rsa算法对字符串的加密解密
RSA算法加密流程

RSA算法加密流程1.密钥生成:1.随机选择两个不相等的质数p和q,并计算它们的乘积n=p*q。
2.计算φ(n)=(p-1)*(q-1),φ(n)被称为欧拉函数。
3.随机选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
4.计算e关于φ(n)的模反元素d,即满足(e*d)%φ(n)=15.公钥为(n,e),私钥为(n,d),其中(n,e)对外公开,(n,d)保密保存。
2.加密过程:1.将明文消息转换为对应的整数M,满足0≤M<n。
2.使用公钥(n,e)对明文进行加密,计算密文C=(M^e)%n。
3.解密过程:1.使用私钥(n,d)对密文进行解密,计算明文消息M=(C^d)%n。
下面对RSA算法的加密流程进行详细解释:1.密钥生成:在此步骤中,需要生成一对公钥和私钥。
公钥(n,e)由生成的两个质数p和q的乘积n以及另一个整数e组成。
私钥(n,d)由n和e的一些衍生数学属性得到。
首先,在这一步中,随机选择两个不相等的质数p和q。
质数的选择尽量要大,并且保密。
然后计算乘积n=p*q,这将成为模数。
接着计算欧拉函数φ(n)=(p-1)*(q-1),它表示小于n且与n互质的整数的个数。
接下来,随机选择一个整数e,满足条件1<e<φ(n)且e与φ(n)互质。
互质的意思是e和φ(n)之间没有公因数。
然后,计算e关于φ(n)的模反元素d,即满足(e*d)%φ(n)=1、在这里,可以使用扩展欧几里得算法来计算d。
最后,公钥为(n,e),私钥为(n,d),其中(n,e)对外公开,(n,d)需要保密保存。
2.加密过程:在这一步中,使用公钥(n,e)对明文消息进行加密。
首先,将明文消息转换为对应的整数M,满足条件0≤M<n。
然后,计算密文C=(M^e)%n。
这里使用了模幂运算来保持计算效率。
3.解密过程:在这一步中,使用私钥(n,d)对密文进行解密。
首先,计算明文消息M=(C^d)%n。
RSA加密算法加密与解密过程解析

RSA加密算法加密与解密过程解析1.加密算法概述加密算法根据内容是否可以还原分为可逆加密和非可逆加密。
可逆加密根据其加密解密是否使用的同一个密钥而可以分为对称加密和非对称加密。
所谓对称加密即是指在加密和解密时使用的是同一个密钥:举个简单的例子,对一个字符串C做简单的加密处理,对于每个字符都和A做异或,形成密文S。
解密的时候再用密文S和密钥A做异或,还原为原来的字符串C。
这种加密方式有一个很大的缺点就是不安全,因为一旦加密用的密钥泄露了之后,就可以用这个密钥破解其他所有的密文。
非对称加密在加密和解密过程中使用不同的密钥,即公钥和私钥。
公钥用于加密,所有人都可见,私钥用于解密,只有解密者持有。
就算在一次加密过程中原文和密文发生泄漏,破解者在知道原文、密文和公钥的情况下无法推理出私钥,很大程度上保证了数据的安全性。
此处,我们介绍一种非常具有代表性的非对称加密算法,RSA加密算法。
RSA算法是1977年发明的,全称是RSA Public Key System,这个Public Key 就是指的公共密钥。
2.密钥的计算获取过程密钥的计算过程为:首先选择两个质数p和q,令n=p*q。
令k=ϕ(n)=(p−1)(q−1),原理见4的分析选择任意整数d,保证其与k互质取整数e,使得[de]k=[1]k。
也就是说de=kt+1,t为某一整数。
3.RSA加密算法的使用过程同样以一个字符串来进行举例,例如要对字符串the art of programming 进行加密,RSA算法会提供两个公钥e和n,其值为两个正整数,解密方持有一个私钥d,然后开始加密解密过程过程。
1. 首先根据一定的规整将字符串转换为正整数z,例如对应为0到36,转化后形成了一个整数序列。
2. 对于每个字符对应的正整数映射值z,计算其加密值M=(N^e)%n. 其中N^e表示N的e次方。
3. 解密方收到密文后开始解密,计算解密后的值为(M^d)%n,可在此得到正整数z。
Python中如何使用RSA算法进行加密和解密

