模长)服从Rayleigh分布,方向(角度)均匀分布。
具体步骤如下:-生成两个独立的、均匀分布在(-1,1)区间的随机数u1和u2-计算s=u1^2+u2^2,如果s>=1,则重新生成u1和u2- 计算f = sqrt(-2 * ln(s) / s)和z1 = f * u1,z2 = f * u2即为两个服从标准正态分布的随机数。
3. Box-Muller/Box-Muller Transformation组合方法:此方法是将两种算法结合起来,先用Box-Muller算法生成两个服从标准正态分布的随机数,然后进行线性变换得到多种均值和标准差的正态分布随机数。
4. Ziggurat算法:Ziggurat算法是一种近似生成服从标准正态分布随机数的算法,它基于分段线性逼近的思想。
Ziggurat算法将正态分布的概率密度函数拆分成多个长方形和一个截尾尾巴(tail)部分。
具体步骤如下:- 初始化一个包含n个长方形的Ziggurat结构,每个长方形包括一个x坐标、一个y坐标、一个面积。
产生正态分布随机数及M序列

1. 编制两种方法产生正态分布随机数的程序并进行验证分析; 编程思路:产生正态分布随机数的两种方法:(1) 统计近似抽样法:a.设{i y }是(0,1)均匀分布的随机数序列,则{}1()0.5y i i i i E y y p y dy μ===⎰1220()()1/12y i y i i y p y dy σμ=-=⎰b.根据中心极限定理,当N →∞时,112()2()~(0,1)/12NNi yi i i yNy k N y x k N N N μσ==--==∑∑c.如需产生均值为x μ,方差为2x σ的正态分布随机变量x ,只需如下计算:212~(,)/12Ni i x x x x N y x N N μσμσ=-=+∑,试验证明12N =时,x 的统计性质就比较理想了。
(2) 变换抽样法:设12,y y 是两个相互独立的(0,1)均匀分布的随机变量,则新变量1/21121/2212(2log )cos(2)(2log )sin(2)x y y x y y ππ⎧=-⎨=-⎩ 是相互独立的,服从(0,1)N 分布的随机变量。
利用统计近似抽样法和变换抽样法的定义及之前产生(0,1)均匀分布的随机数的基本方法如乘同余法、混合同余法等产生正态分布随机数。
调试过程遇到的问题:(1)在用统计近似抽样法产生正态分布随机数时,给定,μσ,然后用Matlab 自带函数检验结果,感觉数据老对不上?解决方法:自己设定的,μσ分别是均值,标准差,利用Matlab 自带函数mean(),var()计算出来的分别是均值,方差,总觉得方差老对不上,其实是自己理解问题,var()计算出来的方差数值肯定是自己设定的标准差的平方大小左右。
(2)Matlab 下标从1开始;做运算两个矩阵的尺寸大小得对应上,还有调用的值一定得有值。
程序运行结果分析得到的结论:(1)统计近似抽样法:50010001500200025003000350040004500-50510统计近似抽样法(1)-4-202468050100150200 050100150200250300350-4-20246统计近似抽样法(2)-3-2-101234567010203040统计近似抽样法中要用产生的(0,1)序列的12个数的和,但具体哪12个,不太清楚,图(1)是:z(1)用的是x(1)~x(12),z(2)用的是x(2)~x(13),以此类推。
各种分布的随机数生成算法

各型分布随机数的产生算法随机序列主要用概率密度函数(PDF〃Probability Density Function)来描述。
一、均匀分布U(a,b)⎧1x∈[a,b]⎪ PDF为f(x)=⎨b−a⎪0〃其他⎩生成算法:x=a+(b−a)u〃式中u为[0,1]区间均匀分布的随机数(下同)。
二、指数分布e(β)x⎧1⎪exp(−x∈[0,∞)βPDF为f(x)=⎨β⎪0〃其他⎩生成算法:x=−βln(1−u)或x=−βln(u)。
由于(1−u)与u同为[0,1]均匀分布〃所以可用u 替换(1−u)。
下面凡涉及到(1−u)的地方均可用u替换。
三、瑞利分布R(µ)⎧xx2exp[−x≥0⎪回波振幅的PDF为f(x)=⎨µ2 2µ2⎪0〃其他⎩生成算法:x=−2µ2ln(1−u)。
