矩阵的乘法汇总
矩阵的几种乘法

矩阵的几种乘法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中非常重要的概念,而矩阵的乘法是其中一个重要的操作。
在实际应用中,矩阵的乘法有多种不同的形式,每种形式都有相应的规则和特点。
在本文中,我们将讨论一些常见的矩阵乘法,包括普通矩阵乘法、Hadamard乘积、克罗内克积等,并对它们的性质和应用进行介绍。
普通矩阵乘法是最常见的一种矩阵乘法。
给定两个矩阵A和B,它们的乘积C的定义如下:设A是一个m×n的矩阵,B是一个n×p的矩阵,那么它们的乘积C是一个m×p的矩阵,其中C的第i行第j列元素是A的第i行的元素与B的第j列的元素的乘积之和。
普通矩阵乘法遵循结合律,但不遵循交换律。
也就是说,对于任意三个矩阵A、B、C,(AB)C=A(BC),但一般情况下,AB≠BA。
普通矩阵乘法可以用于解线性方程组、矩阵求逆、矩阵的特征值等方面。
Hadamard乘积是一种逐元素操作,不会改变矩阵的形状。
它常用于矩阵的逐元素运算,比如矩阵的逐元素求和、逐元素平方等。
Hadamard乘积满足交换律和结合律,即对于任意两个矩阵A、B,有A∘B=B∘A,(A∘B)∘C=A∘(B∘C)。
克罗内克积常用于矩阵的融合、扩展等操作,可以将两个不同大小的矩阵整合在一起,得到一个新的更大的矩阵。
克罗内克积满足结合律,但不满足交换律,即对于任意三个矩阵A、B、C,(A⊗B)⊗C≠A⊗(B⊗C),但一般情况下,A⊗B≠B⊗A。
除了以上提到的三种常见矩阵乘法,还有其他一些特殊的矩阵乘法,比如深度学习中常用的Batch矩阵乘法、图像处理中的卷积运算等。
每种矩阵乘法都有其独特的性质和应用场景,熟练掌握各种矩阵乘法是理解线性代数和计算机科学的重要基础。
矩阵的乘法是线性代数中的重要概念,不同的矩阵乘法具有不同的性质和应用。
通过学习不同种类的矩阵乘法,我们可以更好地理解和应用线性代数知识,为实际问题的求解提供更多的方法和思路。
‘矩阵乘法

矩阵乘法矩阵乘法是一种基本的线性代数运算,它涉及到两个矩阵的乘积。
矩阵乘法在数学、工程学、计算机科学等领域都有广泛的应用。
本文将介绍矩阵乘法的定义、性质和计算方法,并通过实例说明矩阵乘法的应用。
一、矩阵乘法的定义设有两个矩阵A和B,其中A是一个m×n的矩阵,B是一个n×p的矩阵。
我们可以将A和B的乘积定义为一个m×p的矩阵C,即C=A×B。
矩阵乘法的具体操作是:对于C中的每一个元素c_ij(i表示行号,j表示列号),将A中的第i行与B中的第j列进行对应元素的乘法运算,并求得所有乘积的和,作为c_ij的值。
即:c_ij=\sum_{k=1}^{n} a_{ik} b_{kj}其中,a_{ik}表示A中第i行第k列的元素,b_{kj}表示B中第j行第k列的元素。
二、矩阵乘法的性质矩阵乘法具有以下性质:1.结合律:对于任意三个矩阵A、B和C,有(A×B)×C=A×(B×C)。
2.分配律:对于任意两个矩阵A和B,有A×(B+C)=A×B+A×C。
3.零矩阵的性质:对于任意一个矩阵A,有A×0=0。
4.单位矩阵的性质:对于任意一个矩阵A,有A×I=A(其中I为单位矩阵)。
5.反矩阵的性质:对于任意一个可逆矩阵A,有(A^{-1})×A=I。
三、矩阵乘法的计算方法在实际计算中,矩阵乘法可以通过计算机程序或数学软件来实现。
常用的计算方法有两种:逐位相乘相加法和缓存优化法。
1.逐位相乘相加法逐位相乘相加法是一种基本的矩阵乘法计算方法,其思路是将两个对应元素相乘并求和。
具体步骤如下:(1)将两个矩阵A和B的对应元素相乘,得到一个临时矩阵C。
(2)对于C中的每一个元素c_ij,将对应位置的临时值相加,得到c_ij的值。
