机电一体化
机电一体化概论

2.计算机与信息处理技术
• 信息处理技术包括信息的交换、存取、运算、 判断和决策,实现信息处理的工具是计算机, 因此计算机技术与信息处理技术是密切相关 的。计算机技术包括计算机的软件技术和硬 件技术,网络与通信技术,数据技术等。 • 在机电一体化系统中,计算机信息处理部 分指挥整个系统的运行。信息处理是否正确、 及时,直接影响到系统工作的质量和效率。 因此计算机应用及信息处理技术已成为促进 机电一体化技术发展和变革的最活跃的因素。 • 人工智能技术、专家系统技术、神经网络 技术等都属于计算机信息处理技术。
5.传感与检测技术
• 传感与检测装置是系统的感受器官,它与信息系统的输 入端相联并将检测到的信息输送到信息处理部分。传感 与检测是实现自动控制、自动调节的关键环节,它的功 能越强,系统的自动化程度就越高。传感与检测的关键 元件是传感器。传感器是将被测量(包括各种物理量、 化学量和生物量等)变换成系统可识别的,与被测量有 确定对应关系的有用电信号的一种装置。 • 现代工程技术要求传感器能快速、精确地获取信息, 并能经受各种严酷环境的考验。与计算机技术相比,传 感器的发展显得缓慢,难以满足技术发展的要求。不少 机电一体化装置不能达到满意的效果或无法实现设计的 关键原因在于没有合适的传感器。因此大力开展传感器 的研究对于机电一体化技术的发展具有十分重要的意义。
1.机电一体化的高性能化
• 高性能化一般包含高速化、高精度、高效率和 高可靠性。新一代CNC系统就是以此”四高” 为满足生产急需而诞生的。它采用32位多CPU 结构,以多总线连接,以32位幅度进行高速数 据传递。因而,在相当高的分辨率(0.1μm)情况 下,系统仍有高速度(100m/min),可控及联 动坐标达16轴,并且有丰富的图形功能和自动 程序设计功能。为获取高效率,减少各辅助时 间这是一方面,而实现高速化的关键是CNC、 主轴转速进给率、刀具交换,托板交换等各关 键部分实现高速化。
机电一体化概述

单元一机电一体化概述1. 1. 1机电一体化的定义“机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
”“机电一体化”是将机械技术、微电子技术、信息技术等多门技术学科在系统工程的基础上相互渗透、有机结合而形成和发展起来的一门新的边缘技术学科。
1. 1. 3机电一体化的内容机电一体化包含了技术和产品两方面的内容,首先是指机电一体化技术,其次是指机电一体化产品。
1. 1. 4机电一体化的特点机电一体化产品的显著特点是多功能、高效率、高智能、高可靠性,同时又具有轻、薄、细、小、巧的优点,其目的是不断满足人们生产生活的多样性和省时、省力、方便的需求。
1. 2机电一体化系统的基本组成1. 2. 1机电一体化系统的功能组成传统的机械产品主要是解决物质流和能量流的问题,而机电一体化产品除了解决物质流和能量流以外,还要解决信息流的问题。
机电一体化系统的主要功能就是对输入的物质、能量与信息(即所谓工业三大要素)按照要求进行处理,输出具有所需特性的物质、能量与信息。
机电一体化系统的主功能包括变换(加工、处理)、传递(移动、输送)、储存(保持、积蓄、记录)三个目的功能。
主功能也称为执行功能,是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
机电一体化系统还应具备动力功能、检测功能、控制功能、构造功能等其他功能。
加工机是以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位置和形态的物质的系统(或产品)。
动力机,其中输出机械能的为原动机,是以能量转换为主,输入能量(或物质)和信息,输出不同能量(或物质)的系统(或产品)。
信息机是以信息处理为主,输入信息和能量,主要输出某种信息(如数据、图像、文字、声音等)的系统(或产品)。
1. 2. 2机电一体化系统的构成要素机电一体化系统一般由机械本体、传感检测、执行机构、控制及信息处理、动力系统等五部分组成,各部分之间通过接口相联系。
