电磁学试题(卷)(含答案解析)
(完整版)电磁学题库(附答案)

电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q,相距为 d. 试求:(1) 在它们的连线上电场强度E 0 的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U=0 的点与电荷为+q 的点电荷相距多远?+q - 3qd2. 一带有电荷q=3×10-9 C 的粒子,位于均匀电场中,电场方向如图-E 所示.当该粒子沿水平方向向右方运动 5 cm 时,外力作功6×10-5 J,粒子动能的增量为 4.5×10-5 J.求:(1) 粒子运动过程中电场力作功q 多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为 d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为=Ar (r ≤R) ,=0 (r> R)A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度均匀分布在半径分别为r1=10 cm 和r2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值.( 0=8.85×10-12C2 / N · m2 ) y6. 真空中一立方体形的高斯面,边长a=0.1 m,位于图中所示位置.已知空间的场强分布为:E x=bx , E y=0 , E z=0.常量b=1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q=1.0×10-6 C的两个异号点电荷组成,两电荷相距l=2.0 cm.把这电偶极子放在场强大小为E= 1.0 × 105 N/C 的均匀电场中.试求:(1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q1=8.0× 10 - 6 C 和q2=-16.0×10-6 C 的两个点电荷相距20 cm,求离它们都是20 cm 处的电场强度.(真空介电常量0=8.85× 10- 12 C2N-1m-2 )9. 边长为 b 的立方盒子的六个面,分别平行于xOy、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为E 200i 300 j .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面, 已知空间的场强分布为:E x = bx , E y =0, E z = 0.高斯面边长 a = 0.1 m ,常量 b =1000N/(C · m ).试求该闭合面中包含的净电荷. ( 真空介电常数= 8.85× 10-12 C 2· N -1· m -2 )11. 有一电荷面密度为 的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为 p 的电偶极子的电场中, 将一电荷为 q 的点电荷从 A点沿半径为 R 的圆弧 (圆心与电偶极子中心重合, R>> 电偶极子正负电荷之A 间距离 )移到B 点,求此过程中电场力所作的功.1为 0.5 m 处 P 点的电场强度. ( =9.00× 109 Nm 2 /C 2) 4015. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面, 面密度 A =- 17.7× 10- 8 C ·m -2,B 面的电荷面密度 B = 35.4 ×10-8 C ·m -2.试计17. 电荷线密度为 的“无限长” 均匀带电细线, 弯成图示形状. 半圆弧 AB 的半径为 R ,试求圆心 O 点的场强.13. 一均匀电场,场强大小为 E =5×104 N/C ,方向竖直朝上,把一电荷为 q =×10-8 C 的点电荷,置于此电场中的 电场力作的功. a 点,如图所示.求此点电荷在下列过程中 (1) 沿半圆路径Ⅰ移到右方同高度的 b 点, ab =45 cm ;(2) 沿直线路径Ⅱ向下移到 c 点, ac = 80cm ;d 点,ad =260 cm (与水平方向成 45°角 ). 14. 两个点电荷分别为 q 1=+2×10-7 C 和 q 2=- 2×10-7 C ,相距 0.3 m .求距 q 1 为 0.4 (3) 沿曲线路径Ⅲ朝右斜上方向移到 m 、距 q 2A 面上电荷算两平面之间和两平面外的电场强度. (真空介电常量 0= 8.85× 10-12 C 2·N -1·m -2 )16. 一段半径为 a 的细圆弧,对圆心的张角为 0,其上均匀分布有正电荷 如图所示.试以 a ,q , 0表示出圆心 O 处的电场强度.p Bq ,A∞∞18. 真空中两条平行的 “无限长” 均匀带电直线相距为 a ,其电荷线密度分 别为- 和+ .试求:(1) 在两直线构成的平面上, 两线间任一点的电场强度 ( 选 Ox 轴如图所示,两线的中点为原点 ).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器, 极板间距离为 10 cm ,其间有一半充以相对介电常量 r =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电 势差为 100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量(真空介电常量 0= 8.85× 10- 12 C 2·N -1·m -2)20. 