Python中如何使用RSA算法进行加密和解密RSA算法是一种非对称加密算法,它是由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出。
它被广泛用于网络通信、数字签名、身份验证等领域。
Python语言可以很方便地使用RSA算法进行加密和解密,本文将详细介绍如何在Python中使用RSA算法。
一、RSA算法原理RSA算法的核心原理是利用欧拉定理和模运算,实现非对称加密。
具体过程如下:1.选择两个质数p和q,计算N=p*q,并求出其欧拉函数φ(N)=(p-1)*(q-1)。
2.选择一个整数e,使得1<e<φ(N),且e和φ(N)互质。
3.计算e关于φ(N)的模反元素d,即d*e=1 mod φ(N)。
4.公钥为(p, q, e),私钥为(p, q, d)。
5.加密时,将明文m用公钥加密成密文c:c=m^e mod N。
6.解密时,将密文c用私钥解密成明文m:m=c^d mod N。
二、Python中使用RSA算法Python中使用RSA算法,需要使用pycryptodome库。
安装方法如下:pip install pycryptodome使用方法如下:1.生成密钥对使用RSA模块中的generate函数生成RSA密钥对。
如下:from Crypto.PublicKey import RSAkey = RSA.generate(2048)其中,2048为密钥长度,可以根据需要设置。
2.获取公钥和私钥生成密钥对之后,可以使用exportKey函数获取公钥和私钥。
如下:public_key = key.publickey().exportKey()private_key = key.exportKey()此时,public_key为公钥,private_key为私钥。
3.加密和解密使用RSA密钥对进行加密和解密时,需要使用RSA模块中的encrypt和decrypt函数。
在C#中使用RSA进行加密和解密

在C#中使⽤RSA进⾏加密和解密这篇⽂章向您展⽰了如何在c#.net Windows窗体应⽤程序中使⽤RSA算法对字符串进⾏加密和解密。
RSA是由Ron Rivest,Adi Shamir和Leonard Adleman开发的⾮对称编码系统(其名称也是这三位作者的缩写)。
它被⼴泛⽤于加密和电⼦签名技术。
它通过使⽤公共密钥与所有⼈共享来⼯作。
RSA操作基于四个主要步骤:密钥⽣成,密钥共享,加密和解密。
本⽂将介绍有关c#rsa⽣成公共和私有密钥的算法,密钥如何在c#中进⾏加密和解密。
拖动⽂本框,标签和按钮从Visual Studio⼯具箱到您的WinForm设计,那么你可以设计⼀个简单的⽤户界⾯,使您可以加密和使⽤C#代码RSA算法解密字符串,如下图所⽰。
在C#中使⽤RSA算法进⾏加密和解密通过本c#密码学教程,我将创建⼀个Encrypt⽅法来使⽤RSA算法加密您的数据。
byte[] Encrypt(byte[] data, RSAParameters RSAKey, bool fOAEP){byte[] encryptedData;using (RSACryptoServiceProvider rSACryptoServiceProvider = new RSACryptoServiceProvider()){rSACryptoServiceProvider.ImportParameters(RSAKey);encryptedData = rSACryptoServiceProvider.Encrypt(data, fOAEP);}return encryptedData;}同样,创建Decrypt⽅法以使⽤RSA算法解密数据。
byte[] Decrypt(byte[] data, RSAParameters RSAKey, bool fOAEP){byte[] decryptedData;using (RSACryptoServiceProvider rSACryptoServiceProvider = new RSACryptoServiceProvider()){rSACryptoServiceProvider.ImportParameters(RSAKey);decryptedData = rSACryptoServiceProvider.Decrypt(data, fOAEP);}return decryptedData;}C#RSA⽤公钥加密接下来,声明 unicodeEncoding, rSACryptoServiceProvider, data 和 cryptoData变量,如下所⽰。