机电一体化概论

机电一体化概论第一章机电一体化概述2•机电一体化的发展趋势:智能化,模块化,网络化,微型化,绿色化,系统化.3•机电一体化的基本含义:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进徽电子技术,并将机核装置与电子设备以及相关软件有机结合而构成的系统总称。
5•机电一体化的相关技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
6.机电一体化系统的基本要素及其功能:8•机电一体化一词最早于1971年出现在日本。
它是取机械学的前半部和电子学的后半部拼合而成,但是,机电一体化并非机械技术和电子技术的简单叠加,而是有着自身体系的新型学科。
第二章机电一体化的相关技术L机电一体化系统中的机械系统:传动部分、导向机构、执行机构、轴系、机座或机架。
2.机电一体化中机械系统的基本要求:高精度、小惯量、大刚度、快速响应性、良好的稳定性。
9•传感器的定义:传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。
13•常见的接近开关及其应用:电涡式接近开关(金属)、电容式接近开关(导体和非导体)、霍尔接近开关(磁性物件)、光电开关:透射型,反射型(统计产量,检测包装,精确定位等)。
16.在控制系统中根据系统信号相对于时间的连续性,通常分为连续时间系统和离散时间系统(连续系统和离散系统)。
18•计算机控制系统的类型及计算机担当的角色:操作指导控制系统(助手)、宜接数字控制系统(DDC,决策者,操作者)、监督计算机控制系统(SCC, 操作指导系统与DDC系统的综合与发展,决策人)、分级控制系统、集散控制系统(DCS)、工厂自动化(FA)系统。
25•接口的分类(1)根据接口的变换和调整功能特征:零接口、被动接口、主动接口、智能接口。
(2)根据接口的输入\输出功能的性质:信息接口、机械接口、物理接口、环境接口。
(3)按照所联系的子系统不同:人机接口、机电接口。
机电一体化

机电一体化:是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成的系统总称。
是机械技术及信息技术相互交叉、融合的产物。
精密机械技术、微电子技术、信息技术有机结合新形势。
机电一体化的目的:是使系统高附价值化,即多功能化、高效率化、高可靠化、省材料省能源化、并使产品的结构向轻、薄、短、小巧化方向发展、不断满足人们生活的多样化需求和生产的省力化、自动化需求。
解决产品(系统)采用微电子技术所面临的共性关键技术:检测传感技术、信息处理技术、伺服驱动技术、自动控制技术、精密机械技术、系统总体技术系统必须具有的目的功能:变换(加工、处理)功能;传递(移动、输送)功能;储存(保持、积蓄、记录)功能机电一体化系统的五大要素(即相应功能):动力源(提供动力;内脏);控制器(控制;头脑);机构(构造;骨骼);检测传感器(计测;感官);执行元件(驱动;肌肉)接口:是各要素或各子系统相接处必须具备一定的联系条件接口变换、调整功能分为:零接口、无源接口、有源接口、智能接口接口输入/出功能分为:机械接口、物理接口、信息接口、环境接口工业三大要素:能量、物质、信息(省能、省资源、智能化)系统内部功能评价参数:1主功能:系统误差、抗干扰能力、废弃物输出、变换效率。
2动力功能:输入能量、能源。
3控制功能:控制输出/入口个数、手动操作。
4构造功能:尺寸重量、强度。
5计测功能:精度机电一体化系统的设计流程:1根据目的功能确定产品规格、性能指标;2系统功能部件、功能要素的划分;3接口的设计;4综合评价;5可靠性复查;6试调与调试运动参数:用来表征机器工作运动的轨迹、行程、方向和起、止点位置正确性的指标动力参数:用来表征机器输出动力大小的指标。
力、力矩、功率。
品质指标:用来表征运动参数和动力参数品质的指标。
