ArcGIS中的坐标系统和投影变换
ArcGIS中的北京54和西安80投影坐标系详解

ArcGIS中的北京54和西安80投影坐标系详解(2013-02-25 20:26:39)转载▼ArcGIS中的北京54和西安80投影坐标系详解1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002、接下来便是Projection coordinatesystem(投影坐标系统),首先看看投影坐标系统中的一些参数。
ArcGIS坐标系定义和转换

ARCGIS坐标1 ArcGIS坐标系定义和转换网上有关坐标系和坐标转换的文章很多,大家可搜索了学习一下,我推荐下面两篇文章供参考:《坐标系统和投影变换在桌面产品中的应用》介绍了坐标系的一些基本概念,并结合ArcGIS进行了说明。
《ArcGIS坐标系统文件》介绍了ArcGIS坐标系名称的解析方法。
ArcGIS中的坐标系有两套:Geographies coordinate system (地理坐标系、大地坐标系,经纬度表达)和Projected coordinate system (投影坐标系,直角坐标系)。
通过在ArcCatalog 中右键点击一个Feature class Feature dataset、Rasterdataset和Raster Catalog 在“Property的”XY Coordinate Sytster中设置其坐标系。
如果要进行转换,需通过ArcToolBox的“Data Management Tool的”“ Projecti ons and Tran sformatio n系列工具进行。
在同一个Datum (大地基准面)内的坐标转换是严密的,如在北京54的经纬度和直角坐标之间的转换是可在ArcGIS中设置源坐标系和目标坐标系来直接转换。
如果要在不同Datum 间进行转换,则需要设置转换参数,通常高精度的转换需要7参数,也即设置Geographics Transformatior。
比如将北京54坐标转换成WGS84坐标,需要设置转换参数。
虽然我国没有公布北京54、西安80与WGS84之间的转换7参数,但ArcGIS可以在导入数据的时候通过设置目标坐标系,从而实现坐标转换,而且不用输入7 参数,试验了一下,应该时默认参数为0。
但根据网上的文章http:在用ArcToolBox中的转换工具进行坐标转换时,如果跨datum,则必须输入Transformation 参数,从而保证转换精度。
ArcGIS10.2 学习课程——2.坐标系基础和投影变换

Page 9
区域基准面
中国信息化高级技术培训中心欢迎你
区域基准面是在特定区域内与地球表面极 为吻合的旋转椭球体。旋转椭球体表面上 的点与地球表面上的特定位置相匹配。该 点也被称作基准面的原点。原点的坐标是 固定的,所有其他点由其计算获得。如北 京54,和西安80
Page 10
1、地心基准面
2、区域基准面
Page 8
地心基准面
中国信息化高级技术培训中心欢迎你
在过去的 15 年中,卫星数据为测地学家提 供了新的测量结果,用于定义与地球最吻 合的、坐标与地球质心相关联的旋转椭球 体。地球中心(或地心)基准面使用地球 的质心作为原点。最新开发的并且使用最 广泛的基准是 WGS 1984。它被用作在世界 范围内进行定位测量的框架。
Page 23
3、3度,6度分带含义
中国信息化高级技术培训中心欢迎你
3 °分带法:从东经1°30′起,每3°为一带,将全 球划分为120个投影带,东经1°30′4°30′,...178°30′-西经 178°30′,...1°30′-东经1°30′。
东半球有60个投影带,编号1-60,各带中央经线计 算公式:L0=3n ,中央经线为3°、6°...180°。
西安80:长半轴a=6378140m;短半轴b=6356755m 扁率f=1/298.25
WGS-84:长半轴a=6378137m;短半轴b=6356753.314m 扁率f=1/298.25
2000坐标系,a=6378137m b=6356752.31414m
扁率 f=1/298.257222101 注:扁率:f=(a-b)/a
中国经纬度范围 最东端 东经135度2分30秒 黑龙江和乌苏里江交汇处 最西端 东经73度40分 帕米尔高原乌兹别里山口(乌恰县) 最南端 北纬3度52分 南沙群岛曾母暗沙 最北端 北纬53度33分 漠河以北黑龙江主航道(漠河县)
ArcGIS中坐标转换及地理坐标投影坐标的定义

ARCGIS中坐标转换及地理坐标、投影坐标的定义1.ARCGIS中坐标转换及地理坐标、投影坐标的定义1.1动态投影ArcMap所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示但此时数据文件所存储的数据并没有改变,只是显示形态上的变化因此叫动态投影表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data数据源的坐标系统导出,还是按照the Data 