若将 27 个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴, 将为小水滴电势的多少倍? (设电荷分布在水滴表面上,水滴聚集时总电荷无损失.)21. 假想从无限远处陆续移来微量电荷使一半径为 R 的导体球带电.(1) 当球上已带有电荷 q 时,再将一个电荷元 dq 从无限远处移到球上的过程中, 外力作多少功?(2) 使球上电荷从零开始增加到 Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为 W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为 r 的无限大的各向同性均匀液态电介质中,问这时 电场总能量有多大?23. 一空气平板电容器,极板 A 、 B 的面积都是 S ,极板间 A距离为 d .接上电源后, A 板电势 U A =V ,B 板电势 U B =0.现d/2 q d C V 将一带有电荷 q 、面积也是 S 而厚度可忽略的导体片 C d/2B平行插在两极板的中间位置,如图所示,试求导体片 C的电势. 24. 一导体球带电荷 Q .球外同心地有两层各向同性均匀电介质球壳,相对 介电常量分别为 r1 和 r2,分界面处半径为 R ,如图所示.求两层介质分 界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相此大水滴的电势d/2 d d/2 d/2距很远.若用细1导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.( 19 109N m2/ C2 )4026. 如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线内均匀分布.试在图示的坐标系中求出15x 轴上两导线之间区域[ a, a] 内磁感强度的分布.2227. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda,其中bc 弧和da弧皆为以O 为圆心半径R =20 cm 的1/4 圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a的绕向.设线圈处于 B = 8.0× 10- 2 T,方向与a→b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I l1和I l2所受安培力F1 和F 2的方向和大小,设l1 =l2 =0.10 mm ;(2) 线圈上直线段ab和cd所受的安培力F ab和F cd的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受的安培力F bc和F da的大小和方向.28. 如图所示,在xOy 平面(即纸面) 内有一载流线圈abcda,其中bc 弧和da弧皆为以O 为圆心半径R =20 cm 的1/4 圆弧,ab 和cd 皆为直线,电流I =20 A,其流向沿abcda 的绕向.设该线圈处于磁感强度 B = 8.0 ×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I l1和I l2所受安培力F1和F2的大小和方向,设l1 = l2 =0.10mm ;(2) 线圈上直线段ab和cd所受到的安培力F ab和F cd的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力F bc和F da的大小和方向.29. AA '和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为20.0 cm,共10匝,通有电流10.0 A;而CC'线圈的半径为10.0 cm,共20 匝,通有电流中心O 点的磁感强度的大小和方向.( 0 =4 ×10-7 N·A-2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线 1 和 2 分别在 a 点和 b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l,求正三角形中心点O 处的磁感强度B .31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.yI b I l1 aR3 0 °c 45°RO3I0 °c xI l2d I5.0 A .求两线圈公共y32. 如图所示,半径为R,线电荷密度为(>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B 的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R1 和R2,芯子材料的磁导率为,导线总匝数为N,绕得很密,若线圈通电流I ,求.(1)芯子中的 B 值和芯子截面的磁通量.(2)在r < R1和r > R2处的 B 值.34. 一无限长圆柱形铜导体(磁导率0),半径为R,通有均匀分布的电流I .