机电一体化系统设计考虑方法:机电互补法;结合(融合)法;组合法机电一体化系统的设计类型:开发型设计;适应性设计;变异性设计设计程序分为:总体设计、部件的选择与设计、技术设计与工艺设计总体设计:明确设计思想;分析综合要求;划分功能模块;决定性功能参数;调研类似产品;你定总体方案;方案对比定性;编写总体设计论证书设计准则要考虑:人、机、材料、成本等。
机电一体化

1.1机电一体化的基本含义 1.1机电一体化的基本含义
日本机械振兴协会经济研究所于1981 日本机械振兴协会经济研究所于1981 年提出具有通用性定义: 年提出具有通用性定义: • 即“机电一体化是在机械主功能、动力功 机电一体化是在机械主功能、 能、信息功能和控制功能上引进微电子技 术,并将机械装置与电子装置用相关软件 有机结合而构成系统的总称”. 有机结合而构成系统的总称” • 它体现了机电一体化产品及其技术的基本 内容和特征,所以具有指导性的定义。 内容和特征,所以具有指导性的定义。 •
• 3)传感与检测系统:将机电一体化产品在运行过 传感与检测系统: 程中所需的自身和外界环境的各种参数及状态转 换成可以测定的物理量, 换成可以测定的物理量,同时利用检测系统的功 能对这些物理量进行测定, 能对这些物理量进行测定,为机电一体化产品提 供运行控制所需的各种信息。 供运行控制所需的各种信息。传感与检测系统的 功能一般有传感器或仪表来实现, 功能一般有传感器或仪表来实现,对其要求是体 积小、便与安装与连接、检测精度高、抗干扰等。 积小、便与安装与连接、检测精度高、抗干扰指的是机电一体化向微型机器和微观领域发 展的趋势。国外将其称为微电子机械系统( 展的趋势。国外将其称为微电子机械系统(micro ,MEMS), electro mechanical system ,MEMS),或微机电 一体化系统,泛指几何尺寸不超过1 一体化系统,泛指几何尺寸不超过1 机电产 并向微米、纳米即发展。 品,并向微米、纳米即发展。
• 4)信息处理及控制系统:根据机电一体化产品的 信息处理及控制系统: 功能和性能要求, 功能和性能要求,信息处理及控制系统接受传感 与检测系统反馈的信息,并对其进行相应的处理、 与检测系统反馈的信息,并对其进行相应的处理、 运算和决策, 运算和决策,以对产品的运行施以按照要求的控 实现控制功能。机电一体化产品中, 制,实现控制功能。机电一体化产品中,信息处 理及控制系统主要是由计算机的软件和硬件以及 相应的接口所组成。要求信息处理速度高, 相应的接口所组成。要求信息处理速度高,A/D D/A转换及分时处理时的输入 输出可靠, 转换及分时处理时的输入/ 和 D/A转换及分时处理时的输入/输出可靠,系统 的抗干扰能力强
机电一体化基础知识

按输出信 号性质分
模拟型
电阻型:电位器、电阻应变片等 电压、电流型:热电偶、光电电池、压电元件等
数字型
记数型:二值+计数器 代码型:编码器、磁尺等
传感与检测技术发展现状:
➢ 目前检测与传感技术的发展落后于机电一体化其它相关技术 的发展,使得不少机电一体化产品不能达到满意的效果或无 法实现设计。
传感器发展方向:
➢ 传感与检测技术研究对象是传感器及其信号检测装置,将各种被测参 数转换为标准的电信号输入到信息处理系统中。
➢ 传感器是实现检测的核心,传感器一般由敏感元件、转换元件、基本 转换电路三部分组成。
被测量 敏感பைடு நூலகம்件
转换元件
基本转换电路
电量
➢ 敏感元件直接感受被测量,并以确定关系输出某一物理量。 ➢ 转换元件将敏感元件输出的非电物理量转换成电路参数量。 ➢ 基本转换电路将电路参数量转换成便于测量的电信号。
➢ 自动控制技术范围很广,包括自动控制理论、控制系统设 计、系统仿真、现场调试、可靠运行等从理论到实践的整 个过程。
➢ 以传递函数为基础,研究单输入、单输出线性自动控制系 统分析与设计问题的古典控制技术发展较早,已趋成熟。
➢ 现代控制技术主要以状态空间法为基础,研究多输入、多 输出、非线性、高精度、高效能控制系统的分析和设计。
➢ 采用低摩擦阻力的传动部件和导向支撑部件。
