坐标转换及投影参数表

合集下载

mapgis6.7西安80坐标和北京54坐标相互转换

mapgis6.7西安80坐标和北京54坐标相互转换

西安80坐标和北京54坐标相互换转也是经常用的,现在就mapgis6.7提供的转换功能做以下讲解。

拿点(39490223.77,2663880.71)为例。

在投影变换模块->投影转换->输入单点投影转换。

原始投影参数设置:如图1,椭球参数改成西安80(图1)原始数据输入:经度490223.77,纬度2663880.71。

说明下,带序号39不要了,因为在输入投影参数对话框里设置了(如上图1)。

结果投影参数:把按图1设置。

一切就绪,只需按‘投影点’,结果出来了^_^……用户文件投影批量投影点工作中我们很多时候要把GPS点批量投影点到图上,高效准确是我们的追求,庆幸Mapgis6.7用户文件投影转换可以完成此工作。

投影变换模块,投影转换->用户文件投影转换。

打开文件:保存有坐标的文本文件(.txt)用户投影参数:设置跟我们需要投影的点匹配,如图:结果投影参数:设置跟我们需要的投影结果匹配,如图:设置分隔符:点击进去,按照您的投影点文件数据之间的分隔符设置,确定即可。

设置用户文件选项:在这里可以选择生成点或者线,X,Y坐标位于的位置等。

(该例子X 位于1,Y位于2)到这里要强调关键一点,这点很重要。

鼠标要点击如下图的数据行,默认是第一行,否则就会多生成一个位于(0,0)坐标的点。

最后点‘投影变化’,‘确定’。

在投影变换模块中保存生成的文件mapgis6.7批量投影点同时可以根据我们的需要完成点的投影变换,但是有时候我们需要原本不变的把点投影到图上。

比如点(2655555,39666666),就想让该点投到图上的坐标为(2655555,39666666),一般的方法多多少少有点变化了。

在投影变换模块中选择用户文件投影,关键是,把用户投影参数和结果投影参数都设置成投影得到的文件直接添加到需要的工程,提示地图参数不匹配问你是否转换,就直接确定转换即可!详细的用户文件投影可参见用户文件投影批量投影点。

2000国家大地坐标系转换指南

2000国家大地坐标系转换指南

现有测绘成果转换到2000国家大地坐标系技术指南一、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:长半轴a=6378137m扁率f=1/298.257222101地心引力常数GM=3.986004418×1014m3s-2自转角速度ω=7.292l15×10-5rad s-1其它参数见下表:采用2000国家大地坐标系后仍采用无潮汐系统。

二、点位坐标转换方法(一)模型选择全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。

对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型。

坐标转换模型详见本指南第六部分。

(二)重合点选取坐标重合点可采用在两个坐标系下均有坐标成果的点。

但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。

(三)模型参数计算用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数。

(四)精度评估与检核用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见附件中相关内容。

选择部分重合点作为外部检核点,不参与转换参数计算,用转换参数计算这些点的转换坐标与已知坐标进行比较进行外部检核。

用EXCEL进行高斯投影换算

用EXCEL进行高斯投影换算

一、用EXCEL进行高斯投影换算从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY 换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。

笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL的相应单元格中输入相应的公式即可。

下面以54系为例,介绍具体的计算方法。

完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。

在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下:单元格单元格内容说明A2输入中央子午线,以度.分秒形式输入,如115度30分则输入115.30起算数据L0B2=INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2*100)*100)/3600把L0化成度C2以度小数形式输入纬度值,如38°14′20″则输入38.1420起算数据BD2以度小数形式输入经度值起算数据LE2=INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2*100)*10 0)/3600把B化成度F2=INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2*100)*10 0)/3600把L化成度G2=F2-B2L-L0H2=G2/57.2957795130823化作弧度I2=TAN(RADIANS(E2))Tan(B)J2=COS(RADIANS(E2))COS(B)K2=0.006738525415*J2*J2L2=I2*I2M2=1+K2N2=6399698.9018/SQRT(M2)O2=H2*H2*J2*J2P2=I2*J2Q2=P2*P2R2=(32005.78006+Q2*(133.92133+Q2*0.7031))S2=6367558.49686*E2/57.29577951308-P2*J2*R2+((((L2-58)*L2+61)*O2/30+(4*K2+5)*M2-L2)*O2/12+1)*N2*I2*O2/2计算结果XT2=((((L2-18)*L2-(58*L2-14)*K2+5)*O2/20+M2-L2)*O2/6+1)*N2*(H2*J2) 计算结果Y表中公式的来源及EXCEL软件的操作方法,请参阅有关资料,这里不再赘述。

