最新结构力学电子教案第三章静定梁与静定刚架ppt课件
合集下载
静定梁与静定刚架李廉锟结构力学图文PPT课件

第27页/共70页
§3-1 单跨静定梁
4. 以单元为对象,对杆端取矩可以求得杆端剪力,在结构图 上利用微分关系作每单元的剪力图,从而得到结构剪力图。 需要指出的是,剪力图可画在杆轴的任意一侧,但必须标注 正负号。
以未知数个数不超过两个为原则,取结点由平衡求单元杆 端轴力,在结构图上利用微分关系作每单元的轴力图,作法 和剪力图一样,从而得到结构轴力图。 5. 综上所述,结构力学作内力图顺序为“先区段叠加作M 图, 再由M 图作FS 图,最后FS作FN图”。需要指出的是,这种作 内力图的顺序对于超静定结构也是适用的。
20 kN
AC
15 kN/m
32 kN m
B
D
E
G
2m 2m
4m
2m 2m
44 kN
36 kN
44 kN
24 kN
+
A
C
H D
E_
B
FS图
36 kN
DE段梁的弯矩最大截面就在剪力为零处,剪力为零的
截面H的位置可由比例求出,其值为 xH =1.6 m 。最大弯
矩 MH 为:
1
MH
44 (4 1.6) 20 (2 1.6) 151.6
A FxA =0
CD Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
4m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
3m
3m
计算梁上任一截面内力的规律如下:
梁上某一截面的2弯0 kN矩F数s1 值上等于该截面左侧(或右侧)所 有外力对该截面形心的力矩的代数和。
梁上某一截面的剪力数值上等于该截面左侧(或右侧)所 有外力在沿截面的切线方向投影的代数和。
§3-1 单跨静定梁
4. 以单元为对象,对杆端取矩可以求得杆端剪力,在结构图 上利用微分关系作每单元的剪力图,从而得到结构剪力图。 需要指出的是,剪力图可画在杆轴的任意一侧,但必须标注 正负号。
以未知数个数不超过两个为原则,取结点由平衡求单元杆 端轴力,在结构图上利用微分关系作每单元的轴力图,作法 和剪力图一样,从而得到结构轴力图。 5. 综上所述,结构力学作内力图顺序为“先区段叠加作M 图, 再由M 图作FS 图,最后FS作FN图”。需要指出的是,这种作 内力图的顺序对于超静定结构也是适用的。
20 kN
AC
15 kN/m
32 kN m
B
D
E
G
2m 2m
4m
2m 2m
44 kN
36 kN
44 kN
24 kN
+
A
C
H D
E_
B
FS图
36 kN
DE段梁的弯矩最大截面就在剪力为零处,剪力为零的
截面H的位置可由比例求出,其值为 xH =1.6 m 。最大弯
矩 MH 为:
1
MH
44 (4 1.6) 20 (2 1.6) 151.6
A FxA =0
CD Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
4m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
3m
3m
计算梁上任一截面内力的规律如下:
梁上某一截面的2弯0 kN矩F数s1 值上等于该截面左侧(或右侧)所 有外力对该截面形心的力矩的代数和。
梁上某一截面的剪力数值上等于该截面左侧(或右侧)所 有外力在沿截面的切线方向投影的代数和。
结构力学 第三章 静定梁和静定平面钢架

2、截面法 若要求某一横截面上的内力,假想用一平面沿杆轴垂直方向将该 截面截开,使结构成两部分;在截开后暴露的截面上用力(内力)代 替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成为外力,因此,
由任一部分的静力平衡条件,均可列出含有截面内力的静力平衡方程。 解该方程即将内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),即:轴力FN 、 剪力FQ和弯矩Μ 。