当前数据框架的坐标系统导出数据1.2坐标系统描述ArcCatalog大家都知道在ArcCatalog中可以一个数据的坐标系统说明即在数据上鼠标右键->Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统但有许多人认为在这里改完了,数据本身就发生改变了但不是这样的这里缩写的信息都对应到该数据的.aux文件如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的因此你就无法在做对数据的进一不处理比如:投影变换操作因为你不知道要从哪个投影开始变换因此大家要更正一下对 ArcCatalog中数据属性中关于坐标系统描述的认识1.3投影变换ArcToolBox上面说了这么多,要真正的改变数据怎么办,也就是做投影变换在ArcToolBox->Data Management Tools->Projections and Transformations下做在这个工具集下有这么几个工具最常用:1、Define Projection2、Feature->Project3、Raster->Project Raster4、Create Custom Geographic Transformation当数据没有任何空间参考时,显示为Unknown时就要先利用Define Projection来给数据定义一个Coordinate System,然后在利用Feature->Project或Raster->Project Raster 工具来对数据进行投影变换由于我国经常使用的投影坐标系统为北京54,西安80由这两个坐标系统变换到其他坐标系统下时,通常需要提供一个Geographic Transformation,因为Datum已经改变了这里就用到我们说常说的转换3参数、转换7参数了而我们国家的转换参数是保密的因此可以自己计算或在购买数据时向国家测绘部门索要知道转换参数后,可以利用Create Custom Geographic Transformation工具定义一个地理变换方法,变换方法可以根据3参数或7参数选择基于GEOCENTRIC_TRANSLATION和 COORDINATE_方法这样就完成了数据的投影变换数据本身坐标发生了变化当然这种投影变换工作也可以在ArcMap中通过改变Data 的Coordinate System来实现,只是要在做完之后在按照Data 的坐标系统导出数据即可方法一:在Arcmap中转换:1、加载要转换的数据,右下角为经纬度;2、点击视图——数据框属性——坐标系统;3、导入或选择正确的坐标系,确定;这时右下角也显示坐标;但数据没改变;4、右击图层——数据——导出数据;5、选择第二个数据框架,输出路径,确定;6、此方法类似于投影变换;方法二:在forestar中转换:1、用正确的坐标系和范围新建图层aa2、打开要转换的数据,图层输出与原来类型一致,命名aa,追加;方法三:在ArcToolbox中转换:1、管理工具——投影project,选择输入输出路径以及输出的坐标系2、前提是原始数据必须要有投影2.ArcGIS中的坐标系统定义与投影转换坐标系统是GIS数据重要的数学基础,用于表示地理要素、图像和观测结果的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置、方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGIS软件中正确的定义坐标系统以及进行投影转换的操作非常重要;2.1ArcGIS中的坐标系统ArcGIS中预定义了两套坐标系统,地理坐标系Geographic coordinate system和投影坐标系Projectedcoordinate system;2.1.1地理坐标系地理坐标系 GCS 使用三维球面来定义地球上的位置;GCS中的重要参数包括角度测量单位、本初子午线和基准面基于旋转椭球体;地理坐标系统中用经纬度来确定球面上的点位,经度和纬度是从地心到地球表面上某点的测量角;球面系统中的水平线是等纬度线或纬线,垂直线是等经度线或经线;这些线包络着地球,构成了一个称为经纬网的格网化网络;GCS中经度和纬度值以十进制度为单位或以度、分和秒 DMS 为单位进行测量;纬度值相对于赤道进行测量,其范围是 -90°南极点到 +90°北极点;经度值相对于本初子午线进行测量;其范围是 -180°向西行进时到 180°向东行进时;ArcGIS中,中国常用的坐标系统为GCS_Beijing_1954Krasovsky_1940,GCS_Xian_1980IAG_75,GCS_WGS_1984WGS_1984,GCS_CN _2000CN_2000;2.1..2投影坐标系将球面坐标转化为平面坐标的过程称为投影;投影坐标系的实质是平面坐标系统,地图单位通常为米;投影坐标系在二维平面中进行定义;与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定;投影坐标系始终基于地理坐标系,即:“投影坐标系=地理坐标系+投影算法函数“;我们国家的投影坐标系主要采用高斯-克吕格投影,分为6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带;具体分带法是:6度分带从本初子午线prime meridian开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,中国跨13-23带;3度投影带是从东经1度30分经线1.5°开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带,中国跨25-45带;在CoordinateSystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:Beijing 