中考数学因式分解复习
中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
中考数学专题复习:初中常用因式分解公式

初中常用因式分解公式一.因式分解观点:把一个多项式化成几个整式的积的形式,这类变形叫做把这个多项式因式分解。
二.因式分解方法:1、提公因法假如一个多项式的各项都含有同样因式,那么就能够把这个相同因式提出来,进而将多项式化成两个因式乘积的形式。
例 1、分解因式 x2 -2x解: x2-2x =x(x -2)2、应用公式法因为分解因式与整式乘法有着互逆的关系,假如把乘法公式反过来,那么就能够用来把某些多项式分解因式。
例 2、分解因式 a2 +4ab+4b解: a2()()完整平方公式+4ab+4b = a+2b a+2b最常用的公式:(1)(a+b)(a-b) = a2 -b2 ---------a2-b2=(a+b)(a -b) ;(2) (a ±b)2 = a 2±2ab+b2——— a 2±2ab+b2=(a ±b) 2;(3) (a+b)(a2-ab+b2) =a 3+b3------ a3+b3=(a+b)(a 2-ab+b2 ) ;(4) (a -b)(a 2+ab+b2) = a3-b3 ------a3 -b3=(a -b)(a 2+ab+b2) .(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b3+c3-3abc=(a+b+c)(a 2 +b2+c2 -ab-bc-ca) ;3、分组分解法要把多项式 am+an+bm+bn 分解因式,能够先把它前两项分红一组,并提出公因式a,把它后两项分红一组,并提出公因式b,进而获得a(m+n)+b(m+n),又能够提出公因式 m+n,进而获得 (a+b)(m+n)例 3、分解因式 m +5n-mn-5m解: m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)注意该方法的中心是分组后能提取公因式!4、十字相乘法关于 mx +px+q 形式的多项式,假如 a×b=m,c×d=q 且 ac+bd=p,则多项式可因式分解为 (ax+d)(bx+c)例 4、分解因式 7x2 -19x-6剖析:1-372交差相乘再相加2-21=-19解: 7x2 -19x-6=(7x+2)(x-3)5、配凑法关于那些不可以利用公式法的多项式,有的能够利用将其配成一个我们已经会的分式分解方法,而后就能将其因式分解。
中考数学总复习整式及因式分解

向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个
第二,确定字母或因式(取各项的相同字母);第三,确定字母或因式
的指数(取各相同字母的最低次幂).
(2)运用公式法.
①运用平方差公式:a2-b2=(a+b)(a-b).
②运用完全平方公式:a2±2ab+b2=(a±b)2.
基础自主导学
考点梳理
自主测试
1.单项式-3πxy2z3的系数和次数分别是(
)
A.-π,5 B.-1,6
第2课时 整式及因式分解
基础自主导学
考点梳理
自主测试
考点一 整式的有关概念
1.整式
单项式与多项式统称为整式.
2.单项式
单项式是指由数字或字母的积组成的式子,单独一个数或一个字
母也是单项式;单项式中的数字因数叫做单项式的系数;单项式中
所有字母指数的和叫做单项式的次数.
3.多项式
几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项
人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐,
可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一
好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防,
中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。
中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
专题03 因式分解(课件)2023年中考数学一轮复习(全国通用)

知识点2 :因式分解的方法与步骤
知识点梳理
1. 一般方法: (1)提公因式法: 如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式 与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法. 用字母表示:ma+mb+mc= m(a+b+c) . 公因式的确定:取各项系数的最大公约数,取各项相同的因式及其最低次幂. ①定系数:公因式的系数是多项式各项系数的最大公约数. ②定字母:字母取多项式各项中都含有的相同的字母. ③定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.
典型例题
知识点1 :因式分解的概念
【例2】(2020•河北3/26)对于①x-3xy = x(1-3y),②(x+3)(x-1) = x2+2x-3,从左
到右的变形,表述正确的是( )
A.都是因式分解
B.都是乘法运算
C.①是因式分解,②是乘法运算
D.①是乘法运算,②是因式分解
知识点1 :因式分解的概念
典型例题
知识点2 :因式分解的方法与步骤
几种方法的综合运用
【例14】(2分)(2021•北京10/28)分解因式:5x2﹣5y2=
.