今取一矩形平面S (长为 1 m ,宽为 2 R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为 B 的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2 的比值.36. 在真空中,电流由长直导线 1 沿底边ac 方向经 a 点流入一由电阻均匀的导线构成的正三角形线框,再由 b 点沿平行底边ac 方向从三角形框流出,经长直导线 2 返回电源(如图).已知直导线的电流强度为I,三角形框的每一边长为l,求正三角形中心O 处的磁感强度B .37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),AB EF R,大圆弧BC的半径为R,小圆弧DE 的半径为1R,求圆心O 处的磁感强度B的大小和方向.238. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l1、R1 和l2、R2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39. 假定地球的磁场是由地球中心的载流小环产生的,已知地极附近磁感强度地球半径为R =6.37× 106 m.0 =4 ×107 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩p m 与电子轨道运动的动量矩bCB 为 6.27×10-5 T ,L 大小之比,并指出p m和L 方向间的关系.(电子电荷为e,电子质量为m)C I 241. 两根导线沿半径方向接到一半径 R =9.00 cm 的导电圆环上. 如图.圆弧 ADB是铝导线,铝线电阻率为 1 =2.50× 10-8 ·m ,圆弧 ACB 是铜导线,铜线电阻率为 2 =1.60×10-8 ·m .两种导线截面积相同,圆弧 ACB 的弧长是圆周 长的 1/ .直导线在很远处与电源相联,弧 ACB 上的电流 I 2 =2.00A,求圆 心 O 点处磁感强度 B 的大小. (真空磁导率 0 =4 ×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有 10 A 电流,在导线内部作一平面 S , S 的 一个边是导线的中心轴线,另一边是 S 平面与导线表面的交线,如图所示.试 计算通过沿导线长度方向长为 1m 的一段 S 平面的磁通量. (真空的磁导率 0=4 ×10-7 T ·m/A ,铜的相对磁导率 r ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 2,若 i 1 和 i 2之间夹角为 ,如图,求:(1) 两面之间的磁感强度的值 B i .(2) 两面之外空间的磁感强度的值 B o .(3) 当 i 1 i 2 i , 0 时以上结果如何? 44. 图示相距为 a 通电流为 I 1和 I 2 的两根无限长平行载流直导线. (1)写出电流元 I 1 d l 1对电流元 I 2 d l 2的作用力的数学表达式; (2) 推出载流导线单位长度上所受力的公式. 45. 一无限长导线弯成如图形状,弯曲部分是一半径为 R 的半圆, 两直线部分平行且与半圆平面垂直,如在导线上通有电流 I ,方 向如图. (半圆导线所在平面与两直导线所在平面垂直)求圆心 O处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、 2、3,通有相等的电流,电流 方向如箭头所示.试求出球心 O 点的磁感强度的方向. (写出在直角坐标 系中的方向余弦角 )47. 一根半径为 R 的长直导线载有电流 I ,作一宽为 R 、长为 l 的假 想平面 S ,如图所示。
高一物理电磁学试题答案及解析

高一物理电磁学试题答案及解析1.用控制变量法,可以研究影响平行板电容器电容的因素,如图所示。
设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。
实验中,极板所带电荷量不变,下列判断中正确的是A.保持S不变,增大d,则θ变小B.保持S不变,增大d,则θ变大C.保持d不变,减小S,则θ变大D.保持d不变,减小S,则θ变小【答案】BC【解析】略2.电子产品制作车间里常常使用电烙铁焊接电阻器和电容器等零件,技术工人常将电烙铁和一个白炽灯串联使用,电灯还和一只开关并联,然后再接到市电上(如图),下列说法正确的是( ) A.开关接通时比开关断开时消耗的总功率大B.开关接通时,电灯熄灭,只有电烙铁通电,可使消耗的电功率减小C.开关断开时,电灯发光,电烙铁也通电,消耗的总功率增大,但电烙铁发热较少D.开关断开时,电灯发光,可供在焊接时照明使用,消耗总功率减小【答案】AD【解析】【考点】电功、电功率;串联电路和并联电路.专题:恒定电流专题.分析:开关闭合时,灯泡会发生短路,总电阻会减小,消耗的功率会增大,同理当开关断开时,灯泡串联在电路中,总电阻增大,消耗的功率较小.解答:解:A、开关接通时,灯泡发生短路,电阻小于开关断开时的电阻,有公式P=可知,开关接通时比开关断开时消耗的总功率大,故A正确;B、开关接通时,电灯熄灭,只有电烙铁通电,电路中电阻减小,有公式P=可知,消耗的功率增大;故B错误;C、开关断开时,电灯发光,电烙铁也通电,消耗的总功率减小,且电烙铁发热较少,故C错误D、开关断开时,灯泡串联在电路中,电灯发光,总电阻增大,可供在焊接时照明使用,消耗总功率减小,故D正确;故选AD点评:本题考查了串联电路的特点和电阻、电压、实际功率的计算,关键是公式及其变形的灵活运用.3.