1954 Xian 1980 3 Degree GK CM 117E北京54西安1980 3度带无带号Beijing 1954 Xian 1980 3 Degree GK Zone 25北京54 西安1980 3度带有带号Beijing 1954 Xian 1980 GK Zone 13北京54 西安1980 6度带有带号Beijing 1954 GK Zone 13NXian 1980 GK CM 75E北京54 西安1980 6度带无带号注释:GK 是高斯克吕格,CM 是CentralMeridian 中央子午线,Zone是分带号,N是表示不显示带号;2.2 ArcGIS中定义坐标系ArcGIS中所有地理数据集均需要用于显示、测量和转换地理数据的坐标系,该坐标系在ArcGIS 中使用;如果某一数据集的坐标系未知或不正确,可以使用定义坐标系统的工具来指定正确的坐标系,使用此工具前,必须已获知该数据集的正确坐标系;该工具为包含未定义或未知坐标系的要素类或数据集定义坐标系,位于ArcToolbox—Data management tools—Projections and transfomations —Define Projections Input Dataset:要定义投影的数据集或要素类CoordinateSystem:为数据集定义的坐标系统2.3基于ArcGIS的投影转换在数据的操作中,我们经常需要将不同坐标系统的数据转换到统一坐标系下,方便对数据进行处理与分析,软件中坐标系转换常用以下两种方式:2.3.1 直接采用已定义参数实现投影转换ArcGIS软件中已经定义了坐标转换参数时,可直接调用坐标系转换工具,直接选择转换参数即可;工具位于ArcTool box—Data management tools—Projections andtransfomations——Feature—Project栅格数据投影转换工具Raster—Project raster,在工具界面中输入以下参数:Input dataset:要投影的要素类、要素图层或要素数据集Output Dataset:已在输出坐标系参数中指定坐标系的新要素数据集或要素类;out_coor_system:已知要素类将转换到的新坐标系Geographic Transformation:列表中为转换参数,以GCS_Beijing_1954转为GCS_WGS_1984为例,各转换参数含义如下:Beijing_1954_To_WGS_1984_1 15918 鄂尔多斯盆地Beijing_1954_To_WGS_1984_2 15919 黄海海域Beijing_1954_To_WGS_1984_3 15920 南海海域-珠江口Beijing_1954_To_WGS_1984_4 15921 塔里木盆地Beijing_1954_To_WGS_1984_5 15935 北部湾Beijing_1954_To_WGS_1984_6 15936鄂尔多斯盆地2.3.2 自定义三参数或七参数转换当ArcGIS软件中不能自动实现投影间直接转换时,需要自定义七参数或三参数实现投影转换,以七参数为例,转换方法如下:在ArcTool box中选择Create Custom Geographic Transformation工具, 在弹出的窗口中,输入一个转换的名字,如wgs84ToBJ54;在定义地理转换方法下面,在Method中选择合适的转换方法如 COORDINATE_FRAME,然后输入七参数,即平移参数、旋转角度和比例因子,如图所示:2.3.2.2 投影转换打开工具箱下的Projections and Transformations>Feature>Project,在弹出的窗口中输入要转换的数据以及Output Coordinate System,然后输入第一步自定义的地理坐标系如wgs84ToBJ54,开始投影变换,如图所示完成投影转换:。
使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。
【关键词】ArcGIS 坐标转换投影变换1坐标转换简介坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。
在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。
如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。
本文目的在于帮助用户解决这个问题。
我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。
为什么要进行坐标转换?我们先来看两组参数,如表1所示:表1 BJ54与WGS84基准参数很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。
当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。
这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。