➢ 缩短传动链,提高传动与支撑刚度。
➢ 选用最佳传动比,以达到提高系统分辨率, 并尽可能提高 加速能力。
➢ 缩小反向死区误差,采取消除传动间隙、减少支撑变形 的措施。
➢ 改进支撑及架体的结构设计以提高刚性,减小振动,降 低噪声。
➢ 适应精密化、高速化、小型化及轻量化的发展趋势 。
机电一体化

机电一体化系统的功能构成: 机电一体化系统的功能构成:
School of Mechanical Engineering & Automation
机电一体化技术的主要特征: 机电一体化技术的主要特征: ①整体结构最优化:在传统机械产品中,为了增加功能,或实现某一种控制 整体结构最优化:在传统机械产品中,为了增加功能, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统,可以 从机械、电子、硬件、软件四个方面去实现同一种功能。 从机械、电子、硬件、软件四个方面去实现同一种功能。 ②系统控制智能化:这是机电一体化技术与传统的工业自动化技术最主要的 系统控制智能化: 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 按照规定的工艺顺序频繁重复的工作状况。 按照规定的工艺顺序频繁重复的工作状况。 ③操作性能柔性化:计算机软件技术的引入,能使机电一体化系统的各个传 操作性能柔性化:计算机软件技术的引入, 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。在生产 动作通过预先给定的程序 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构, 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构,只要调整 由一系列指令组成的软件,就可以达到预期的目的。 由一系列指令组成的软件,就可以达到预期的目的。
School of Mechanical Engineering & Automation
机电一体化的相关技术: 机电一体化的相关技术: ①机械技术:机械技术是机电一体化的基础。 机械技术:机械技术是机电一体化的基础。 ②计算机与信息处理技术:计算机应用及信息处理技术是促进机电一体化技 计算机与信息处理技术: 术和系统发展的最活跃的因素。 术和系统发展的最活跃的因素。 ③检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节,它 检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节, 的功能越强,系统的自动化程度就越高。 的功能越强,系统的自动化程度就越高。 ④自动控制技术:自动控制技术与计算机控制技术相联系,是机电一体化中 自动控制技术:自动控制技术与计算机控制技术相联系, 十分重要的关键技术。 十分重要的关键技术。 ⑤伺服驱动技术:伺服驱动技术是直接执行操作的技术,伺服系统是实现电 伺服驱动技术:伺服驱动技术是直接执行操作的技术, 信号到机械动作的转换装置与部件。它对系统的动态性能、 信号到机械动作的转换装置与部件。它对系统的动态性能、控制质量和功能 具有决定性的影响。 具有决定性的影响。
机电一体化

机电一体化1、机电一体化的概念:机电一体化是以机械、电子技术和计算机科学为主的多门学科相互渗透、相互结合的过程逐渐形成和发展得一门新兴边缘技术学科。
机电一体化又称机械电子学它是由机械学的前半部分与电子学的后半部分组成的。
2、变量施肥的过程:获取土壤的信息,通过农业专家决策,指定变量施肥处方图并将变量数据输入到施肥变量播种机控制系统中实现变量施肥。
不同变量施肥系统包括:步进电机驱动、电控无级变速器驱动、电控液压马达驱动。
3、伺服系统的组成:输出各部分的作用:(1)控制器:控制器的功能是根据输入信号和反馈信号比较的结果,决定控制方式。
常用的控制有PID 控制和最优控制等。
控制器一般都是电子线路或计算机组成等。