如图所示,平行板电容器电容为C,带电量为Q,板间距离为,今在两板正中央处放一电荷,则它受到的电场力大小为( )A.B.C.D.【答案】C【解析】分析:根据电容器的定义式C=,求出电容器两端间的电势差,根据匀强电场的强度公式E=得出电场强度,从而得出电场力.解答:解:电势差U=,则电场强度E==,电场力F=qE=.故C正确,A、B、D错误.故选C.4.两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c点在两负电荷连线的中点,d 点在正电荷的正上方,c、d到正电荷的距离相等,则A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低【答案】ACD【解析】因电场线的疏密反映场强的大小,故由电场线分布可知,a点的电场强度比b点的大,选项A正确;若过a点画出等势面,可知b点电势高于a点电势,选项B错误;由场强的叠加原理可知,d点的场强等于正电荷在d点的场强与两个负电荷在d点场强之差;而c点的场强等于正电荷在c点的场强,(两个负电荷在c点场强叠加为零),则c点的电场强度比d点的大,选项C正确;由电势的叠加原理可知,c点的电势比d点的低,选项D正确;故选ACD。
电磁学试题大集合(含答案)

长沙理工大学考试试卷一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E 处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E 处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ]3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >>(B)C B A E E E <<,C B A U U U <<(C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ]5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ]8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R为Ω90,电源电动势为V 40,电源内阻可忽略。
(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
大学电磁学考试题及答案

大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^9 m/s答案:A2. 法拉第电磁感应定律描述的是哪种现象?A. 电荷守恒定律B. 电荷的产生和消失C. 磁场变化产生电场D. 电场变化产生磁场答案:C3. 根据洛伦兹力公式,当一个带电粒子垂直于磁场运动时,其受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与带电粒子速度方向相同D. 与带电粒子速度方向垂直答案:D4. 麦克斯韦方程组中描述电荷分布与电场关系的是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定理D. 洛伦兹力公式答案:A5. 一个闭合电路中的感应电动势与什么因素有关?A. 磁通量的变化率B. 磁通量的大小C. 电路的电阻D. 电流的大小答案:A6. 根据电磁波的性质,以下哪种波长与频率的关系是正确的?A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比,但与速度无关答案:B7. 在电磁学中,磁感应强度的单位是什么?A. 库仑B. 特斯拉C. 安培D. 伏特答案:B8. 电磁波的传播不需要介质,这是因为电磁波具有哪种特性?A. 粒子性B. 波动性C. 传播性D. 能量性答案:B9. 根据电磁学理论,以下哪种情况下磁场强度最大?A. 导线电流较小B. 导线电流较大C. 导线电流为零D. 导线电流变化答案:B10. 电磁波的频率与波长的关系是什么?A. 频率越高,波长越长B. 频率越高,波长越短C. 频率与波长无关D. 频率与波长成正比答案:B二、填空题(每题2分,共20分)1. 电磁波的传播速度在真空中是______。
答案:3×10^8 m/s2. 根据法拉第电磁感应定律,当磁通量发生变化时,会在______产生感应电动势。