四、韦布尔分布Weibull(α,β)xα⎧−αα−1⎪αβxexp[−(]x∈(0,∞)βPDF为f(x)=⎨⎪0〃其他⎩生成算法:x=β[−ln(1−u)]1/α五、高斯(正态)分布N(µ,σ2)⎧1(x−µ)2exp[−]x∈ℜ2PDF为f(x)=⎨2πσ 2σ⎪0〃其他⎩生成算法:1〄y=−2lnu1sin(2πu2)生成标准正态分布N(0,1)〃式中u1和u2是相互独立的[0,1]区间均匀分布的随机序列。
2〄x=µ+σy产生N(µ,σ2)分布随机序列。
六、对数正态分布Ln(µ,σ2)⎧1(lnx−µ)2exp[−x>0PDF为f(x)=⎨2πσx 2σ2⎪0〃其他⎩生成算法:1〄产生高斯随机序列y=N(µ,σ2)。
2〄由于y=g(x)=lnx〃所以x=g−1(y)=exp(y)。
七、斯威林(Swerling)分布7.1 SwerlingⅠ、Ⅱ型7.1.1 截面积起伏σ⎧1−exp[σ≥0⎪σ0截面积的PDF为f(σ)=⎨σ0〃【指数分布e(σ0)】⎪0〃其他⎩生成算法:σ=−σ0ln(1−u)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计课程设计题目:正态分布随机数生成算法要编程得到服从均匀分布的伪随机数是容易的。
C语言、Java语言等都提供了相应的函数。
但是要想生成服从正态分布的随机数就没那么容易了。
得到服从正态分布的随机数的基本思想是先得到服从均匀分布的随机数,再将服从均匀分布的随机数转变为服从正态分布。
接下来就先分析三个从均匀分布到正态分布转变的方法。
然后编程实现其中的两个方法并对程序实现运作的效果进行统计分析。
1、 方法分析(1) 利用分布函数的反函数若要得到分布函数为F(x)的随机变量Y 。
可令1()Y F u -=, 其中u 是服从均匀分布的随机变量,有1()(())()P Y y P U F y F y -≤=≤=因而,对于任意的分布函数,只要求出它的反函数,就可以由服从均匀分布的随机变量实例来生成服从该分布函数的随机变量实例。
现在来看正态分布的分布函数,对于2~(,)X N μσ,其分布函数为:22()21()t x F x e μσ---∞=⎰显然,要想求其反函数是相当困难的,同时要想编程实现也很复杂。
可见,用此种方法来生成服从正态分布的随机变量实例并不可取。
(2) 利用中心极限定理第二种方法利用林德伯格—莱维(Lindeberg —Levi)中心极限定理:如果随机变量序列12,,,,n X X X 独立同分布,并且具有有限的数学期望和方差()()2,0(1,2,),i i E X D X i μσ==>= 则对一切x R ∈有221lim tnx i n i P X n x dt μ--∞→∞=⎛⎫⎫-≤=⎪⎪⎭⎝⎭∑⎰因此,对于服从均匀分布的随机变量i X ,只要n 充分大,11n i i X n μ=⎫-⎪⎭∑就服从()0,1N 。
我们将实现这一方法。
(3) 使用Box Muller 方法 先证明222xedx π-∞-∞=⎰:令22xI edx -∞-∞=⎰,则22222222xyx y Iedx edy edxdy --+∞∞∞--∞-∞-∞==⎰⎰⎰令cos ,sin x r y r θθ==,则有22222222rrIerdrd erdr πθππ∞∞--===⎰⎰⎰。
接下来再来得出Box Muller 方法:设(),X Y 为一对相互独立的服从正态分布的随机变量。
则有概率密度函数()()222,1,2x y X Y f x y e π+-=令cos ,sin x R y R θθ==,其中[]~0,2θπ,则R 有分布函数:22222221()12uurr r P R r eudud eudu eπθπ---≤===-⎰⎰⎰令()221rR F r e-=-()1RR F Z -==如果X 服从均匀分布,则R 的分布函数即为()R F r 。
最后,可以1U 用代替()1Z -,令θ为22U π,其中()1~0,1U U ,()2~0,1U ,得:()()22cos 2,sin 2X R U Y R U θπθπ====从而,只需要有两个服从均匀分布的随机变量12,U U ,就能通过公式()2cos 2X R U θπ==来得到一个服从正态分布的随机变量X 。
用Box Muller 方法来生成服从正态分布的随机数是十分快捷方便的。
我们也将实现这一方法。