(2)功率放大器:控制器输出的信号通常都很微弱,需经功率放大器放大后,才能驱动执行机构动作。
功率放大器主要由电子器件组成。
(3)执行机构:执行机构直接与被控对象打交道,最后执行控制器的指令,完成某种特定的动作。
执行机构要准确,迅速,精准,可靠地实现对被控对象的调整和控制。
执行机构主要由各种执行元件和机械传动装置等组成。
(4)检测装置:为了提高工作精度和抗干扰能力,伺服系统一般采用闭环控制。
检测装置是系统反馈环节,通过检测装置的测量,将执行机构的输出信号反馈到伺服系统输入端,实现反馈控制。
反馈信号一般为位置反馈信号、速度反馈信号和电流反馈信号,要经过多种传感元件进行检测。
用来检测位置信号的装置有自整角机、旋转变压器、光电编码器等;用来检测速度信号的装置有测速发电机、旋转变压器、光电编码器等;用来检测电流信号的装置有取样电阻霍尔集成电路传感器等,可检测的装置要求是精度高、线性度好、可靠性高、响应快。
4、采样定理:为了保证在采样过程中不丢失原来信号中所包含的信息,采样频率必须按照香侬采样原理来确定,即要求; f≥fmax(L被来原信号f(t)的最高有效频率)在实际应用中,fn≥(5-10)fmax5、采样/保持电路的作用由于采样信号f※(t)在函数轴上仍是连续变化的模拟量,因此还需要A/D转换器将其转换成数字量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向信号 (a) 脉冲+方向(b) 正脉冲+负脉冲实验五 步进电机单轴定位控制实验一、实验目的1.学习和掌握步进电机及其驱动器的操作和使用方法 2.学习和掌握步进电机单轴定位控制方法 3.学习和掌握PLC 单轴定位模块的基本使用方法 二、实验原理步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。
每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。
运动速度正比于脉冲频率,角位移正比于脉冲个数。
步进电动机典型控制系统框图如图5.1所示。
图5.1 步进电动机典型控制系统框图位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。
由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。
输出脉冲形式通过参数设定来选择。
其脉冲形式如图5.2所示。
图5.2 定位模块的两种输出脉冲形式频 率 (HZ )脉冲数(PLS )f 1S 2S 3S 1由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。
步进电机升、降频过程如图5.3。
图 5.3 步进电机升、降频示意图其中:f 1——设定的运行频率,应小于步进电动机的最高频率;S 1——设定的总脉冲个数;S 2——升频过程中脉冲个数,由加速时间和运行频率确定; S 3——降频过程中脉冲个数,由减速时间和运行频率确定。
一般情况下,S 2=S 3。
步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。
驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。
另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。
步进电动机驱动生产机械的运动部件。
位置定位模块、步进电动机及驱动器种类很多,本实验中采用的是三菱FX2N 系列PLC 中的双轴定位模块FX2N-20GM ,该模块与PLC 相连,可以单独或同时控制两个步进电动机,步进电动机和驱动器为和利时产品。
实验系统结构框图如图5.4所示。
图5.4 实验系统结构框图工作原理:PLC及20GM实现对步进电动机系统的通电控制和定位控制,步进电动机通过丝杆带动工作台做直线运动。
步进电动机转动一步机械实际移动的位移量称为脉冲当量,脉冲当量是数控系统中很重要的参数。
