结构力学3静定刚架受力分析
结构力学第三章静定结构受力分析

MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
第03章: 结构力学 静定结构内力分析

2
2qa 2
2qa2
4qa
2
2
4qa2
14qa2
2qa2 q
14qa
弯矩图
10
也可直接从悬臂端开始计算杆件 8 2qa2
8qa 2
B
10qa 2
6qa 2q
2
2qa 2
4qa2
14qa
2
M图
(4)绘制结构Q图和N图 2qa2 2qa2 C 6qa q E
D
2q A 2a 2a 4a B
3a
6qa
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP
截
面
法
截取桁架的某一局部作为隔离体, 由平面任意力系的平衡方程即可求得未知 的轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
5、三铰拱的合理轴线 拱的合理轴线:在固定荷载作用下使拱处于无弯距状态 的轴线。 求解公式:在竖向荷载作用下,三铰拱的合理轴线使拱 的各截面处于无弯距状态,即
M M FH y 0
0
M y FH
0
结论: (1)三铰拱在沿水平线均匀分布的竖向荷载作用下,合理轴 线为一抛物线。
y
M AD
1 qL x2 8
M BD
q(l x) 1 x qx 2 2 2
Mx1max
1 qL x2 8
由以上三处的弯矩得到:
q(L x) 1 2 1 2 x qx qL x 2 2 8
整理得:
x 0.172L
结构力学第3章

B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
结构力学 第三章 静定结构

MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
3静定结构的受力分析-梁结构力学

1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。
◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。
◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。
◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。
本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。
(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。
1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。
以拉力为正,压力为负。
剪力F Q :截面上应力沿杆轴切线方向的合力。
以绕隔离体顺时针转为正,反之为负。
弯矩M :截面应力对截面中性轴的力矩。
不规定正负,但弯矩图画在受拉侧。
在水平杆中, 当弯矩使杆件下部纤维受拉时为正。
A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。
内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。
轴力FN外力背离截面投影取正,反之取负。
剪力F=截面一边所有外力沿截面切线方向投影代数和。
Q外力绕截面形心顺时针转动,投影取正,反之取负。
弯矩M =截面一边所有外力对截面形心的外力矩之和。
外力矩和弯矩使杆同侧受拉时取正,反之取负。
2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。
2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。
结构力学第三章静定结构的受力分析

例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA
《结构力学》_龙驭球_第3章_静定结构的受力分析(2)