【考点】提公因式法与公式法的综合运用. 【分析】提公因式后再利用平方差公式即可. 【解答】解:原式=5(x2﹣y2)=5(x+y)(x﹣y), 故答案为:5(x+y)(x﹣y). 【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是 正确应用的前提.
【答案】C.
典型例题
知识点2 :因式分解的方法与步骤
利用十字相乘法分解因式
【例10】(2022•内江)分解因式:a4-3a2-4=
.
中考数学专题复习之因式分解综合题训练
中考数学专题复习之因式分解综合题训练1.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC 的形状,并说明理由.2.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金bn元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.3.已知一个各个数位上的数字均不为0的四位正整数M=abcd(a>c),以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s,若s等于M的千位数字与十位数字的平方差,则称这个数M为“平方差数”,将它的百位数字和千位数字组成两位数ba,个位数字和十位数字组成两位数dc,并记T(M)=ba+dc.例如:6237是“平方差数”,因为62﹣32=27,所以6237是“平方差数”;此时T(6237)=26+73=99.又如:5135不是“平方差数”,因为52﹣32=16≠15,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M=abcd是“平方差数”,且T(M)比M的个位数字的9倍大30,求所有满足条件的“平方差数”M.4.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.5.如果一个四位自然数M的各个数位上的数字均不为0,且满足千位数字与十位数字的和为10,百位数字与个位数字的差为1,那么称M为“和差数”.“和差数”M的千位数字的二倍与个位数字的和记为P(M),百位数字与十位数字的和记为F(M),令G(M)=P(M)F(M),当G(M)为整数时,则称M为“整和差数”.例如:∵6342满足6+4=10,3﹣2=1,且P(6342)=14,F(6342)=7,即G(6342)=2为整数,∴6342是“整和差数”.又如∵4261满足4+6=10,2﹣1=1,但P(4261)=9,F(4261)=8,即G(4261)=98不为整数,∴4261不是“整和差数”.(1)判断7736,5352是否是“整和差数”?并说明理由.(2)若M=2000a+1000+100b+10c+d(其中1≤a≤4,2≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“整和差数”,求满足条件的所有M的值.6.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“博雅数”.定义:对于三位自然数N,各位数字都不为0,且它的百位数字的2倍与十位数字和个位数字之和恰好能被7整除,则称这个自然数N为“博雅数”.例如:415是“博雅数”,因为4,1,5都不为0,且4×2+1+5=14,14能被7整除;412不是“博雅数”,因为4×2+1+2=11,11不能被7整除.(1)判断513,427是否是“博雅数”?并说明理由;(2)求出百位数字比十位数字大6的所有“博雅数”的个数,并说明理由.7.如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.8.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.9.(1)阅读材料:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数“,a,b为x的一个平方差分解.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解.①请直接写出一个30以内且是两位数的雪松数,并写出它们的一个平方差分解;②试证明10不是雪松数;(2)若a,b正整数,且ab+a+b=68,求ab的值.10.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:x2+6x+9=;x2﹣4x+4=;4x2﹣20x+25=;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(﹣4)2=4×1×4;(﹣20)2=4×4×25;归纳猜想:若多项式ax2+bx+c(a>0,c>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为;(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论;(4)解决问题:若多项式(n+1)x2﹣(2n+6)x+(n+6)是一个完全平方式,利用你猜想的结论求出n的值.11.第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.阅读材料:,上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:x2+2x﹣3;(2)求多项式x2+6x﹣10的最小值;(3)已知a、b、c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.13.把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.14.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.15.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.16.如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当S(M)T(M)能被5整除时,求出所有满足条件的自然数M.17.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.18.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