实验系统中,步进电动机与丝杆直接连接,因此,脉冲当量的计算公式为:脉冲当量=丝杆螺距/{3600 /(步距角×细分系数)}在实验系统中,丝杆的螺距为5mm,步进电动机的步距角为1.80,细分系数为所设定的数据。
正限位和负限位开关的安装位置由丝杆的导程确定,保证丝杆不被损坏,即当这两个开关的位置确定后,定位模块保证工作台的运动只能在这两个行程开关之间进行。
原位开关用来确定机械坐标原点的位置。
位置控制模块回原点操作,就是使机械原点和电气原点统一。
三、实验步骤(一) 系统通电和准备1.在断电的情况下,按图5.5接线(虚线框外的连线已接好);2.征得老师同意后,合上电源开关;3.利用PC机上的编程软件“FXGP/WIN-C”向PLC输入PLC控制程序(此时,PLC 处于中止运行状态);4.利用PC机上的定位软件“FXVPS-E”向20GM输入定位程序(此时,20GM的状态开关拔向手动位置“MANU”);5.将PLC设置为运行状态,运行PLC,Y20输出1,KA1得电,接触器KM2的主触头闭合,驱动器SH-20403得电;6.将20GM的状态开关拔向自动位置“AUTO”,运行20GM;7.按“复位”按钮,X轴原位,此时的位置为坐标原点,记下该位置A。
(二)基本定位1.设定步进电动机细分系数为8(实验中已按该系数进行了脉冲当量的计算和设定);2.设定相对于A点的目标位置(单位为mm,正值在A点的右边,负值在A点的左边)和运动速度(单位为cm/min),把它们用参数设定的方法分别输入到位置量寄存器D2(实验程序定义)和速度寄存器D4(实验程序定义)中,具体设定方法:主菜单→监控/测试→改变当前值→设定D2、D4的值;3.按“启动”按钮,X轴以设定的速度运动到指定的位置B,观测运动速度,运动结束后,测量A到B之间的距离,与设定位置比较;4.重新设定目标位置和运动速度,重复3;5.复位,设定目标位置为D2=0,工作台在A点不动。
(三)细分1.使细分系数不为8;2.设定位置值和运动速度;3.按“启动”按钮,X轴以设定的速度运动到指定的位置B,观测运动速度,运动结束后,测量A到B之间的距离,与设定位置比较;4.复位,设定目标位置为0,工作台在A点不动。
5.实验结束后,断开电源。
图5.5 实验系统接线图四、注意事项1.A点一定通过回原点得到;2.系统中坐标为相对坐标,因此运动前后的位置值要不同,工作台才有移动;3.回原位后,测量一下A点到左边行程开关之间的距离(负向位置最大值)和A点到右边行程开关的距离(正向位置最大值);4.位置值设定为正时要小于正向位置最大值,位置值设定为负时要小于负向位置最大值。
五、实验用仪器工具PC机1台PLC 1台20GM 1个RS232电缆线1根编程电缆1根断路器(QF1、QF2)2个继电器(KA2)1个接触器(KM2)1个驱动器(SH-20403)1台步进电机(56BYG250E)1台六、实验前的准备1.预习实验指导书,并画出PLC控制程序和20GM定位程序。
2.计算不同细分系数对应的脉冲当量。
七、实验报告要求1.画出PLC梯形图,并写出指令代码;2.写出定位程序;3.计算并分析实验结果和实验现象;4.完成思考题。
八、思考题1.影响步进电机单轴定位精度的主要因素是什么?2.什么叫前极限、后极限、机械原点、电气原点?3.如果设定速度和位置值不变,问当细分系数变大或变小,但脉冲当量没有做相应调整时,运动速度和运动位置会怎样变化?为什么?4.系统中采用的是相对坐标还是绝对坐标?实验六交流伺服电机单轴定位控制实验一、实验目的1.学习和掌握交流伺服系统的使用方法;2.学习和掌握交流伺服电机单轴定位控制程序的设计方法。
二、实验原理伺服电动机也称为执行电机,在控制系统中用作执行元件,将电信号转换为轴上的转角和速度,以带动控制对象。
伺服电动机分交流和直流两种,本实验中采用是交流伺服。
交流伺服电动机典型控制系统框图如图6.1所示。
图6.1 伺服电动机典型控制系统框图伺服驱动器是专用来对伺服电动机进行控制的电气系统,通过改变输入信号达到改变电动机的速度和转角的控制。