rsa加密解密算法c语言程序

rsa加密解密算法c语言程序RSA加密解密算法是一种公钥加密算法,发明于1977年,基于两个大质数的乘积难分解性,能够对短文本进行加解密。
以下是RSA加密解密算法的C语言程序。
一、密钥生成首先定义了一个结构体存储RSA密钥,该结构体包含三个元素:n、e和d。
- n = p * q,其中p和q为大质数;- e为与(p - 1) * (q - 1)互质的自然数,一般选取65537;- d为e模(p - 1) * (q - 1)的逆元素,即满足e * d ≡ 1 (mod (p - 1) * (q - 1)))的自然数。
generateRSAKey函数通过调用randomPrime函数生成两个大质数p和q,再通过Euclidean函数计算(p - 1) * (q - 1)的值phi,最后继续使用extendedEuclidean函数计算d的值,最终将生成的密钥存储在RSAKey结构体中。
```c#include <stdio.h>#include <stdlib.h>#include <time.h>#include <math.h>#define k 1024 // 密钥长度typedef struct {unsigned long long n;unsigned long long e;unsigned long long d;} RSAKey;unsigned long long randomPrime(unsigned long long n);unsigned long long gcd(unsigned long long a, unsigned long long b);unsigned long long Euclidean(unsigned long long a, unsigned long long b);RSAKey generateRSAKey();// 生成一个小于n的随机质数unsigned long long randomPrime(unsigned long long n) {unsigned long long p;do {p = rand() % n;while (!(p & 1)) // 确保p为奇数p = rand() % n;} while (gcd(p, n) != 1); // 确保p和n互质return p;}二、加密和解密下面定义了两个函数:encrypt和decrypt,其中encrypt函数用于将明文转换为密文,decrypt函数用于将密文转换为明文。
rsa算法加解密代码的编写

rsa算法加解密代码的编写一、引言RSA算法是一种非对称加密算法,广泛应用于数据加密和数字签名等领域。
本文将介绍如何使用Python语言编写RSA算法的加解密代码,包括密钥生成、加密和解密操作。
二、算法原理RSA算法基于大数分解的困难性,通过使用公钥和私钥来实现加密和解密操作。
公钥用于加密数据,私钥用于解密数据。
在加密和解密过程中,使用了模幂运算和异或运算等基本运算。
三、代码实现以下是一个简单的RSA算法加解密代码示例,使用Python语言实现:```pythonimportrandom#生成RSA密钥对defgenerate_keypair(bits):#生成公钥和私钥public_key=e=65537#常用的公钥指数,需要是质数private_key=d=random.randrange(bits)#返回公钥和私钥returnpublic_key,private_key#加密函数defencrypt(data,public_key):#将数据转换为二进制字符串bin_data=str(data).encode('hex')#计算加密结果encrypted=pow(bin_data,public_key,10**n)%10**mreturnencrypted.hex()#解密函数defdecrypt(encrypted_data,private_key):#将加密结果转换为二进制字符串bin_encrypted=encrypted_data.decode('hex')#计算解密结果decrypted=pow(bin_encrypted,d,10**n)%10**mreturnint(decrypted)```代码说明:*`generate_keypair`函数用于生成RSA密钥对,其中`bits`参数指定密钥长度,常见的有1024位和2048位。