2、 实现与分析(1) 利用中心极限定理方法的实现与分析利用中心极限定理来生成随机数的函数(C++语言)编写如下:const int N = 200; double getRand() {double s = 0;for (int i = 0; i != N; ++i)s += double (rand() % 1000) / 1000;return s; }函数生成的随机数是N 个[0,1]间服从均匀分布的随机数的和。
这里N 为200。
从而理论上产生的随机数应近似服从2(,)N n n μσ,其中n 为N ,即200,μ为0.5,2σ为1/12。
程序生成了200个随机数,并求出样本均值与样本方差,也即μ与2σ的最大似然估计://生成随机数并存储 double sum, store[200], xi, su = 0, sb = 0, ssb = 0; int cnt = 0; sum = 0;for (int i = 0; i != 200; ++i) { xi = getRand(); sum += xi; store[i] = xi;}//得到样本均匀与样本方差 su = sum / 200;for (int i = 0; i != 200; ++i)sb += (store[i] - su) * (store[i] - su); sb /= 200;ssb = sqrt(sb);此次选取1234567890,92,94,96,98,100,102,104,y y y y y y y y ========910106,108y y ==,它们将实轴分成11个互不相交的区间,从而将样本值分成11组。
程序统计了每组中的样本数量。
为方便计算,程序还计算出了ˆ()ˆi y μσ-:int segments[12], m = 2; double x1 = 90, x10 = 108;memset(segments, 0, sizeof (segments)); for (int i = 0; i != 200; ++i) { if (store[i] <= x1)++segments[0];else if (store[i] > x10)++segments[10];else++segments[int ((store[i] - x1) / m + 1)];}cout << 'i' << '\t' << "ni" << endl; for (int i = 0; i != 11; ++i) { cout << i + 1 << '\t' << segments[i]; if (i < 10)cout << '\t' << fixed << setprecision(2) << (90 + i * 2 - su) / ssb;cout << endl;}程序的最终运行输出如图2-1所示。
图2-1 最终输出结果对结果的统计如表2-1所示。
由表2-1中可见213.380χ=,今11,2,k m ==并令0.05α=,则()()220.051815.507.k m αχχ--==由于<,故可认为产生的随机数服从正态分布。
表2-1利用中心极限定理的方法虽然可以得到服从正态分布的随机数样本,其思想也较为简单,容易想到。
但是这种方法每次都要先产生若干个服从均匀分布的随机数样本并求它们的和,因而算法的时间复杂度高。
(2) Box Muller 方法的实现与分析使用Box Muller 方法得到随机数的函数如下:double getRand() { double u1 = double (rand() % 10000) / 10000, u2 = double (rand() % 10000) / 10000, r; r = 20 + 5 * sqrt(-2.0 * (log(u1) / log(e))) * cos(2 * pi * u2);return r; }用此函数得到的随机数样本理论上服从(20,25)N 。
所实现的程序产生了500个随机变量的样本其他与利用中心极限定理的实现基本相同。
程序得到的最终结果如图2-2所示。
图2-2对结果的统计如表2-2 所示。
表2-2由表2-2可见212.19χ=,今11,2,k m ==并令0.0α=,则()()220.051815.507.k m αχχ--==由于12.1915.507<,故可认为产生的随机数服从正态分布。
Box Muller 方法的推导过程较为复杂。
但得到的结果却是很令人满意的。
只要用两个相互独立的均匀分布就能得到正态分布。
而且产生随机数的时间复杂度比利用中心极限定理的方法要低很多。
因而若要产生服从正态分布的随机数样例,则Box Muller 方法是一个很不错的选择。