dFN/dx=-qx
dFQ/dx=-qy dM/dx=Q
d2M/dx2=-qy
增量关系: DFN=-FPx
DFQ=-FPy
DM=m
1)微分关系及几何意义: dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qy (1)在无荷载区段,FQ图为水平直线;
当FQ≠0时,Μ图为斜直线;
右右为正。
FQ=截面一侧所有外力在杆轴垂直方向上投影的代数和。左上为正, 右下为正。
Μ =截面一侧所有外力对截面形心力矩代数和。弯矩的竖标画在杆
件受拉一侧。
例3-1-1 求图(a)所示简支梁在图示荷载下截面的内力。
解:1)支座反力 ∑ΜA=0 FBy×4﹣10×4×2﹣100× (4/5)×2=0 Fby=60kN (↑) ∑ΜB=0 FAy=60kN (↑) ∑Fx= 0 FAx+100×(3/5)=0 FAx=-60kN (← ) 由 ∑Fy= 0 校核,满 足。
(下侧受拉)
区段叠加法求E、D截面弯矩; ΜE=20×42/8+120/2=100kNm ΜD=40×4/4+120/2=100kNm
(下侧受拉) (下侧受拉)
内力应考虑
说明:集中力或集中力偶作用点,注意对有突变的 分两侧截面分别计算。
第三章 静定结构---静定梁

第三章ቤተ መጻሕፍቲ ባይዱ
静定结构的受力分析
§3-1 梁的内力计算的回顾 §3-2 静定多跨梁受力分析 §3-3 静定平面桁架 §3-4 静定平面刚架 §3-5 组合结构 §3-6 三铰拱 §3-7 静定结构总论
1
§3-1 静定结构内力计算基本知识点讲解 静定结构的定义:
从几何组成的观点看,几何不变且无多余约束 的结构称为静定结构。
MB 0
M B左
M B右
(FQB左
FQB右 )
dx 2
0
M B左 M B右 13
小结: 1)在有集中力作用点的左右截面,剪力有突
变。剪力图有台阶,台阶高度等于FP 。 2)M 图上有尖点,尖点的指向与集中力的指向
相同。
14
3. 集中力偶与内力之间的增量关系
m
MB左
MB右
B
x
FQB左
1 2
ql cos
ql cos
0
FQAB
1 2
ql
cos
Fs 0 FNAB ql sin 0 FNAB ql sin
36
2) 求跨中截面MC
FNCB 取图示CB段为隔离体:
MC 0
q
B MC
C
(qlcosθ)/2
FQCB
l/2
MC
1 q( l )2 22
桁架、静定组合结构 几何组成角度:悬臂式、简支式、三铰式、组合式。
内力分析的任务: 计算约束力、内力、作内力图
内力计算的方法: 隔离体的平衡方法、截面法 回顾材料力学
分析内力与荷载之间的关系
总结规律,引出叠加法
一、内力计算基本知识点讲解
静定结构的受力分析
§3-1 梁的内力计算的回顾 §3-2 静定多跨梁受力分析 §3-3 静定平面桁架 §3-4 静定平面刚架 §3-5 组合结构 §3-6 三铰拱 §3-7 静定结构总论
1
§3-1 静定结构内力计算基本知识点讲解 静定结构的定义:
从几何组成的观点看,几何不变且无多余约束 的结构称为静定结构。
MB 0
M B左
M B右
(FQB左
FQB右 )
dx 2
0
M B左 M B右 13
小结: 1)在有集中力作用点的左右截面,剪力有突
变。剪力图有台阶,台阶高度等于FP 。 2)M 图上有尖点,尖点的指向与集中力的指向
相同。
14
3. 集中力偶与内力之间的增量关系
m
MB左
MB右
B
x
FQB左
1 2
ql cos
ql cos
0
FQAB
1 2
ql
cos
Fs 0 FNAB ql sin 0 FNAB ql sin
36
2) 求跨中截面MC
FNCB 取图示CB段为隔离体:
MC 0
q
B MC
C
(qlcosθ)/2
FQCB
l/2
MC
1 q( l )2 22
桁架、静定组合结构 几何组成角度:悬臂式、简支式、三铰式、组合式。
内力分析的任务: 计算约束力、内力、作内力图