一、求支座反力
40 kN
在支座反力的计算过程中,应尽可能建立 独立方程。
B
D
C
20 kN/m
4m
MA 0 FY 0
FDY 4 40 2 (20 4) 2 0 FDY 60kN () FAY 40 60 0 FAY 20kN ()
FX 0 FAX 80kN ()
二、绘制内力图
⑴ 分段:根据荷载不连续点、结点;
解,本题剪力很容易用投影方程求得。
4kN/m
1kN
C
MDE D
E
8
14kN
4m
1kN B 4m
2kN
28 24
4
4D
8
E
F
A
B
M 图(kN·m)
14
D
E
2
2
16
1
F
A
B
FQ 图(kN)
③ 作FN 图 各杆轴力可以用投影方程求
解。也可根据剪力图, 取各结点 为隔离体,用投影方程求轴力。
④ 校核
16
14
40
载和B端外力偶作用的简支梁(图C)。
画M图时,将 B 端弯矩竖标画在受拉 80 A
侧,连以虚直线,再叠加上横向荷载产生
20
的简支梁的弯矩图,如图(d)示。
(b)
A
A
(c)
(d)
B 160
D
160
120
20 60
120
20
A M图 (kN·m)
80 F Q 图(kN)
F N 图(kN)
练习3-3.1:试计算图示简支刚架的支座反力,并绘制M、F Q 和 F N 图。
Fx 0, FBx 2 11kN()
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
∑F = 0,
x
XB + XC = 0, XC = −P(↓)
XC
YC
B
XB
YB
3)取整体为隔离体 取整体为隔离体 ∑Fy = 0,YA +YB = 0,YA = −YB = −P(↓) l ∑ M A = 0, M A + P × 2 − YB × l = 0, 1 M A = Pl (顺时针转 ) 2
Pl
Pl
P
l
l
l
练习: 练习 试找出图示结构弯矩图的错误
练习: 练习 试找出图示结构弯矩图的错误
本章小结
一. 刚架的受力特点 二. 刚架的支座反力计算 三. 刚架指定截面内力计算 四.刚架弯矩图的绘制 五.计算结果的校核
作业
3-3 (a) 3-7(a) 3-8(c)
P
P
Pl
P
P
P
P
Pl
P
P
连接两个杆端的刚结点, 连接两个杆端的刚结点 §3-3 静定刚架受力分析 ,若 结点上无外力偶作用, 结点上无外力偶作用,则两 三. 刚架指定截面内力计算 个杆端的弯矩值相等, 个杆端的弯矩值相等,方向 与梁的指定截面内力计算方法相同. 与梁的指定截面内力计算方法相同. 相反. 相反.
第三章 静定结构受力分析
§3-3 静定刚架受力分析
§3-3 静定刚架受力分析
一. 刚架的受力特点
刚架是由梁柱组成的含有刚结点的杆件结构
1 2 ql l 8
梁
桁架
1 2 ql 8
弯矩分布均匀 可利用空间大
刚架
§3-3 静定刚架受力分析
二. 刚架的支座反力计算
静定刚架的分类: 静定刚架的分类 三铰刚架 (三铰结构 三铰结构) 三铰结构
3.复合刚架 主从结构 的支座反力 约束力 计算 复合刚架(主从结构 的支座反力(约束力 复合刚架 主从结构)的支座反力 约束力)计算 若附属部分上无 方法:先算附属部分 先算附属部分, 方法 先算附属部分,后算基本 例1: 求图示刚架的支座反力 外力, 外力,附属部分上的 部分, 部分,计算顺序与几何组成顺序 约束力是否为零? 约束力是否为零? 相反. 相反.
B
2m
2m
∑Y = 0 QBD = −20kN
D
∑MD = 0 M BD = 160kN ⋅ m
80 20
A 2m
2m
160
40
M图 图
NBA
B
160
160
MBA
D
QBA
B 20 kN/m 20 4m 60
40
40
80
A
20
A M图 (kN·m) 图 )
80
Q图(kN) 图
B
160
160
D
40
B 0
C
P
B
l 2 l 2
C
P
B
YB
A YA
A
l
XA
解:
∑ F = 0, X + P = 0, X = − P(←) l P ∑ M = 0, P × 2 − Y × l = 0, Y = 2 (↑) P ∑ F = 0, Y + Y = 0, Y = −Y = − 2 (↓)
x A A
A
B
B
y
A
B
A
B
例2: 求图示刚架的支座反力 q ql 2 解: ql
MBA
B 20 kN/m
QBA
160
20 kN/m
4m
4m
40
HA = 80
VA = 20
A 2m (a)
80
A
20
A
A (d) M图 图
2m
(b)
(c)
40kN
NBD
MBD
B 2m
160kN·m
40kN
B D
40kN D B 20kN/m C 4m 60
2m
D 60
QBD
∑X =0 N BD = 0
试计算图(a)所示简支刚架的支座反力 所示简支刚架的支座反力, 例1. 试计算图 所示简支刚架的支座反力,并绘制M、Q和N图。 和 图 [解] 20kN, VB = 60kN 。
(2)求杆端力并画杆单元弯矩图。 求杆端力并画杆单元弯矩图。 求杆端力并画杆单元弯矩图