中考数学复习之因式分解,基础过关练习题
4. 因式分解● 知识过关1. 因式分解的概念(1)把一个多项式化成几个整式的______的形式,这样的式子变形叫做把这个式项式因式分解,也叫做这个多项式分解因式.(2)因式分解与整式乘法是______变形.● 考点分类考点1 因式分解的概念例1下列式子变形是因式分解的是( )A.6)5(652+-=+-x x x xB.)3)(2(652--=+-x x x xC.65)3)(2(2+-=--x x x xD.)3)(2(652++=+-x x x x考点2 因式分解的基本方法例2 (1)下列因式分解正确的是( )A.)1(33a a a a +-=+-B.)2(2242b a b a -=+-C.22)2(4-=-a aD.22)1(12-=+-a a a考点3 用分组分解法进行因式分解例3 先阅读以下材料,然后解答问题.分解因式mx+nx+my+ny =(mx+nx )+(my+ny )=x (m+n )+y (m+n )=(x+y )(m+n ); 也可以mx+nx+my+ny =(mx+my )+(nx+ny )=m (x+y )+n (x+y )=(m+n )(x+y );以上分解因式的方法称为分组分解法.请用分组分解法分解因式:2233ab b a b a -+-考点4 因式分解的应用例4 若a,b ,c 三个数满足ac bc ab c b a ++=++222,则( )A. a=b=cB. a ,b,c 不全相等C. a ,b,c 互不相等D. 无法确定a,b,c 之间的关系真题演练1.对于任意实数a ,b ,a 3+b 3=(a +b )(a 2﹣ab +b 2)恒成立,则下列关系式正确的是()A .a 3﹣b 3=(a ﹣b )(a 2+ab +b 2)B .a 3﹣b 3=(a +b )(a 2+ab +b 2)C .a 3﹣b 3=(a ﹣b )(a 2﹣ab +b 2)D .a 3﹣b 3=(a +b )(a 2+ab ﹣b 2)2.下面各式从左到右的变形,属于因式分解的是( )A .x 2﹣x ﹣6=(x +2)(x ﹣3)B .x 2﹣1=(x ﹣1)2C .x 2﹣x ﹣1=x (x ﹣1)﹣1D .x (x ﹣1)=x 2﹣x3.已知ab =﹣3,a +b =2,则a 2b +ab 2的值是( )A .﹣6B .6C .﹣1D .14.下列各式中,能用平方差公式分解因式的是( )A .﹣x 2+9y 2B .x 2+9y 2C .x 2﹣2y 2+1D .﹣x 2﹣9y 25.若a ﹣b =6,ab =5,则a 2b ﹣ab 2= .6.如果a +b =4,ab =3,那么a 2b +ab 2= .7.在实数范围内分解因式:x 2﹣4x ﹣3= .8.分解因式:3m 2﹣3mn = .9.分解因式:a 2﹣16b 2= .10.分解因式:(x 2+9)2﹣36x 2= .11.若等式x 2﹣3x +m =(x ﹣1)(x +n )恒成立,则n m = .12.若a ,b ,c 分别为△ABC 三边的长.(1)若满足b (a ﹣b )﹣c (b ﹣a )=0,试判断△ABC 的形状,并说明理由;(2)若满足a 2+2b 2+c 2﹣2b (a +c )=0,试判断△ABC 的形状,并说明理由.课后练习1.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.已知3x2+4x﹣6=0,则多项式6x4+11x3﹣14x2﹣14x+15的值是()A.1B.2C.3D.43.将多项式a3﹣16a进行因式分解的结果是()A.a(a+4)(a﹣4)B.(a﹣4)2C.a(a﹣16)D.(a+4)(a﹣4)4.将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)5.因式分解:4a2﹣b2=.6.因式分解:3x2﹣12y2=.7.在实数范围内分解因式:2x2﹣4=.8.分解因式:ax2﹣5ax+6a=.9.分解因式:3ma2﹣6ma+3m=.10.已知x+y=0.5,xy=﹣2,则代数式x2y+xy2的值为.11.若x﹣y﹣7=0,则代数式x2﹣y2﹣14y的值等于.12.因式分解8m2n﹣2n=.13.已知x﹣y=2,y﹣z=﹣1,求x2+y2+z2﹣xy﹣yz﹣xz的值.冲击A+如图1,在△ABC 中,BD 平分△ABC ,CE 平分△ACB ,BD 与CE 交于点O(1) 如图1,若△A=60°求△BOC 的度数;作OF△AB 于点F ,求证AE+AD=2AF ;如图2,若△A=90°,OD=74OB ,求OCOE 的值.。
中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)
中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。
专题04 因式分解篇(原卷版)-2023年中考数学必考考点总结