(3)重复以上步骤,直到计算完所有元素。
这种方法的优点是思路简单易懂,但缺点是计算效率较低。
矩阵的计算方法总结

矩阵的计算方法总结矩阵是线性代数中的重要概念,广泛应用于各个科学领域。
矩阵的计算方法主要包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。
本文将对这些计算方法进行详细的总结。
首先,矩阵的基本运算包括矩阵的加法和减法。
矩阵的加法和减法都是对应位置上的元素进行相加或相减的操作。
具体而言,对于两个相同大小的矩阵A和B,矩阵的加法计算公式为C = A + B,其中C的第i行第j列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。
矩阵的减法同样遵循相同的规则。
接下来,矩阵的乘法是比较复杂的计算方法。
矩阵的乘法不遵循交换律,即AB不一定等于BA。
矩阵的乘法计算公式为C= AB,其中A是m×n矩阵,B是n×p矩阵,C是m×p矩阵。
具体来说,在矩阵乘法中,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素进行内积运算得到的结果。
在进行矩阵乘法计算时,需要注意两个矩阵的维度是否满足相乘的条件。
若A的列数不等于B的行数,则无法进行矩阵乘法运算。
矩阵的逆是指对于一个n阶方阵A,通过运算求解另一个方阵B,使得AB = BA = I,其中I为单位矩阵。
矩阵的逆是在求解线性方程组和矩阵方程时经常使用的工具。
具体来说,对于一个n阶非奇异矩阵A,如果存在一个矩阵B,使得AB = BA = I,那么矩阵B就是矩阵A的逆矩阵,记作A^-1。
逆矩阵的计算可以使用高斯-约旦消元法、伴随矩阵法等多种方法,其中伴随矩阵法是逆矩阵计算的一种常用方法。
此外,还有一些特殊矩阵的计算方法。
例如,对称矩阵是指矩阵的转置等于它本身的矩阵。
对称矩阵的特殊性质使得其在计算中有着很多便利,例如,对称矩阵一定可以对角化,即可以通过相似变换变为对角矩阵。
对角矩阵是指非对角线上的元素都为0的矩阵,对角线上的元素可以相同也可以不同。
对角矩阵的计算相对简单,只需要对角线上的元素进行相应的运算即可。
综上所述,矩阵的计算方法包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。
矩阵的乘法运算

C
0 1
0 3
求 AC、BC
解:
AC
3 2
10 1 1
0 3
1 1
3 3
BC
5 9
10 1 1
0 3
1 1
3 3
此处
8
方程组的矩阵表示:
a11
a21 a31
a12 a22 a32
a13 a23 a33
x1 x2 x3
a11 x1 a21 x1 a31 x1
a12 x2 a22 x2 a32 x2
小结:
1. 只有当第一个矩阵的列数等于第二个矩阵的行 数时,两个矩阵才能相乘.
2. 矩阵相乘不满足交换律,即一般来说
AB BA.
3. 矩阵相乘不满足消去律,即一般来说
由 AB AC 且A 0,不能推出B C.
14
并把此乘积记作 C AB .
例如:
2
注意: 要使C=AB有意义,则A的列数必须等于B的行 数,且矩阵C的第i行第j列元素正好是A的第i行与B的 第j列对应元素乘积之和。
例如
不存在.
3
注意:
1. 乘积矩阵的第i行第j列元素等于左矩阵的第i行元 素与右矩阵的第j列对应元素乘积之和. 2. 只有当左矩阵的列数等于右矩阵的行数时,矩阵的 乘积才有意义. 3. 两个矩阵的乘积仍然是一个矩阵,且乘积矩阵的 行数等于左矩阵的行数,乘积矩阵的列数等于右矩 阵的列数.
,
b1
b
b2 b3
则方程组(1)可表示为 Ax b.