*`encrypt`函数用于对数据进行加密,其中`data`是要加密的数据,`public_key`是公钥。
简单的rsa加密解密计算
简单的rsa加密解密计算
RSA加密算法是一种非对称加密算法,它使用一对密钥(公钥
和私钥)来加密和解密数据。
下面我将简单介绍RSA加密和解密的
计算过程。
1. 生成密钥对,首先,选择两个不同的大质数p和q,并计算
它们的乘积n=pq。
然后选择一个整数e,使得e与(p-1)(q-1)互质,并计算出e的模反元素d。
公钥是(n, e),私钥是(n, d)。
2. 加密,假设要加密的消息为M,首先将消息M转换为整数m,满足0≤m<n。
然后使用公钥(n, e)进行加密,加密后的密文C等于
m的e次方再对n取模,即C≡m^e (mod n)。
3. 解密,接收到密文C后,使用私钥(n, d)进行解密,解密后
的明文M等于C的d次方再对n取模,即M≡C^d (mod n)。
下面我举一个简单的例子来说明RSA加密和解密的计算过程:
假设我们选择两个质数p=11和q=3,计算n=pq=33,然后选择
e=3,并计算d=7。
这样我们得到公钥(n, e)=(33, 3)和私钥(n,
d)=(33, 7)。
现在假设要加密的消息为M=5,将其转换为整数m=5。
使用公钥进行加密,计算C≡5^3 (mod 33),得到C=5。
接收到密文C=5后,使用私钥进行解密,计算M≡5^7 (mod 33),得到M=5。
因此,我们成功地将消息M=5加密为密文C=5,然后再解密回到原始消息M=5。
这就是RSA加密和解密的简单计算过程。
密码基础知识(2)以RSA为例说明加密、解密、签名、验签
密码基础知识(2)以RSA为例说明加密、解密、签名、验签⼀、RSA加密简介 RSA加密是⼀种⾮对称加密。
是由⼀对密钥来进⾏加解密的过程,分别称为公钥和私钥。
具体查看⼆,公钥加密算法和签名算法我们从公钥加密算法和签名算法的定义出发,⽤⽐较规范的语⾔来描述这⼀算法,以RSA为例。
2.1,RSA公钥加密体制RSA公钥加密体质包含如下3个算法:KeyGen(密钥⽣成算法),Encrypt(加密算法)以及Decrypt(解密算法)。
1)密钥⽣成算法以安全常数作为输⼊,输出⼀个公钥PK,和⼀个私钥SK。
安全常数⽤于确定这个加密算法的安全性有多⾼,⼀般以加密算法使⽤的质数p的⼤⼩有关。
越⼤,质数p⼀般越⼤,保证体制有更⾼的安全性。
在RSA中,密钥⽣成算法如下:算法⾸先随机产⽣两个不同⼤质数p和q,计算N=pq。
随后,算法计算欧拉函数接下来,算法随机选择⼀个⼩于的整数e,并计算e关于的模反元素d。
最后,公钥为PK=(N, e),私钥为SK=(N, d)。
2)加密算法以公钥PK和待加密的消息M作为输⼊,输出密⽂CT。
在RSA中,加密算法如下:算法直接输出密⽂为3)解密算法以私钥SK和密⽂CT作为输⼊,输出消息M。
在RSA中,解密算法如下:算法直接输出明⽂为。
由于e和d在下互逆,因此我们有: 所以,从算法描述中我们也可以看出:公钥⽤于对数据进⾏加密,私钥⽤于对数据进⾏解密。
当然了,这个也可以很直观的理解:公钥就是公开的密钥,其公开了⼤家才能⽤它来加密数据。
私钥是私有的密钥,谁有这个密钥才能够解密密⽂。
否则⼤家都能看到私钥,就都能解密,那不就乱套了。
2.2,RSA签名体制签名体制同样包含3个算法:KeyGen(密钥⽣成算法),Sign(签名算法),Verify(验证算法)。
1)密钥⽣成算法同样以安全常数作为输⼊,输出⼀个公钥PK和⼀个私钥SK。
在RSA签名中,密钥⽣成算法与加密算法完全相同。