ArcGIS实战7、空间参考与变换

【新建地理坐标系】对话框
【新建投影坐标系】对话框
6
定义投影坐标系统后,单击【完成】按钮,返回上一级对话框 ,在【详细信息】文本框中可以浏览投影坐标系统的详细信息。 单击【修改】按钮,可修改已定义的投影坐标系统;单击【清除 】按钮,可清除原有投影坐标系统,以便定义新的投影坐标系统 。
单击【确定】按钮,完成定义投影坐标系统的操作。 (2)创建自定义地理(坐标)变换
【平移】对话框
平移结果图
11
扭曲:指将栅格数 据通过输入的控制点进 行多项式变换。其操作 步骤为:在ArcToolbox 中双击【数据管理工具 】-【投影和变换】-【 栅格】-【扭曲】,打 开【扭曲】对话框如图 所示,单击【确定】按 钮,即完成操作。
【扭曲】对话框
12
旋转:指将栅格数据按指定的角度,围绕指定枢轴点转动。其 操作步骤:在ArcToolbox中双击【数据管理工具】-【投影和变换 】-【栅格】-【旋转】,打开【输出栅格数据集】对话框,加载 相关数据如图所示,单击【确定】按钮,完成操作,结果如图。
重设比例结果
15
镜像:指将栅格数据沿穿过栅格中心的垂直轴从左向右 翻转。操作步骤为:在ArcToolbox中双击【数据管理工具】 -【投影与变换】-【栅格】-【镜像】,打开【镜像】对话 框,如图加载各项数据,单击【确定】按钮,完成操作结果 如图。
【镜像】对话框
镜像前后的图像对比
16
以自定义的GCS-Beijing-1954转GCS-WGS-1984为例说明,其操 作步骤如下:
在ArcToolbox中双击【 数据管理工具】-【投影变 换】-【创建自定义地理( 坐标)变换】打开【创建 自定义地理(坐标)变换 】对话框,加载相关数据 如图,点击【确定】按钮 ,完成操作。
ArcGIS10.2 学习课程——2.坐标系基础和投影变换

坐标是GIS数据的骨骼框架,能够将我 们的数据定位到相应的位置,为地图 中的每一点提供准确的坐标。 如经纬度下经度、纬度, 平面中,Y
Page
3
中国信息化高级技术培训中心欢迎你
什么是坐标系?
比方说,公路里碑上的公里数,通常是从 大城市起算的;说某某建筑有多高,一般 是从地面算起。这就是说,地球上任何一 点的位置都是相互联系,都有一定相对关 系。我们测绘地面上点的位置,也是一样, 也要有一个起算标准,不然就分不出高低、 这了。测绘地面上某个点的位置时,需要 两个起算点:一是平面位置,一是高程。 计算这两个位置所依据的系统,就叫坐标 系统和高程系统。
二、坐标系介绍
1.ArcGIS的坐标,投影文件的含义 2.北京54坐标系、西安80坐标系、WGS84的区 别 3.3度,6度分带含义 4.ArcGIS坐标系统文件说明 5.ArcGIS坐标系中两个坐标系统 6.定义坐标系 7.常见问题解决
Page 16
中国信息化高级技术培训中心欢迎你
二、坐标系统介绍
Page 6
中国信息化高级技术培训中心欢迎你
椭球体(Spheroid)
众所周知我们的地球表面是一个凸凹不平的表面,而对于地 球测量而言,地表是一个无法用数学公式表达的曲面,这样 的曲面不能作为测量和制图的基准面。假想一个扁率极小的 椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球 椭球体。地球椭球体表面是一个规则的数学表面,可以用数 学公式表达,所以在测量和制图中就用它替代地球的自然表 面。因此就有了地球椭球体的概念。 地球椭球体有长半径和短半径之分,长半径(a)即赤道半径, 短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球 体的扁平程度。由此可见,地球椭球体的形状和大小取决于a、 b、f 。因此,a、b、f 被称为地球椭球体的三要素。
GIS学习基本知识

地图单位介绍
长度单位 1km(公里)=1000m(米,公尺) 1m(米)=1000mm(毫米),1m=100cm(厘米) 1m=10dm(分米) 1m=3尺, 面积单位 1公顷=100亩,1公顷=1万平方米,1平方公里=100公顷,
1亩=2000/3平方米 1平方公里=100万平方米, 1平方公里=1500亩
地图单位介绍-特殊的单位英寸
电子世界的特殊单位(英寸),英寸很常见计 算机屏幕,电视机等等,都是对角线长度计算 的 1英寸(inch )=25.4mm,1英尺=12英寸, 1米=1000/25.4=39.37英寸
屏幕比例计算 1英寸=96像素,都转换为统一单位计算(英
寸) 打印的比例尺
300dpi= 1英寸=300像素(点)
全球定位系统GPS
GPS主要包括3部分的设备:地面控制中心;导 航卫星和GPS接收装置。GPS主控制站在美国科罗 拉多,负责全权控制,另外的三个地面天线,五 个监测站,分布在全球。主要是收集数据、计算 导航信息、诊断系统状态、调度卫星这些杂事。 太空中共有27颗GPS卫星,距离地面20200公里。 27颗卫星有24颗运行、3颗备用。这些卫星已经更 新了三代五种型号。
=null
多位
is Null
_表示1位,%表示 多位
总结字符串一般用单引号,特殊的查询,如西南交
大,应为’%西南交%大%’
4、地图比例尺和地图单位介绍
基本比例尺地形图:1:5千,1:1万、1:2.5万、1:5 万、1:10万、1:25万、1:50万、1:100万 大比例尺:1:500,1:1000,1:2000