内力计算的方法: 隔离体的平衡方法、截面法 回顾材料力学
分析内力与荷载之间的关系
总结规律,引出叠加法
一、内力计算基本知识点讲解
静定梁与静定刚架

(二)绘内力图:
H A
=0
V
A =130KN
X 0 Y 0 M 0
C
NC 0 QC 130 KN M C 130 KN .M
第3章 例题: 试绘制图示外伸梁的内力图。
解:
10KN/m A HA=0 4m C 2m D B E 30KN.m 20KN
(1)计算支座反力
2m
2kN E
2m F
F
2m
G 2kN
2m
(b)
A
4kN/m B
C
G 2kN
G
B
11kN 4
4kN
4
(d)
8 7
(e) 9
4 M(kN.m) 2 2
Q(kN)
2
第3章 例题2: 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
第3章
3.3 静定平面刚架的内力计算 一、刚架的组成 1、刚架的特征 由若干梁和柱用刚结点联结而成的结构。具有刚结点是 刚架的主要特征。 2、刚架的应用 刚架在工程上有广泛的应用。
(1)斜梁的倾角为常数,而曲梁各截面的的倾角是变量。 (2)计算曲梁的倾角时,可先写出曲梁的轴线方程y=f(x),而后对x求一 阶导数,进而确定倾角:
dy tan ; dx
tan1 (tan )
(3)角以由x轴的正方向逆时针转到切线方向时为正,反时针方向为负。
例题:试求图示曲梁C截面的内力值。已知曲梁轴线方程为:
y 4f 4 4 (l x) x 2 (12 1.5) 1.5 1.75m l2 12
4f 4 4 tan yx 1.5 2 (l 2 x) x1.5 2 (12 2 1.5) 1 l 12 2 450 sin con 0.707 2
静定梁和静定平面刚架.pptx

FAx
MA
FAy
第46页/共72页
2) 绘制内力图。 由区段叠加法绘制弯矩图。在CD段,将控制 截面上的弯矩值竖标按比例标出并用虚线连接, 以此虚线为基线,叠加上相应简支梁在均布荷载 作用下的弯矩图。在AC段,以连接控制截面上的 弯矩值竖标的虚线为基线,叠加上相应简支梁在 跨中点受集中荷载作用下的弯矩图。
= 240kNm (上侧受拉)
FAx
MA
FAy
第44页/共72页
MCA = MCD = 240kNm (左侧受拉) MAC= 40kN4m10kN/m4m2m40kN2m
= 320kNm (左侧受拉)
FAx
MA
FAy
第45页/共72页
FSDC =40kN FSCD =40kN10kN/m4m = 80kN FSCA = 0 FSAC =40kN FNDC = FNCD = 0 FNCA = 40kN10kN/m4m= 80kN FNAC = 80kN
FyB qf 2 2l
第33页/共72页
X 0
FxA q f FxB 0 FxA FxB qf
C
2kN B
4 kN/m
D
E
2kN F
2m 2m
A FxA =3kN
2m
G
2m
4m
FyG=30kN
H
K FxK=1kN FyK=2kN
第34页/共72页
ACD为附属部分,其余为基本部分。
1)支座反力 考虑附属部分ACD:
第35页/共72页
b.刚架中各杆的杆端内力 ①内力正负号的规定: FQ、FN与前同,M无正负号。作图时, M画于受拉侧,不标
正负号。 FQ、FN画于任意侧,标注符号。 ②结点处有不同的杆端截面。为了确切地表示内力,在内力符号右下方加两个角标,
结构力学-静定梁与静定钢架

4:斜梁例题
M图
Q图 1、求支座反力:VA=ql/6,HA=0, VB=ql/6 2、作M、Q、N图
N图
对简支斜梁内力计算的总结
1 简支斜梁计算支座反力和内力的方法仍然是隔离体平衡和截面 法。
2 在竖向荷载作用下,简支斜梁的支座反力和相应的平梁的支座 反力是相同的。
3 在竖向均布荷载作用下,简支斜梁的弯矩图和相应平梁的弯矩图 是相同的。
静定空间刚架例题
试求图a所示的空间刚架制作界面A的内力?