XA YA
XB YB
l P ∑MA = 0, P× 2 −YB ×l = 0,YB = 2 (↑) P ∑Fy = 0,YA +YB = 0,YA = −YB = − 2 (↓) ∑Fx = 0, XA + P − XB = 0
2)取右部分为隔离体 取右部分为隔离体 l P ∑MC = 0, XB ×l −YB × 2 = 0, XB = 4 (↑) P ∑Fy = 0,YC +YB = 0,YC = −YB = − 2 (↓) P ∑Fx = 0, XB + XC = 0, XC = − 4 (↓)
qa2/2
↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑ QCA
QBC=QCB=-qa/2
A
M图 a qa/2 q NCB
QAC
∑MC=qa2/2+ qa2/2 -QACa=0 QAC=(qa2/2+ qa2/2 )/a =qa ∑MA=0 Q CA=(qa2/2 - qa2/2 )/a ∥ =0
0 NCA ∑X=0,NCB = 0 ∑Y=0,NCA=qa/2
简支刚架 简单刚架 (联合结构 联合结构) 联合结构 悬臂刚架 复合刚架 (主从结构 主从结构) 主从结构
1.简单刚架 联合结构 的支座反力 约束力 计算 简单刚架(联合结构 的支座反力(约束力 简单刚架 联合结构)的支座反力 约束力)计算
方法:切断两个刚片之间的约束,取一个刚片为隔离体, 方法 切断两个刚片之间的约束,取一个刚片为隔离体,假 切断两个刚片之间的约束 定约束力的方向,由隔离体的平衡建立三个平衡方程. 定约束力的方向,由隔离体的平衡建立三个平衡方程. 例1: 求图示刚架的支座反力
由刚架的M图作刚架Q 由刚架的 图作刚架Q、N图 图作刚架
首先作出M图;然后取杆件为分离体,建立矩平衡方程,由杆端弯矩求杆 端剪力;最后取结点为隔离体,利用投影平衡由杆端剪力求杆端轴力。
qa2/2
B
q C qa2/2 qa2/8
a
↑↑↑↑↑↑↑↑
qa2/2
C QC
B
QC
B
B ∑MC=qa2/2+ QCBa=0
M 1 = − Pl / 4(上侧受拉 )
M 1 = M 2 (外侧受拉 )
§2-2 静定刚架受力分析
四.刚架弯矩图的绘制 做法:拆成单个杆,求出杆两端的弯矩, 做法:拆成单个杆,求出杆两端的弯矩,按与单跨 梁相同的方法画弯矩图. 梁相同的方法画弯矩图.
分段 定点 连线
(1)分段:根据荷载不连续点、结点分段。 )分段:根据荷载不连续点、结点分段。 (2)定形:根据每段内的荷载情况,定出内力图的形状。 )定形:根据每段内的荷载情况,定出内力图的形状。 (3)求值:由截面法或内力算式,求出各控制截面的内力值。 )求值:由截面法或内力算式,求出各控制截面的内力值。 图时,将两端弯矩竖标画在受拉侧, (4)画图:画M图时,将两端弯矩竖标画在受拉侧,连以直 )画图: 线,再叠加上横向荷载产生的简支梁的弯矩图。Q,N 图要标 再叠加上横向荷载产生的简支梁的弯矩图。 +,-号;竖标大致成比例。 +,-号 竖标大致成比例。
做法:逐个杆作剪力图,利用杆的平衡条件, 做法:逐个杆作剪力图,利用杆的平衡条件,由已知 的杆端弯矩和杆上的荷载求杆端剪力, 的杆端弯矩和杆上的荷载求杆端剪力,再由杆端剪 力画剪力图.注意:剪力图画在杆件那一侧均可, 力画剪力图.注意:剪力图画在杆件那一侧均可,必 须注明符号和控制点竖标. 须注明符号和控制点竖标. 做法:逐个杆作轴力图,利用结点的平衡条件, 做法:逐个杆作轴力图,利用结点的平衡条件,由已 知的杆端剪力和求杆端轴力,再由杆端轴力画轴力 知的杆端剪力和求杆端轴力, 注意:轴力图画在杆件那一侧均可, 图.注意:轴力图画在杆件那一侧均可,必须注明符 号和控制点竖标. 号和控制点竖标.
方法:取两次隔离体,每个隔离体包含一或两个刚片, 方法 取两次隔离体,每个隔离体包含一或两个刚片,建立 取两次隔离体 六个平衡方程求解--双截面法. --双截面法 六个平衡方程求解--双截面法. 解:1)取整体为隔离体 取整体为隔离体 例1: 求图示刚架的支座反力
C
P
l 2 l 2
A
B
l 2 l 2
l/2
D
l/4 l/4
P
XA YA
A
l
B
l
C
解:1)取附属部分 取附属部分 XD = P(→)
YB YD XD XD
YC
D
YC = P/ 4(↑)
YD = −P/ 4(↓)
2)取基本部分 取基本部分
P
XA = P(→)
XA YA
A
B
YD YB
C
YA = P(↑)
YB = −P/ 4(↓)
YC
思考题: 思考题 图示体系支反力和约束力的计算途径是怎样的? 图示体系支反力和约束力的计算途径是怎样的
∑X =0
∑Y = 0
∑MB = 0
QBA + 20 × 4 − 80 = 0
N BA − 20 = 0
M BA + 20 × 4 × 2 − 80 × 4 = 0
40 kN D B C 4m
VB = 60
QBA = 0
N BA = 20kN
M BA = 160kN ⋅ m
NBA
160 kN·m B B 20 kN/m