1、地理信息系统概念介绍
地理信息系统基础是数据,就是对数据的 显示,编辑处理,分析应用,打印输出的系 统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得出投影坐标系所必须的条件是: 1、球面坐标 2、将球面坐标转换成平面坐标的过程(投影) GCS=椭球体+大地基准面 PCS = GCS + 投影过程
ArcGIS中北京54坐标系的描述
在Coordinate systems\Coordinatesystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可 以看到四种不同的命名方式:
投影变换即是实现不同坐标系之间的转换,如 WGS84与BJ54是两种不同的大地基准面,不同 的参考椭球体,因而两种地图下,同一个点的坐 标是不同的,无论是三度带六度带坐标还是经纬 度坐标都是不同的。当要把GPS接收到的点 (WGS84坐标系统的)叠加到BJ54坐标系统的 底图上,那就会发现这些GPS点不能准确的在它 该在的地方,即“与实际地点发生了偏移”。这 就要求把这些GPS点从WGS84的坐标系统转换 成BJ54的坐标系统了。
首先让我们来看看ArcGIS产品中对于北京54投影坐标系统的定义参数:
Projection: Gauss_Kruger Parameters: False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 117.000000 Scale_Factor: 1.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Name: GCS_Beijing_1954 Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
为旋转椭球面。
b a
Equatorial Axis
Equator
South Pole
参考椭球体参数
椭球名称 年代 a
6 378 245.000m
b
6 356 863.019m
e
1/298.3
克拉苏夫斯基 1940 椭球体
IUGG椭球体 1975
WGS-84椭 球体 1984
6 378 140.000m
每个国家或地区均有自己的大地基准面,我们通 常称谓的北京54坐标系、西安80坐标系实际上 指的是我国的两个大地基准面。 我国参照前苏联从1953年起采用克拉索夫斯基 (Krassovsky)椭球体建立了我国的北京54坐标 系,1978年采用国际大地测量协会推荐的1975 地球椭球体(IAG75)建立了我国新的大地坐标 系--西安80坐标系。 GPS测量采用的WGS84坐标系采用的是 WGS84基准面和WGS1984椭球体。
ArcGIS中西安80坐标系的描述
Xian Xian Xian Xian
1980 1980 1980 1980
3 Degree GK CM 75E.prj 3 Degree GK Zone 25.prj GK CM 75E.prj GK Zone 13.prj
四、坐标系统和投影变换在桌面产品中的应用
地球表面、参考椭球体和大地基准面的关系
(2)本地基准面(Local Datum)
本地基准面是将参考椭球体移动到更贴近当地地表形状 的位置,参考椭球体上的某一点必然对应着地表上的某一 位置,这个点就称作大地起算原点。大地起算原点的坐标 值是固定的,其他点的坐标值都可以由该点计算得到。本 地坐标系统的起始位置一般就不在地心的位置了,而是距 地心一定的偏移量。
(2)投影变换
1、投影转换参数 对两个基于不同椭球体的坐标系进行转换是不 严密的,需要涉及到三参数或者七参数。三个平移 参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个 旋转参数εx、εy、εz表示当地坐标系旋转至与地 心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最 后是比例校正因子,用于调整椭球大小。 如果说你要转换的坐标系XYZ三个方向上是重 合的,那么我们仅通过平移就可以实现目标,平移 只需要三个参数,并且现在的坐标比例大多数都是 一致的,缩放比默认为一,这样就产生了三参数, 三参就是七参的特例,旋转为零,尺度缩放为一。
地理坐标系统(Geographic coordinate system)
Geographic coordinate system(GCS)是 球面坐标系统,以经纬度为存储单位(° ′ ″)。 GCS坐标系包含两个方面:椭球体和基准面。
ArcGIS中GCS的完整参数
Alias: 别名 Abbreviation: 缩写
(1)严密的动态投影方式 假设原投影坐标系统为Xian80坐标系统,本例选 择为Xian_1980_3_Degree_GK_Zone_40投影, 中央经线为120度,要转换成 Beijing_1954_3_Degree_GK_Zone_40。 打开View-Data Frame Properties对话框,显示 当前的投影坐标系统为Xian 1980 GK Zone 40, 在下面的选择坐标系统框中选择Beijing 1954 GK Zone 40,在右边有一个按钮为 Transformations...