解: (1)由已知图做出此刚架的A截面的 内力图如图b所示
B
A VAY VAZ
MAZ Z
NA MAX x
D C
y (b)
D B
C A
(a)
(2) 由空间一般力系的平衡条件可得以下方程求得结果:
∑X=0,NA+4×2=0, NA=-8kN
∑Y=0,VAY-5=0, VAY=5kN
结构力学第三章
静定梁和静定钢架
成员: 刘锦伟 侯智译 于涛 潘琦 杨宏宇
内容概要:(一) 简支斜梁的计算
(二) 静定空间刚架
(1)简支斜梁的计算
1:工程应用实例、斜梁荷载
沿水平方向均布q:活载(人群、雪载)
梁式楼梯、板式楼梯、 屋面斜梁、及具有斜杆 的刚架等。
沿杆轴线均布q′:恒载(自重),
(2):水平方向均布荷载作用
∑Z=0,
VAZ=0
∑MX=0,MAX-5×2=0, MAX=10KN.M
∑MY=0,MAY-4×2×2×1/2=0, MAY=8KN.M ∑MZ=0,MAZ-4×2×3+5×3=0, MAZ=9KN.M
NA MAX x
(b)
D C
【精选】第三章静定平面刚架讲解PPT课件

6D
FQDC
4kN/m
CC FFQQCCED
↓↓↓↓↓↓α↓
E
FQ EC
∑MC=6+3 × 4×1.5+3.35FQEC=0 FQEC= -7.16kN
∑F∑FQMQMCCDEED====6316-..5-7893kF(N×kQNC4D)××=F13Q.5.D3+C53=.350FQCE=0
q=4kN/m
溅射腐蚀与离子铣蚀的区别在于:若腐蚀过程是在平板式溅射系统或反 应离子腐蚀器中完成的,就称作溅射腐蚀。离子束铣蚀是指在一个系统中离 子的形成、离子加速系统与被腐蚀的材料分开放置的一种方法。离子铣蚀系 统可以直接控制轰击材料表面的离子入射角。而在普通的溅射设备中,离子 是受内建电场的驱动垂直入射的。离子束铣蚀系统的适用性较强,并易于操 作;它既能用于腐蚀半导体,也能用于腐蚀绝缘体;只要分别调节灯丝电流 和加速电压,就可以独立地控制离子能量及离子密度。
8kN
B
6kN C 6kN
2m
8kN
B24kN.m
6kN
4m
6kN
0
-6kN 8kN
∑Fx = 8-8 = 0 ∑Fy = -6-(-6) = 0
16kN.m 6kN
∑M = 24-8 - 16 = 0
FQDA=8kN FNDA=0 MDA=8kN.m(左拉) FQDC=-6kN FNDC=0 MDC=24kN.m(下拉)
作刚架FQ、FN图的另一种方法:首先作出M图;然后取杆件 为分离体,建立矩平衡方程,由杆端弯矩求杆端剪力;最后取 结点为分离体,利用投影平衡由杆端剪力求杆端轴力。
qa2/2
↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑
qC qa2/2
结构力学-静定梁与静定刚架

A BC
D
130 210
E
F
140
340
280 M图(kN·m)
130 D
120
40
A B C 30
E
F
FS 图(kN)
190
26
小结: 1)弯矩叠加是指竖标以基线或杆轴为准叠加,而非 图形的简单拼合; 2)应熟悉简支梁在常见荷载下的弯矩图; 3)先画M 图后画FS图,注意荷载与内力之间的微分 关系。
B (qlcosθ)/2
B (qlcosθ)/2
32
3) 作内力图。
(qlcosθ)/2 (qlsinθ)/2
ql2/8 M图 FQ 图
FN 图
(qlcosθ)/2 (qlsinθ)/2
33
例3-1-3 作图示斜梁的内力图。
x FxA A θ
FyA
q
l /cosθ
C qlcosθ
l
ql θ qlsinθ
1.荷载与内力之间的微分关系
qy
M FN
FS
o qx dx
M+dM x
FN+dFN
FS dFS
y
Fy 0, F SdS F qyd xF S0ddFxS q y .