9
又如:
对方程组
a11x1 a12 x2 a13 x3 b1 a21x1 a22 x2 a23 x3 b2
(2)
记
矩阵乘法运算公式

矩阵乘法运算公式矩阵乘法是线性代数中的一个重要概念,它在数学、物理、计算机科学等众多领域都有着广泛的应用。
咱先来说说矩阵乘法的运算规则。
简单来讲,就是第一个矩阵的行元素与第二个矩阵的列元素对应相乘再相加。
比如说,有一个 2 行 3列的矩阵 A 和一个 3 行 2 列的矩阵 B,那它们相乘得到的矩阵 C 就是一个 2 行 2 列的矩阵。
咱举个具体的例子哈。
比如说矩阵 A 是[1 2 3; 4 5 6],矩阵 B 是[7 8;9 10; 11 12],那矩阵 C 的第一个元素 C11 就是 A 的第一行和 B 的第一列对应元素相乘再相加,也就是 1×7 + 2×9 + 3×11 = 58 。
我还记得之前给学生们讲矩阵乘法的时候,有个特别有趣的事儿。
当时有个学生,特别较真儿,一直纠结为啥要这么乘,不能按自己想的来。
我就给他打了个比方,我说这矩阵乘法就好比是工厂里的生产线。
矩阵 A 里的元素就是原材料,矩阵 B 里的元素就是加工步骤,经过特定的规则(也就是矩阵乘法的运算规则),最后生产出来的产品就是矩阵 C 。
这孩子一听,眼睛一下子就亮了,好像突然就明白了。
再来说说矩阵乘法的一些性质。
比如说,矩阵乘法一般不满足交换律,也就是说 A×B 不一定等于 B×A 。
但它满足结合律和分配律。
矩阵乘法在实际生活中的应用那可太多啦!像图像处理中,对图像进行旋转、缩放等操作,就会用到矩阵乘法。
还有在机器学习里,预测模型的计算也离不开它。
咱继续深入讲讲矩阵乘法的应用。
比如说在密码学中,通过复杂的矩阵乘法运算来加密和解密信息,增加信息的安全性。
还有在经济学中,分析多个变量之间的关系时,也会用到矩阵乘法。
我之前去参加一个学术研讨会,就听到有专家分享了一个关于矩阵乘法在交通流量预测中的应用案例。
他们通过收集大量的道路数据,构建出相关的矩阵,然后利用矩阵乘法运算来预测不同时间段、不同路段的交通流量,为交通规划和管理提供了有力的支持。
矩阵的几种乘法

矩阵的几种乘法全文共四篇示例,供读者参考第一篇示例:矩阵的乘法是线性代数中的一个重要概念,是将两个矩阵相乘的操作。
在矩阵乘法中,有几种不同的乘法方式,包括普通矩阵乘法、点积乘法和克罗内克积乘法。
本文将逐一介绍这几种乘法的概念、原理和应用。
普通矩阵乘法是最常见的矩阵乘法操作,它是将两个矩阵按照行列相乘的规则计算得到的新矩阵。
一个矩阵A的行数和列数分别为m 和n,另一个矩阵B的行数和列数分别为n和p,那么可以将两个矩阵相乘得到一个m行p列的新矩阵C。
具体计算方式为,C的第i行第j 列元素等于矩阵A的第i行和矩阵B的第j列对应元素相乘后求和得到的结果。
对于一个2行3列的矩阵A和一个3行2列的矩阵B相乘,得到一个2行2列的新矩阵C。
普通矩阵乘法的应用广泛,特别是在工程、物理、经济和计算机科学等领域中被广泛应用。
点积乘法是矩阵乘法的一种特殊形式,也称为内积乘法或标量乘法。
在点积乘法中,两个矩阵之间的乘法操作是将矩阵的对应元素相乘后再求和得到一个标量。
实际上,点积乘法相当于将两个矩阵逐元素相乘后再进行矩阵求和操作。
点积乘法要求两个矩阵的维度相同,即行数和列数相等,得到的结果是一个标量而不是新的矩阵。
点积乘法在计算机图形学、神经网络和信号处理等领域中有着广泛的应用。
矩阵的乘法有几种不同的形式,包括普通矩阵乘法、点积乘法和克罗内克积乘法。
每种乘法方式在不同领域有着不同的应用,可以帮助我们更好地理解和计算矩阵的运算。
熟练掌握这几种矩阵乘法方式,有助于提高我们在线性代数和相关领域的学习和工作效率。
希望通过本文的介绍,读者对矩阵的几种乘法有了更深入的了解和认识。
第二篇示例:矩阵是线性代数中一个非常重要的概念,它在各个领域的数学和物理问题中都有着广泛的应用。
矩阵的乘法是矩阵运算中的一个基础操作,它有多种不同的形式,下面我们将介绍几种常见的矩阵乘法。
1. 矩阵的普通乘法矩阵的普通乘法是最基本的一种矩阵乘法,它可以用于将两个矩阵相乘。
矩阵的乘法运算汇总
11
注意 矩阵不满足交换律,即:
AB BA
如:
设
A
1 1
1 1
,
B 1 1 1 1
则 AB 0 0, BA 2 2 ,
0 0
2 2
故 AB BA.