MAPGIS坐标换带的转换

MAPGIS坐标换带的转换

MAPGIS是国家科技部和建设部推广的国产GIS软件,是国内优秀GIS平台之一,目前在城市勘测单位使用越来越广泛,很多单位用它来做矢量化、数据编辑、入库的平台。

但由于大部分城市勘测单位都是做1:500到1:2000的大比例尺地形图,对投影变换用的比较少,偶尔要用到地方坐标系和国家坐标系的转换,以及换带计算等就觉得非常困难,笔者经过大量的生产实践发现:巧用MAPGIS的投影变换不仅可以轻松解决各种坐标系之间的转换问题,还可以进行坐标展点及高斯坐标的正反算等,下面就对这些问题的参数设置、操作过程进行详细的说明。

在具体说明之前,先对几个关键词的含义进行说明。

地图投影即按某种数学规则将椭球球面上一点与地图平面上的一点相对应。

地图投影的参数有椭球的长半径,短半径,扁率,第一偏心率,第二偏心率。

数学规则有等角映射、等面积映射等。

我国地图制图普遍采用的是高斯-克吕格(GAUSS-KRUGER)投影,它是一种等角横切椭圆柱投影,该投影以中央经线和赤道投影后为坐标轴,为控制长度变形,一般采取分带投影。

我国1:2.5-1:50万的地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带。

MAPGIS的坐标系为数学坐标系,与投影平面直角坐标系中的X、Y坐标相反,即横坐标为X,纵坐标为Y,未经投影变化之前均为毫米表示。

MAPGIS的用户坐标系是指由用户指定的相对二维坐标系,一般与实际地物定位无关;地理坐标系是以经纬度表示的,经度的起点在格林威治,向东为正,纬度自赤道起,向北为正,常用来坐标定位;投影平面直角坐标系是将地球球面投影到平面后所设定的坐标系。

我们常说的1954年北京坐标系,1980年西安坐标系均为高斯投影的投影平面直角坐标系,只不过它们采用了不同的椭球参数;北京坐标系使用克拉索夫斯基椭球,西安坐标系采用IAG1975年推荐椭球。

TIC点为已知理论坐标的控制点,可以是三角点、导线点,也可以是方里网点,理论值可以是大地直角坐标,也可以是地理经纬度。

通过坐标生成点文件方法

通过坐标生成点文件方法

Mapgis通过坐标生成点文件方法:(假定原坐标为80,新坐标为五万北京54坐标系)1,投影变换:
提取点坐标,转换成北京54坐标系图上坐标,转换时结果投影参数为:坐标系类型为投影平面直角;椭球参数为北京54;投影类型为高斯-克吕格;比例尺分母为50000;坐标单位为毫米;投影带类型6度带;投影带序号为原X坐标前两位.
2,建明码格式参数表:
将坐标及点的其它参数存为mapgis明码格式.如下:
3,将参数表转为明码格式文件:
把EXCEL中的参数复制到文本文档中保存,在文本文档的最前面加WMAP9022及点数,分列两行,保存后改扩展名txt为wat,即为明码格式文件
4,明码格式文件生成点文件:
打开mapgis文件转换功能,输入->mapgis明码格式文件,打开第三步中的明码格式文件,复位,换名存点,即可得所需要的点文件.
5,属性连接:
建EXCEL表格,第一列为点的ID,第二列及后面其它列为点的属性,格式如下:
另存为dbf4格式.用mapgis库管理->属性库管理->属性->连接属性,连接文件即为原来的点文件,连接属性为点属性,关键字段为ID,被连文件为存有点属性的dbf文件(名字及存储路径最好不要出现中文字体,路径不能太长,最好存在一个盘的根目录下,名字为数字或英文),关键字段同连接文件保持一致,连入字段选择要连入的属性,如图:
连接后,点文件即为带属性的点文件.。