知识回顾专题04因式分解2023年中考数学必考考点总结考点一:因式分解1.因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。
2.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。
若多项式首项是负的,则公因式为负。
用各项除以公因式得到另一个式子。
②公式法:平方差公式:()()b a b a b a -+=-22。
完全平方公式:()2222b a b ab a ±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。
对于一个二次三项式c bx ax ++2,若满足21a a a ⋅=,21c c c ⋅=,且b c a c a =+1221,那么二次三项式c bx ax ++2可以分解为:()()22112c x a c x a c bx ax ++=++。
当1=a 时,二次三项式是c bx x ++2,此时只需21c c c ⋅=,且b c c =+21,则c bx x ++2可分解为:()()212c x c x c bx x ++=++。
④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。
(分组分解法一般针对四项及以上的多项式)3.因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。
(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。
四项及以上则考虑分组分解。
(3)检查因式分解是否分解完全。
必须分解到不能分解位置。
再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。
微专题1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x2.(2022•永州)下列因式分解正确的是()A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)3.(2022•湘西州)因式分解:m2+3m=.4.(2022•广州)分解因式:3a2﹣21ab=.5.(2022•常州)分解因式:x2y+xy2=.6.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)7.(2022•菏泽)分解因式:x2﹣9y2=.8.(2022•烟台)把x2﹣4因式分解为.9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2=.11.(2022•衡阳)因式分解:x2+2x+1=.12.(2022•济南)因式分解:a2+4a+4=.13.(2022•宁波)分解因式:x2﹣2x+1=.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)215.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)16.(2022•绵阳)因式分解:3x3﹣12xy2=.17.(2022•丹东)因式分解:2a2+4a+2=.18.(2022•辽宁)分解因式:3x2y﹣3y=.19.(2022•恩施州)因式分解:a3﹣6a2+9a=.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.21.(2022•常德)分解因式:x3﹣9xy2=.22.(2022•怀化)因式分解:x2﹣x4=.23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.1224.(2022•内江)分解因式:a4﹣3a2﹣4=.25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 因式分解
7.1因式分解的基本方法
★ 7.1.1 关于数a 有下面四个命题:
(1)若2
a a ,则a 必为0; (2)若2
a a ,则a 、a +1、a -1中至少有一个为0; (3)若2
a a ,则a =0,或a =1; (4)若2a a ,则3a a 的值必为0.
四个命题中正确的个数为( )
(A )1 (2)2 (3)3 (D )4
★ 7.1.2 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.其原理如下:如对于多项式44x y ,因式分解的结果是22x y x y x y ,若取x =9,y =9,则各个因式的值是0x y ,18x y ,2
2162x y ,于是就可以把“018162”作为一个六位密码.对于多项式
324x xy ,取10x ,10y 时,用上述方法产生的密码是 .
★7.1.3 分解因式:221n n x a b
y b a .
★7.1.4 已知32
10x x ,那么2320071x x x x = .
★ 7.1.5 分解因式:232
322723a a a .
★★ 7.1.6 分解因式:
(1)61264x y ;
(2)322421218n n n x x y x y ;
(3)2244661124864x y x y x y ;
(4)33382718a b c abc ;
(5)3331x xy y ;
(6)333222222x y z x y z .
★7.1.7 分解因式:2233229x y x y x y .
★7.1.8 已知乘法公式:55432234a b a b a a b a b ab b
55432234a b a b a a b a b ab b
利用或者不利用上述公式,分解因式86421x x x x .