由于矩阵不可交换,所以矩阵乘法分为左乘和右乘.
12
此例不仅表明矩阵的乘法不满足交换律, 而且还表明矩阵的乘法不满足消去律,即
并把此乘积记作 C AB .
例如:
2
注意: 要使C=AB有意义,则A的列数必须等于B的行 数,且矩阵C的第i行第j列元素正好是A的第i行与B的 第j列对应元素乘积之和。
例如
不存在.
3
注意:
1. 乘积矩阵的第i行第j列元素等于左矩阵的第i行元 素与右矩阵的第j列对应元素乘积之和. 2. 只有当左矩阵的列数等于右矩阵的行数时,矩阵的 乘积才有意义. 3. 两个矩阵的乘积仍然是一个矩阵,且乘积矩阵的 行数等于左矩阵的行数,乘积矩阵的列数等于右矩 阵的列数.
1)若AB O, 且A O, 不能推出B O;
2)若A( X Y ) O, 且A O, 不能推出X Y.
但也有例外,比如设
A 2 0, 0 2
B 1 1, 1 1
则有 AB 2 2, 2 2
BA 2222 AB BA.
若AB=BA则称矩阵A、B乘积可交换.
13
a13 x3 a23 x3 a33 x3
a11x1 a12 x2 a13 x3 b1
对方程组 a21x1 a22 x2 a23 x3 b2
(1)
a31x1 a32 x2 a33 x3 b3
记
a11
A
矩阵的运算乘法
矩阵的运算乘法矩阵是线性代数中的一个重要概念,用于表示一组数(或复数)的排列形式。
在矩阵的运算中,乘法是其中的一种重要运算。
矩阵乘法并不是简单的数乘,而是需要满足一定的规则才能进行运算。
矩阵乘法的规则如下:若$A_{m times n}$和$B_{n times p}$是两个矩阵,那么它们的乘积$C_{m times p}$定义为:$$C_{i,j}=sum_{k=1}^n A_{i,k}B_{k,j} quad (1 le i le m, 1 le j le p)$$其中,$A_{i,k}$表示矩阵$A$中第$i$行第$k$列的元素,$B_{k,j}$表示矩阵$B$中第$k$行第$j$列的元素,$C_{i,j}$表示矩阵$C$中第$i$行第$j$列的元素。
需要注意的是,两个矩阵相乘的条件是左矩阵的列数等于右矩阵的行数。
例如,一个$2 times 3$的矩阵和一个$3 times 4$的矩阵可以相乘,结果是一个$2 times 4$的矩阵。
矩阵乘法的运算法则可以用一个例子来说明。
考虑两个矩阵$A$和$B$,它们的形式分别如下:$$A=begin{pmatrix} 1 & 2 & 3 4 & 5 & 6 end{pmatrix}$$ $$B=begin{pmatrix} 7 & 8 9 & 10 11 & 12 end{pmatrix}$$ 按照矩阵乘法的规则,我们可以计算它们的乘积$C=AB$:$$C=begin{pmatrix} 1 cdot 7 + 2 cdot 9 + 3 cdot 11 & 1 cdot 8 + 2 cdot 10 + 3 cdot 12 4 cdot 7 + 5 cdot 9 + 6 cdot 11 & 4 cdot 8 + 5 cdot 10 + 6 cdot 12 end{pmatrix}$$经过计算,我们可以得到矩阵$C$的形式:$$C=begin{pmatrix} 58 & 64 139 & 154 end{pmatrix}$$ 矩阵乘法在计算机图形学、信号处理、量子力学等领域有广泛的应用。
矩阵的加减乘除运算法则
矩阵的加减乘除运算法则矩阵是数学中重要的一种数学工具,在各种领域中广泛应用,矩阵是用数的方阵表示的,并且还有着加减乘除等运算法则。
本文将详细介绍矩阵的加减乘除运算法则。
一、矩阵加减法矩阵加减法的定义:假设矩阵A和矩阵B都是同一维度的矩阵,令矩阵C等于A加上B,矩阵C中的第i行第j列的元素等于A中第i行第j列的元素加上B中第i行第j列的元素,即:C(i,j) = A(i,j) + B(i,j)相应地,如果要使用矩阵B从矩阵A中减去,我们将B的所有元素取反并将它与矩阵A相加。