ArcGIS中的坐标系统和投影变换
主要内容
一、地球椭球体(Ellipsoid) 二、大地基准面(Geodetic datum) 三、空间参考系统(Spatial Reference)
四、坐标系统和投影变换在桌面产品中的应用
五、两种配准方式(Spatial Adjustment和
Georeferencing )
3、严密的投影变换 在对数据的空间信息要求较高的工程中往往不 能适用,有比较明显的偏差。在项目的前期数据准 备工作中,需要进行更加精确的三参数或七参数投 影转换。在ArcGIS中可以通过动态投影和投影变 换工具Feature->Project与Raster->Project Raster两种方式进行转换。
一、地球椭球体(Ellipsoid)
为了测量成果的计算和制 图工作的需要,选用一个同大 地体相近的,可以用数学方法 来表达的旋转椭球体来代替地 球。这个旋转椭球是一个椭球
椭球体三要素: 长轴a(赤道半径) 短轴b(极半径) 椭球扁率f=(a-b)/a
North Pole
绕其短轴旋转而成,其表面成
Polar Axis
球上每个地方的具体情况,可以理解为基准面就是
参考椭球向某个地方的大地水准面逼近的结果,它 与参考椭球是多对一的关系。
二、大地基准面(Geodetic datum)
(1)地心基准面 在过去的15年,使用卫星采集数据给测量学 家们提供了一个很好的模拟地球的椭球体,即地心 坐标系统。地心坐标系是使用地球的质心作为中心, 目前使用最广泛的就是WGS 1984这种地心坐标 系。
三、空间参考(Spatial Reference)
一个空间参考包括了描述要素X,Y,Z位置的坐标系统 (Coordinate System),以及描述要素X,Y,Z值的分 辨率(resolution)和容限(tolerance)。 分辨率:分辨率反映了数据库中可以存储的坐标值的最 小地图单位长度。 容限:容限反映了数据的坐标精度,也就是坐标值之间 的最小距离,小于这个容限的将会被认为是同一个点。 对于以米为单位的投影坐标系统,默认的容限值是 0.001,也就是10倍的分辨率值。用户可以自定义容限 值,但是不要小于分辨率的2倍大小。 坐标系统(Coordinate System):分为地理坐标系统 (Geographic coordinate system)和投影坐标系统 (Project coordinate system)两种,分别用来表示 三维的球面坐标和二维的平面坐标。
Beijing Beijing Beijing Beijing 1954 1954 1954 1954 3 Degree GK CM 75E.prj 3 Degree GK Zone 25.prj GK Zone 13.prj GK Zone 13N.prj
三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标 前不加带号; 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标 前加带号; 六度分带法的北京54坐标系,分带号为13,横坐标前加带号; 六度分带法的北京54坐标系,分带号为13,横坐标前不加带号。
Remarks: 标注
Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
GCS NAD1927 NAD1983 WGS1984
经度
-122.46690368652 -122.46818353793 -122.46818353793
纬度
48.7440490722656 48.7438798543649 48.7438798534299