目前伺服驱动器的输入有两种形式:一是模拟量控制式,这种方式的驱动器,通过改变输入电压的大小控制转速或转角;二是数字控制式,这种方式驱动器与步进电动机控制相同,通过脉冲信号实现转角、速度和方向的控制。
由图6.1可知:系统为一个半闭环系统,位置控制单元给出位置理论值,伺服驱动器将理论值和从电动机轴上测得的实际值进行比较,控制电动机运动。
位置定位模块、伺服电动机即驱动器种类很多,本实验中采用的是三菱FX2N系列PLC 的高速输出功能实现脉冲输出和方向控制,伺服电动机和驱动器为松下。
实验系统结构框图如图6.2所示。
图6.2 实验系统示意图工作原理:PLC高速输出端输出脉冲和方向信号,实现对伺服电动机系统的通电控制和定位控制,伺服电动机通过丝杆带动工作台做直线运动。
伺服电动机转动一步机械实际移动的位移量称为脉冲当量,脉冲当量是数控系统中很重要的参数。
伺服系统的脉冲当量的计算公式如下:脉冲当量=丝杆螺距/伺服电动机每转所需脉冲数在实验系统中,丝杆的螺距为5mm,伺服电动机每转所需脉冲数为10000(pls/r)。
正限位和负限位开关的安装位置由丝杆的导程确定,保证丝杆不被损坏,即当这两个开关信号接入到交流伺服控制器的相应的输入端或送到位置控制器时,就可保证工作台的运动只能在这两个行程开关之间进行。
原位开关用来确定机械坐标原点的位置。
位置控制模块回原点操作,就是使机械原点和电气原点统一。
实验电路原理图如图6.3所示。
图6.3 实验电路原理图脉冲频率 (HZ )总脉冲数 (PLS )Y0或Y1X10工作原理:合上QF1和QF3,PLC 通电、交流伺服系统接通控制电压,PLC 使输出Y21为1,KA2得电,触头使KM3线圈得电,主触头闭合,伺服系统强电接通,然后PLC 使Y4为1,给交流伺服使能,此时,交流伺服完全准备好,可以执行定位控制。
定位脉冲信号由PLC 的Y1发出,方向由Y3控制。
三菱FX2N 系列PLC 只有两个高速输出端Y1和Y0,使用专用脉冲输出指令“DPLSY ”发送脉冲信号,其指令形式为 :前、后限位开关直接接入交流伺服驱动器的专用输入端,进行限位保护。
三、实验步骤1.在断电情况下,按图6.4接线(虚线框外的连线已接好); 2.征得老师同意后,合上电源开关; 3.将面板上“工作方式”旋钮旋至“点动”; 4.输入PLC 程序,然后运行;5.按“启动”按钮,接触器KM3的主触头闭合,伺服电机得电,延时2秒输出Y4 ,使伺服电机准备好;6.将“工作方式”选择开关旋至“手动”位置,按“正向”或“反向”按钮,将Y 轴进行手动调整 ;7.将面板上“工作方式”选择开关旋至“自动”,读取此时指针指向的标尺位置A ; 8.依次给数据寄存器D0输入表6.1中的数据,按住“正向”或“反向”按钮,直到Y 轴移动到位置B 自动停止(正向时运动使工作台远离电动机),测量位置A 到位置B 的距离并记录在表中。
表6.1 实验数据与记录黑色图6.4 实验系统接线图四、实验说明及注意事项1.直流5V、24V电压的极性不能接反,否则要损坏行程开关和交流伺服驱动器;2.前、后极限开关和原位开关有正负极性,一定要将黑色接线柱一端接电源负,而另一端接交流伺服信号端和PLC的输入端。
五、实验用仪器工具PC 机1台PLC 1台RS232电缆线1根断路器(QF1、QF3)2个接触器(KM3)1个继电器(KA2)1个伺服电机(MSMA042A1G)1台驱动器(MSMA043A1A)1台六、实验前的准备预习实验指导书及相关教材。
七、实验报告要求1.画出PLC梯形图,并写出指令代码;2.计算并分析实验结果,根据上述参数计算出脉冲当量理论值,根据实验数据计算出脉冲当量的实际值,如有误差,分析误差的原因。
八、思考题1.试简述Y轴回原位的动作顺序;2.影响交流伺服电机定位精度的主要因素是什么?3.如果要Y轴移动60mm,输入脉冲数是多少?4.图6.1所示的交流伺服驱动单轴位置控制系统属于下列的那一种:开环位置控制系统、闭环位置控制系统、半闭环位置控制系统?- 11 -。