矩阵加减法的性质:1.加法的交换律和结合律:对于任何两个同维度的矩阵A和B,我们有以下性质:A +B = B + A (交换律)(A + B) + C = A + (B + C) (结合律)2.加法的单位元:对于任何矩阵A,我们有:A + 0 = A其中0是一个全0矩阵,即元素全部为0。
3.加法的逆元:每个矩阵都存在一个负数矩阵-B,使得A + B = 0,其中0是一个全0矩阵。
二、矩阵乘法矩阵乘法的定义:对于两个矩阵A和B,如果A的列数等于B的行数,则将它们相乘,得到一个新矩阵C,C的行数等于A的行数,列数等于B的列数。
对于C中的每个元素,都是A的相应行和B的相应列中元素的乘积之和。
下面是矩阵乘法的公式:C(i,j) = A(i,1) * B(1,j) + A(i,2) * B(2,j) + ... + A(i,n) * B(n,j)其中,n是矩阵A的列数,也是矩阵B的行数。
矩阵乘法的性质:1.乘法的结合律:如果矩阵A,B和C的维度满足AB和BC都有定义,则有:(A * B) * C = A * (B * C)2.分配律:对于任意矩阵A,B和C,以及任意标量c,我们有:(A + B) * C = A * C + B * CA * (B + C) = A * B + A * Cc * (A * B) = (c * A) * B = A * (c * B)3.不满足交换律:一般情况下,矩阵乘法不满足交换律,即AB不等于BA,因为乘法顺序导致的行列不匹配。
矩阵知识点完整归纳
矩阵知识点完整归纳矩阵是现代数学中的一种重要数学工具,广泛应用于各个学科领域。
在线性代数中,矩阵是最基本的对象之一,研究的对象是矩阵的性质和运算规律。
本文将对矩阵的知识点进行完整归纳。
一、矩阵的定义与表示方法矩阵是m行n列的数表,由m×n个数组成。
它可以用方括号“[ ]”表示,其中的元素可以是实数、复数或其他数域中的元素。
矩阵的第i行第j列的元素记作a_ij。
二、矩阵的运算1.矩阵的加法:对应元素相加。
2.矩阵的减法:对应元素相减。
3.矩阵与标量的乘法:矩阵的每个元素都乘以该标量。
4.矩阵的乘法:第一个矩阵的行乘以第二个矩阵的列,求和得到结果矩阵的对应元素。
5.矩阵的转置:将矩阵的行与列互换得到的新矩阵。
6.矩阵的逆:如果一个n阶方阵A存在逆矩阵A^-1,则称A为可逆矩阵。
三、特殊矩阵1.零矩阵:所有元素均为0的矩阵。
2.单位矩阵:对角线上的元素均为1,其余元素均为0的矩阵。
3.对称矩阵:转置后与原矩阵相等的矩阵。
4.上三角矩阵:主对角线以下的元素均为0的矩阵。
5.下三角矩阵:主对角线以上的元素均为0的矩阵。
6.对角矩阵:只有主对角线上有非零元素,其余元素均为0的矩阵。
7.可逆矩阵:存在逆矩阵的方阵。
8.奇异矩阵:不可逆的方阵。
四、矩阵的性质和定理1.矩阵的迹:矩阵主对角线上元素之和。
2.矩阵的转置积:(AB)^T=B^TA^T。
3.矩阵的乘法满足结合律但不满足交换律:AB≠BA。
4.矩阵的乘法满足分配律:A(B+C)=AB+AC。
5.矩阵的行列式:用于判断矩阵是否可逆,计算方式为按行展开法或按列展开法。
6.矩阵的秩:矩阵的列向量或行向量的极大无关组中的向量个数。
7.矩阵的特征值与特征向量:Ax=λx,其中λ为特征值,x为特征向量。
8.矩阵的迹与特征值之间的关系:矩阵的迹等于特征值之和。
五、应用领域1.线性方程组的求解:通过矩阵运算可以求解线性方程组。
2.三角形面积计算:通过矩阵的行列式可以求解三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1
B
A
2
2
1
4
2
=
=
21 (1) 2 4 (2)
=
8
1 2 22
(2) 2
1 (1) 2 (1) (2) (1)
1 4 24
(2) 42 1 4 来自=42
8
4 2 8
课堂总结:
一、矩阵乘法的定义 二、矩阵乘法的三要素 三、矩阵乘法的计算方法
课后作业:
学习指导用书:
P42 习题 21-2 A组 一、填空题 3、4
B A 1
1
1
2
2×2+(-2)×1 2×4+(-2)×2
=
(-1)×2+1×1 (-1)×4+1×2
2 4 1 2
思矩考阵:乘由法此不例满题足同交学换们律可,以即发A现·B什≠么B·呢A?