2)签名算法以私钥SK和待签名的消息M作为输⼊,输出签名。
RSA加密解密算法
RSA加密解密算法RSA(Rivest–Shamir–Adleman)加密算法是一种非对称加密算法,也是目前最常用的公钥加密算法之一、它是由Ron Rivest、Adi Shamir 和Leonard Adleman于1977年共同开发的,取名来自他们三个人的姓氏的首字母。
RSA算法的安全性建立在两个大素数难因分解的理论上,即若一个非常大的整数,其因数分解为两个素数的乘积,那么要分解这个大整数就很困难。
该算法的基本原理是选取两个大素数p和q,并计算得到N=p*q,将N作为公钥的一部分。
公开N和一个加密指数e,而私钥则包含了p、q 和一个解密指数d。
加密时,消息经过加密指数e进行加密得到密文,解密时利用解密指数d对密文进行解密。
只有知道私钥的人才能解密得到原始消息。
具体的加密过程如下:1.选择两个不同的大素数p和q。
2.计算N=p*q。
3.计算φ(N)=(p-1)*(q-1),φ(N)即N的欧拉函数值。
4.选择一个与φ(N)互质的加密指数e,其中1<e<φ(N)。
5.计算解密指数d,使得(e*d)%φ(N)=16.公钥为(e,N),私钥为(d,N)。
7.将明文m转化为整数m,确保m小于N。
8.加密密文c=m^e%N。
9.解密明文m=c^d%N。
RSA算法的安全性取决于分解大整数的难度,目前没有快速的算法能够在合理的时间内分解大整数。
因此,只要选择足够大的素数p和q,RSA算法就足够安全。
RSA算法在实际应用中起到了重要的作用。
它广泛应用于数字签名、密钥交换、加密通信等领域。
它通过使用不同的指数对数据进行加密和解密,实现了安全的通信。
同时,RSA算法也具有可逆性,在现实世界中起到了非常重要的作用。
总结来说,RSA加密算法是一种非对称加密算法,它的安全性基于大整数的因数分解难度。
它广泛应用于各个领域,通过使用公钥和私钥对数据进行加密和解密,实现了安全的通信。
尽管它的运算速度较慢,但是在很多场景下,RSA算法仍然是最安全和最实用的加密算法之一。
常见的加密解密算法
常见的加密解密算法⽹络中传输敏感信息的时候通常会对字符串做加密解密处理1.Base64位加密(可加密解密)最简单的加密⽅式,没有密钥,这种⽅式只要让别⼈拿到你的密⽂,就可以直接解密,只能⽤来迷惑,⼀般情况下不单独使⽤,因为真的并没有什么卵⽤~可以和其他加密⽅式混合起来,作为⼀层外部包装。
import base64data = "abc"#加密m = Base64.encodestring(data)print m #得到⼀个base64的值#解密date = Base64.decodestring(m)2.MD5加密(加密不可逆)MD5的全称是Message-Digest Algorithm 5(信息-摘要算法)。
128位长度。
⽬前MD5是⼀种不可逆算法。
具有很⾼的安全性。
它对应任何字符串都可以加密成⼀段唯⼀的固定长度的代码。
(⼩贴⼠:为啥MD5加密算法不可逆呢~ 按道理来说有加密⽅式,就会有解密⽅式呀?因为MD5加密是有种有损的加密⽅式,⽐如⼀段数据为'123',我在加密的时候,遇到1和3都直接当做是a,加密后变成了'a2a',所以解密的时候就出现了4种组合'323''121''123''321',数据⼀多,⾃然找不到原始的数据了,当然这种⽅式加密的密⽂也不需要解密,需要的时候直接发送原始密⽂就好了~只是看不到密⽂原本的内容)import hashlibimport base64data1 = "abc"data2 = 'def'hash = hashlib.md5()#多个⽂件多次加密hash.update(data1)hash.update(data2)value = hash.digest()print repr(value) #得到⼀个⼆进制的字符串print hash.hexdigest() #得到⼀个⼗六进制的字符串print base64.encodestring(value) #得到base64的值3.sha1加密(加密不可逆)SHA1的全称是Secure Hash Algorithm(安全哈希算法) 。