MO 0, M M dM F Sd 2 xF SdF Sd 2 x0,
dM dxFS,
3)定点:求控制截面在全部荷载作用下的 M 值, 将各控制面的 M 值按比例画在图上,在各控制截 面间连以直线——基线。
4)连线叠加:对于各控制截面之间的直杆段,在 基线上叠加该杆段作为简支梁时由杆间荷载产生的 M图。
18
例3-1-1 作图示静定单跨梁的M图和FS图。
8kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学电子教案第三章静定 梁与静定刚架ppt课件
结构力学电子教案
第三章 集中荷载P作用时,M为折线,折点在集中力作用点处, 且凸向与P方向一致。
P
P
4. 受集中力偶 m 作用时,在m作用点处M有跳跃(突变),跳 跃量为m,且左右直线均平行。
m
平行
m
结构力学电子教案
3Pa
2Pa P
Q= P,M 为一斜线
P
Q= 0,M为一直线
3Pa
结构力学电子教案
第三章 静定梁与静定刚架
例6 试作图示多跨静定梁的弯矩图。
4kN
4kN.m
1kN/m
第11页
4 8
2 4
铰处的M为零,且梁上无集中荷载作用,
M图为一无斜率变化的斜直线。
ql 2 2 2
2
4
ql 2 2
28
2
2
结构力学电子教案
第三章 静定梁与静定刚架
第9页
例4 试作图示刚架的弯矩图。各杆杆长均为l。
m m
m
m m
在m作用点处M 有跳跃 (突变),跳跃量为m,
且左右直线均平行。
Q= 0,M为一直线
结构力学电子教案
第三章 静定梁与静定刚架
例5 试作图示刚架的弯矩图。
2Pa
2Pa
第10页
铰处的M为零,且梁
上无集中荷载作用, M图为一无斜率变化 的斜直线。
第三章 静定梁与静定刚架
例7 试作图示刚架弯矩图的形状。
ql 2
m
2m
mm
m
Q= 0,M为一直线
P
第12页
P
结构力学电子教案
第三章 静定梁与静定刚架
第13页
结构力学电子教案
第三章 集中荷载P作用时,M为折线,折点在集中力作用点处, 且凸向与P方向一致。
P
P
4. 受集中力偶 m 作用时,在m作用点处M有跳跃(突变),跳 跃量为m,且左右直线均平行。
m
平行
m
结构力学电子教案
3Pa
2Pa P
Q= P,M 为一斜线
P
Q= 0,M为一直线
3Pa
结构力学电子教案
第三章 静定梁与静定刚架
例6 试作图示多跨静定梁的弯矩图。
4kN
4kN.m
1kN/m
第11页
4 8
2 4
铰处的M为零,且梁上无集中荷载作用,
M图为一无斜率变化的斜直线。
ql 2 2 2
2
4
ql 2 2
28
2
2
结构力学电子教案
第三章 静定梁与静定刚架
第9页
例4 试作图示刚架的弯矩图。各杆杆长均为l。
m m
m
m m
在m作用点处M 有跳跃 (突变),跳跃量为m,
且左右直线均平行。
Q= 0,M为一直线
结构力学电子教案
第三章 静定梁与静定刚架
例5 试作图示刚架的弯矩图。
2Pa
2Pa
第10页
铰处的M为零,且梁
上无集中荷载作用, M图为一无斜率变化 的斜直线。
第三章 静定梁与静定刚架
例7 试作图示刚架弯矩图的形状。
ql 2
m
2m
mm
m
Q= 0,M为一直线
P
第12页
P
结构力学电子教案
第三章 静定梁与静定刚架
第13页