课堂练习:
1
习题:设A 2
1
4,B
2
,
求A B与B
A
解题过程:
2
1
A B 2
1
4
2
cm1 cmj
cmn
例题讲解:
2 例1.设矩阵A 4
3
1 0 ,B 5
9 7
108,求A B
解:
2 A B 4
3
1
0 5
9 7
8
10
2×9+(-1)×(-7) 2×(-8)+(-1)×10
= (-4)×9+0×(-7) (-4)×(-8)+0×10
3×9+5×(-7)
《数学》第三册 苏州大学出版社
§8.6 矩阵的乘法
同学们,首先我们一起来探讨一个生活中的问题:
某地区甲、乙、丙三家商场同时销售α、β、γ三种品牌的 液晶电视机,它们的日均销量(单位:台)可以用下列矩阵来表示:
α
β
γ
20 A 24
21
20 16 19
18 甲 27 乙 22 丙
而这三种品牌的电视机的单价和利润(单位:千元) ,可以用 下列矩阵来表示:
二、选择题 4、6 三、简答题 3、5
谢谢! 再见!
(3)乘积元素:
=ci前j 矩阵的第i行元素与后矩阵的第j列对应元素
的乘积之和
思考:矩阵乘法如何进行运算呢?
运算方法: (1)判断相乘矩阵是否满足可乘原则 (前列数 后行数) (2)推断出相乘矩阵的乘积阶数 (前行数 后列数) (3)计算出积矩阵中的每一个乘积元素:
= c前ij矩阵的第i行元素与后矩阵的第j列对应
元素的乘积之和
a11
ai1
am1
a12 ai2 am2
a1s ais ams
b11
b21
bs1
b1 j b2 j
bsj
b1n
b2n
bsn
c11
aci11bj1 j
ai 2b2cj 1n
aisbsj
ci1
cij
cin
a11b11 a12b21 a13b31
总收入
C11
C a21b11 a22b12 a23b13
C C3 21 1
24×12 + 16×14 + 27×16
单价
1 2 B 1 4
1 6
利润
1.2 α 1.3 β 1.5 γ
20×1.2 + 20×1.3 + 18×1.5
总利润 a11b12 a12b22 a13b32
C12
甲
C C3 22 2a31b12
乙 丙a32b22
a33b32
21×1.2 + 19×1.3 + 22×1.5
规律:矩阵C中的元素 是c矩ij 阵A的第i行元素与矩阵B
的第j列对应元素的乘积之和。
矩阵乘法有下列三要素:
(1)可乘原则: 前列数 = 后行数
(2)乘积阶数: 前行数 × 后列数
单价
12 B 14
16
利润
1.2 α 1.3 β 1.5 γ
问题:这三家商场销售这三种品牌液晶电视机的日总收入 和总利润分别是多少?
α βγ
20 20 18 甲 A 24 16 27 乙
21 19 22 丙
单价
1 2 B 1 4
1 6
利润
1.2 α 1.3 β 1.5 γ
20×1如2+果20×把14总+18收×1入6 和总利润可以2用0×下1.2列+20矩×1阵.3+表18×示1.5:
义
其乘积为矩阵: C (cij )m n
矩阵A与B的乘积记作 C = A·B 思考:
一、矩阵相乘必须满足什么条件? 二、矩阵相乘后的矩阵阶数如何判断? 三、乘积矩阵中的元素如何计算?
α βγ
20 20 18 甲 A 24 16 27 乙
21 19 22 丙
20×12 + 20×14 + 18×16
3×(-8)+5×10
25 26
= 36
32
8 26
例题讲解:
例2.设矩阵A
2 1
24,B
2 1
12,求A B和B A
解:
2 4 2 2
A B 1 2 1
1
2×2+4×(-1) 2×(-2)+4×1
=
1×2+2×(-1) 1×(-2)+2×1
0 0 0 0
= =
2 2 2 4
总收入
总利润
C11
C C C3 21 1
24×12+16×14+27×16
C12
C22 C32
甲 乙 丙
808 944
870
77 90.1 82.9
21×1.2+19×1.3+22×1.5
定义:如果矩阵A = (ai,j )m矩s阵B =
,(即bij矩) sn
阵A的列数等于矩阵B的行数,则矩阵A与B可以相乘,并定