大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 300,000 km/sB. 299,792 km/sC. 299,792 km/s(光速)D. 299,792 km/s(电磁波速度)答案:C2. 法拉第电磁感应定律描述了什么现象?A. 磁场对电流的作用B. 电流对磁场的作用C. 变化的磁场产生电场D. 变化的电场产生磁场答案:C3. 根据麦克斯韦方程组,以下哪项不是电磁场的基本方程?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 欧姆定律答案:D4. 电容器的电容与哪些因素有关?A. 电容器的面积B. 电容器的间距C. 电介质材料D. 所有以上因素答案:D5. 以下哪种介质不能增强电场?A. 电介质B. 导体C. 真空D. 磁介质答案:B6. 洛伦兹力定律描述了什么?A. 磁场对运动电荷的作用B. 电场对静止电荷的作用C. 重力对物体的作用D. 摩擦力对物体的作用答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比(错误选项)答案:B8. 根据楞次定律,当线圈中的磁通量增加时,感应电流的方向如何?A. 与磁通量增加的方向相同B. 与磁通量增加的方向相反C. 与磁通量增加的方向垂直D. 与磁通量增加的方向无关答案:B9. 什么是自感?A. 电路中由于电流变化而产生的电磁感应B. 电路中由于电压变化而产生的电流C. 电路中由于电阻变化而产生的电压D. 电路中由于电感变化而产生的电流答案:A10. 以下哪种材料不是超导体?A. 汞B. 铅C. 铜D. 铝答案:C二、填空题(每空1分,共10分)1. 电场强度的国际单位是_______。
答案:伏特/米2. 电容器储存电荷的能力称为_______。
答案:电容3. 磁场强度的国际单位是_______。
答案:特斯拉4. 麦克斯韦方程组包括_______个基本方程。
高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
电磁学考试题库及答案详解

电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定A 、面S 没有电荷B 、面S 没有净电荷C 、面S 上每一点的场强都等于零D 、面S 上每一点的场强都不等于零2、 下列说法中正确的是A 、沿电场线方向电势逐渐降低B 、沿电场线方向电势逐渐升高C 、沿电场线方向场强逐渐减小D 、沿电场线方向场强逐渐增大3、 载流直导线和闭合线圈在同一平面,如图所示,当导线以速度v 向左匀速运动时,在线圈中A 、有顺时针方向的感应电流B 、有逆时针方向的感应电C 、没有感应电流D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-,则P 点处的场强为 A 、02εσ B 、0εσ C 、02εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进入磁场,其运动轨迹如图所示,则其中质子的轨迹是A 、曲线1B 、曲线2C 、曲线3D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场E 中,则在电场力作用下,该电偶极子将A 、保持静止B 、顺时针转动C 、逆时针转动D 、条件不足,无法判断7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为A 、0B 、0εqC 、04εqD 、06εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流?A 、线圈向左运动B 、线圈向右运动C 、线圈向上运动D 、线圈向下运动 9、 关于真空中静电场的高斯定理0εi S q S d E ∑=•⎰ ,下述说确的是:A. 该定理只对有某种对称性的静电场才成立;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E 一定是电荷i q ∑激发的;σ-P 3ID. 积分式中的E 是由高斯面外所有电荷激发的。
10、 下列各图为载流电路,其中虚线部分表示通向“无限远”,弧形部分为均匀导线,点O磁感强度为零的图是A. B.C. D .11、 两个带有同号电荷、形状完全相同的金属小球A 和B ,电量均为q ,它们之间的距离远大于小球本身的直径。
现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和B 的电量分别变为( )A 、q ,qB 、q 21,q 21C 、q 21,q 23D 、q 21,q 43 12、 如图所示,一点电荷q 位于立方体的A 角上,则通过abcd 面的电通量φ为( ) A 、0 B 、0εq C 、0 6εqD 、0 24εq 13、 如图所示,在一无限大带电平板产生的电场中,一个电量为q 的电荷自A点移动到B 点,则其所受的电场力将会( )A 、增大B 、减小C 、不变D 、条件不足,无法判断14、 下列说法中正确的是( )A 、场强越大处,电势也一定越高;B 、电势均匀的空间,电场强度一定为零C 、场强为零处,电势也一定为零;D 、电势为零处,场强一定为零。