ArcGIS中的坐标系统和投影变换

ArcGIS中的坐标系统和投影变换

得出投影坐标系所必须的条件是: 1、球面坐标 2、将球面坐标转换成平面坐标的过程(投影) GCS=椭球体+大地基准面 PCS = GCS + 投影过程
ArcGIS中北京54坐标系的描述
在Coordinate systems\Coordinatesystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可 以看到四种不同的命名方式:
投影变换即是实现不同坐标系之间的转换,如 WGS84与BJ54是两种不同的大地基准面,不同 的参考椭球体,因而两种地图下,同一个点的坐 标是不同的,无论是三度带六度带坐标还是经纬 度坐标都是不同的。当要把GPS接收到的点 (WGS84坐标系统的)叠加到BJ54坐标系统的 底图上,那就会发现这些GPS点不能准确的在它 该在的地方,即“与实际地点发生了偏移”。这 就要求把这些GPS点从WGS84的坐标系统转换 成BJ54的坐标系统了。
首先让我们来看看ArcGIS产品中对于北京54投影坐标系统的定义参数:
Projection: Gauss_Kruger Parameters: False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 117.000000 Scale_Factor: 1.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Name: GCS_Beijing_1954 Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

湖南省地区GPS坐标转换参数

湖南省地区GPS坐标转换参数
-108
0.0000005
湘西
-6.0
-109
-54
111/108
-108
0.0000005
衡阳
-15
-107
-49
114
-108
0.0000005
娄底
-10
-110
-50
111
-108
0.0000005
西安80()
-94.854
-71.106
-12.208
114
备注:“坐标转换”
开机,“菜单”键进入主菜单页面,选择“设置”按“输入”键确定,选择”单位设置”,在坐标系统下拉框中选择:“USER”按“输入”键确定,在坐标格式下拉框中选择:“USER UTM GRID”(自定义坐标值)。按“菜单”键,选择“自定义坐标格式”按“输入”进入自定义坐标格式页面,输入相关数值。按“输入”键储存,选择“自定义坐标系统”按“输入”进入,输入“DX.DY.DZ等数值,按“输入”键储存即可。
湖南省地区GPS坐标转换参数
投影比例:+1.0000000
东西偏差:+500000.0
南北偏差ቤተ መጻሕፍቲ ባይዱ0.0

DX
DY
DZ
中央经线
DA
DF
郴州
-14.7
-105.5
-53.2
114
-108
0.0000005
株洲
-15.6
-111.1
-50.8
114
-108
0.0000005
永州
-14
-107.4
-56
111

【干货】两种七参数坐标转换方法

【干货】两种七参数坐标转换方法

目前国内所用GNSS (Global Navigation Satellite System)即全球卫星导航系统,已经发展到多星,尤其随着北斗导航系统的逐步完善,正在向CGCS2000椭球过渡,但还是以WGS-84 坐标系统为主流,即仍以美国GPS为主,所发布的星历参数也是基于此坐标系统。

WGS-84 坐标系统(World Geodetic System-84,世界大地坐标系-84) 的坐标原点位于地球的质心,Z 轴指向BIH1984.0定义的协议地球极方向,X 轴指向BIH1984.0的启始子午面和赤道的交点,Y 轴与X轴和Z 轴构成右手系。

WGS-84 系所采用椭球参数为:长半轴6378137;扁率1:298.25 7223563。

而我国目前广泛采用的大地测量坐标系有3种:①北京1954 坐标系。

该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的主要参数为:长半轴6378245;扁率1:298.3。

②1980 年国家大地坐标系。

该坐标系是参心坐标系,采用地球椭球基本参数为1975 年国际大地测量与地球物理联合会第十六届大会推荐的数据,大地原点设在我国中部的陕西省泾阳县永乐镇,也称西安80 坐标系。

长半轴6378140±5;扁率1:298.257。

③2000 中国大地坐标系。

该坐标系是地心坐标系,与WGS-84坐标类似。

原点在包括海洋和大气的整个地球的质量中心;定向在1984.0时与BIH(国际时间局)。

长半轴6378137.0;扁率1:298.257 222 101。

各坐标系之间的转换是工作中的经常遇到的问题,主要的转换方法有三参数、四参数和七参数法,而这三种方法中,七参数是一种空间直角坐标系的转换模型,是基于椭球间的三维转换,精度最高。

如果用七参数法来实现WGS84 坐标系与1980 年国家大地坐标系的转换,求解前必须确定控制网中各点对的距离。

如果两点间距离超过15 公里,必须考虑曲面因素即两种不同坐标系的椭球参数,避免因椭球的差异,导致转换后所得坐标残差过大,精度过低,为了保证精度必须采用七参数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档