★7.1.9 已知二次三项式,22110x ax 可分解成两个整数系数的一次因式的积,那么(
)
(A )a 一定是奇数 (B )a 一定是偶数
(C )a 可为奇数也可为偶数 (D )a 一定是负数
★★7.1.10 有关10个数:3219883198821988,3219893198921989,…,
3219963199621996,3219973199721997.下列的整数中,
能整除上述10个数中的每一个数的最整数是( )
(A )2 (2)3 (3)6 (D )12
★★7.1.11 分解因式:
(1)22
21987x xy y x y ; (2)222
13260x x x x ; (3)2222483482x x x x x x ;
(4)22422485x a b
xy a b y a b .
★★7.1.12 分解因式:2424824acx bcx adx bdx acy bcy ady bdy .
★★7.1.13 分解因式:
(1)422433222x x y y x y xy ;
(2)2210255256a ab b a b ;
(3)3211x y xy x y ;
(4)222a b c
b c a c a b ; (5)2222222221x y z xy yz zx x y z ;
(6)22222222
ab cd a b c d ac bd a b c d.
★7.1.14 若a>b>c,x a b c d,y a c b d,z a d b c,则x、y、z 的大小次序是()
(A)x<z<y(2)y<z<x(3)x<y<z(D)z<y<x
★7.1.15 设2220
x y z分解成一次因式之积.
x y z,试将333
7.1添、拆项法与配方法
★7.2.1 分解因式:32
374
a a.
★7.2.2 分解因式:
(1)51
x x;
(2)81
x x;
★7.2.3 分解因式:2345678910
a a a a a a a a a a.
1234565432
★★7.2.4分解因式:
(1)4322111236x x x x ;
(2)43214599448x x x x .
★7.2.5 分解因式:
(1)2
22x ax b ab ; (2)2
22241x y x y xy ; (3)44x ;
(4)222222444222a b a c b c a b c ;
★★7.2.6 分解因式:222241211y
x y x y
7.3 换元法与待定系数法
★★7.3.1 分解因式:
(1)2122ab a b a b ab ;
(2)22
222214421x y x y xy x y x .
★★7.3.2 分解因式:
(1)166121311
25x x x x ; (2)26121311
x x x x x ; (3)46141311
9x x x x x .
★★7.3.3 分解因式:432262x x x x . ★★7.3.4 分解因式:22282143x xy y x y .
★★7.3.5 分解因式:4
32615x x x x .
★★7.3.6 已知32x bx cx d 的系数均为整数,bd cd 为奇数.求证:此多项式不能分解为两个整系数的多项式之积.
★★7.3.7 求整数a,使多项式101
x a x能写成乘积x b x c的形式,其中b、c 也是整数.
7.4 因式分解的应用
★★7.4.1 设432
4887
y x x x x,其中x为任何实数,则y的取值范围是()(A)一切正实数(B)一切大于或等于7的实数
(A)一切大于或等于4的实数(D)一切大于或等于3的实数
★★7.4.2 若a、b为正整数,且321
a a a a
b ab b b b,则a b .
★★7.4.3 a、b、c是正整数,并且满足等式12004
abc ab ac bc a b c,那么a b c 的最小值是 .
★★7.4.4 我们在一个立方体的每个面上写一个正整数,然后,在每个顶点处再写一个数,该数等于过这个顶点的三个面上的整数的乘积.已知该立方体各个顶点上的数字之和为70,则该立方体各个面上的数字之和是 .
★★7.4.5 计算:
(1)
32
32 1995219951993 199519951996
(2)
22 (19942000)(199439851995 1991199319961997
-+⨯
⨯⨯⨯⨯
)
;
(3)(252)(472)(692)(8112)(199419972 (142)(362)(582)(7102)(199319962⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯+
)
)
7.4.6证明:20062+2004×2005×2007×2008是一个完全平方数。
7.4.7设a,b,c,d是四个整数,且使得m=(ab+cd)2-1
4
(a2+b2-c2-d2) 2是个非0整数,求证:|m|
一定是个合数。