15、 下面哪种说法是正确的( )A 、如果高斯面无电荷,则该面上E 处处为零B 、如果高斯面上E 处处不为零,则该面必有静电荷C 、如果高斯面有静电荷,则该面上E 处处不为零A Bc dL ID 、如果高斯面上E 处处为零,则该面必无净电荷16、 如图所示,闭合面S 有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷q ',若将q '移至B 点,则( )A 、S 面的总电通量改变;P 点的场强不变B 、S 面的总电通量改变;P 点的场强改变C 、S 面的总电通量不变;P 点的场强改变D 、S 面的总电通量不变;P 点的场强不变17、 一条直线上的3点位置如图所示,其电势分别为A U 、B U 、C U ,且C B A U U U >>,若把一个负电荷放在B 点,则此电荷将( )A 、向A 点加速运动B 、向A 点匀速运动C 、向C 点加速运动D 、向C 点匀速运动18、 有一半径为R ,通有电流I 的半圆形细导线,其圆心处的磁感应强度大小为( )A 、0B 、R I40μC 、πμ40ID 、 RI 40πμ 19、 如图所示,在一个n 匝的载流螺线管的外面环绕闭合路径一 周积分⎰⋅l d B 等于( )A 、0B 、nI 0μC 、20nIμ D 、I 0μ 20、 质量为m ,带电量为q 的带电粒子以速率v 与均匀磁场B 成θ 角射入磁场,其轨迹为一螺旋线,若要增大螺距,则应( )A 、增大磁场B B 、增加夹角θC 、减小速度vD 、减小磁场B21、 下列关于电场强度的叙述正确的是 ( )A .在某一点电荷附近的任一点,如果没有把实验电荷放进去,则该点的电场强度为零B .电场中某点的场强与该点检验电荷所受的电场力成正比C .电场中某点的场强方向就是检验电荷在该点所受电场力的方向D .电场中某点的场强与该点有无检验电荷无关22、 如图所示,绝缘的带电导体上a 、b 、c 三点附近, 电场强度 ( )A .a 点最大B .b 点最大C .c 点最大D .一样大 23、 A 为已知电场中的一固定点,在A 点放一电量为q 的电荷,所受电场力为F ,A 点的场强为E ,则 ( )A .若在A 点换上-q ,A 点场强方向发生变化A .B .'q A B CB .若在A 点换上电量为2q 的电荷,A 点的场强将变为2EC .若在A 点移去电荷q ,A 点的场强变为零D .A 点场强的大小、方向与q 的大小、正负、有无均无关24、 在以点电荷为球心、r 为半径的球面上各点相同的物理量是 ( )A .电场强度B .同一电荷所受电场力C .电势D .电势能25、 在静电场中,关于场强和电势的说确的是 ( )A .电场强度大的地方电势一定高B .电势为零的地方场强也一定为零C .场强为零的地方电势也一定为零D .场强大小相同的点电势不一定相同26、 关于导体,下列说法错误的是 ( )A .导体的静电平衡状态是指导体的部和表面都没有电荷的定向移动的状态B .静电平衡时,导体部场强和表面场强相等C .处于静电平衡状态的导体,其部各处净电荷为零D .由于处于静电平衡的导体,其表面上各处的面电荷密度与当处表面的曲率有关,所以才有尖端放电现象27、 三条稳恒电流回路1I 、2I 和3I ,若选择如图所示的闭合环路 L ,则磁感应强度沿环路L 的线积分d B r ⋅⎰的值为 ( )A .)(210I I +μB .)(210I I -μC .)(3210I I I ++μD .)(3210I I I +-μ 二、填空题1、两根无限长的带电直线相互平行,相距为a 2,线电荷密度分别为λ+和λ-,则每条直线所在处的电场强度大小为 C N ,每单位长度的带电直线所受的力为N ,两直线相互 (填吸引或排斥)。
(a 04πελ,a024πελ,吸引) 2、有四个点电荷,电量都是+Q ,放在正方形的四个顶点,若要使这四个点电荷都能达到平衡,需要在正方形 位置放一个点电荷,电量为 。
(中心;-Q 4122+) 3、载流圆线圈半径为R ,通有电流I ,则圆心处的磁感应强度大小 。
(02u I R ) 4.两个平行的“无限大”均匀带电平面,其电荷面密度分别为+σ和-σ,如图所示,则A 、B 、C 三个区域的电场强度分别为(设向右的方向为正):A E = ;B E = ;C E = .( 0;0σε;0) 5. 两个同心圆环a 、b 套在一条形磁铁上,如图所示,两环半径分别是R R 12、,且R R 12>。
设穿过a 、b 两圆环的磁通量分别是2121φφφφ ,则、(填<、>或=)。
(小于)6.一个电量为q , 质量是m 的粒子垂直进入磁感应强度是B 的匀强磁场后,运动轨迹半径是r ,则它的速度 ,周期 。
qBr m;m r B q 2222 三、判断题1.在静电场中,场强为零处电势一定为零。
( )2.电场强度沿环路的线积分一定为零。
( )3.只有均匀的带电球面或球体,高斯定律才适用。
( )4.如果高斯面无电荷,则面上各处场强都为零。
( )5.电场强度的方向与正的检验电荷在该点所受的电场力方向相同。
( )6.与环路不铰链的电流对安培环路上的磁感应强度无影响。
( )7.洛仑兹力总与速度方向垂直,所以带电粒子运动的轨迹必定是圆。
( )8.静电场力做功与路径无关,而洛仑兹力方向与运动电荷速度方向也无关。
( )9.两条平行直导线有同向电流时相互排斥,通有反向电流时相互吸引。
( )10.磁感线在空间一定不会相交。
( )1.√ 2.× 3.× 4.× 5.√6.√ 7.× 8.√ 9.√ 10.√1.有电荷一定有电场。
( )2.在静电场中,场强为零处电势一定为零。
( )3.应用高斯定理求得的场强仅是由面电荷激发的。
( ) A B C+σ -σ4.如果高斯面无电荷,则面上各处场强都为零。
()5.电场线密集的地方电场强度一定大。
()6.同一条电场线上的任意两点的电势都不会相等。
()7.洛仑兹力也可以对电荷做功。
()8.变化的磁场也可以产生电场。
()9.在无电荷的地方,任意两条电场线永远不会相交。
()10.磁场中,任意闭合曲面的磁通量都等于零。
()1.√ 2.× 3.× 4.× 5.√6.√ 7.× 8.√ 9.√ 10.√。