扇形圆柱圆锥面积公式及计算
圆柱、圆锥常用表格面积、体积公式

刘老师圆柱与圆锥圆柱的侧面积=底面圆周长×高字母表示:S侧=C底h 2.底面圆周长 =圆周率×直径 =圆周率×2×半径字母表示:C底=πd=2πr.3求圆柱的表面积三步:(1)圆柱的底面积 =S 底 =πr2=(πd÷2) 2=πd2÷4(2)圆柱侧面积 =S 侧 =h×C底(底面圆周长) =2πrh= πdh(3)圆柱表面积 =S 表 =S侧 +2S 底圆柱体积的公式圆柱的体积 =底面积×高字母表示:V柱=S底h圆锥体积的公式( 1)圆锥的体积等于与它等底等高圆柱体积的1/3V 锥 =V 柱÷3=S底 h÷3(2)已知圆锥底面积( S)和高( h),求体积的公式: V 锥 =S底 h÷3(3)已知圆锥体积( V)和高( h),求底面积的公式: S 底 =3V 锥÷h(4)已知圆锥体积( V)和底面积( S),求高的公式: h=3V 锥÷S底例题精讲圆柱、圆锥常用的表面积、体积公式立体图形表面积体积S圆柱侧面积个底面积2πrh 2 πr2V圆柱πr2h2 hr圆柱hr 圆锥S圆锥侧面积底面积n πl2πr2V圆锥体1πr2 h3603注: l 是母线,即从极点终究面圆上的线段长板块一圆柱与圆锥【例 1】如图,用高都是 1 米,底面半径分别为 1.5 米、1米和 0.5 米的 3 个圆柱组成一个物体.问这个物体的表面积是多少平方米( π取 )1111【例 2】有一个圆柱体的零件,高10 厘米,底面直径是 6 厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是 4 厘米,孔深 5 厘米(见右图).若是将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米)圆柱体的侧面张开,放平,是边长分别为10 厘米和12 厘米的长方形,那【例3】 (第四届希望杯 2 试一试题么这个圆柱体的体积是________立方厘米. (结果用π表示 )(接头处忽略不计),求这【例4】如右图,是一个长方形铁皮,利用图中的阴影部分,恰好能做成一个油桶个油桶的容积.( π )【牢固】如图,有一张长方形铁皮,剪以下图中两个圆及一块长方形,正好可以做成 1 个圆柱体,这个圆柱体的底面半径为10 厘米,那么本来长方形铁皮的面积是多少平方厘米( π 3.14 )10cm【例 5】把一个高是8 厘米的圆柱体,沿水平方向锯去 2 厘米后,剩下的圆柱体的表面积比本来的圆柱体表面积减少平方厘米.本来的圆柱体的体积是多少立方厘米【牢固】一个圆柱体底面周长和高相等.若是高缩短 4 厘米,表面积就减少平方厘米.求这个圆柱体的表面积是多少4cm【例 6】 (2008 年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大2008cm2,则这个圆柱体木棒的侧面积是 ________ cm2. ( π取 )第 2题【牢固】已知圆柱体的高是10 厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40 平方厘米,求圆柱体的体积.( π3 )【例 7】一个圆柱体的体积是立方厘米,底面半径是 2 厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米( π )【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液 100 毫升,每分钟输 2.5 毫升.如图,请你观察第12 分钟时图中的数据,问:整个吊瓶的容积是多少毫升【例 10】(2008 年”希望杯” 五年级第 2 试 )一个拧紧瓶盖的瓶子里面装着一些水(如图 ),由图中的数据可推知瓶子的容积是_______ 立方厘米. ( π取 )10684( 单位:厘米)【牢固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为π立方厘米.当瓶子正放时,瓶内的酒精的液面高为 6 厘米;瓶子倒放时,空余部分的高为 2 厘米.问:瓶内酒精的体积是多少立方厘米合多少升26【牢固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深 15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深 25cm.酒瓶的容积是多少( π取 3)302515【牢固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(以以下图所示),请你依照图中注明的数据,计算瓶子的容积是______.7cm5cm4cm【牢固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部圆柱体的底面直径和高都是12 厘米.其5 厘米,那么这个容器的容积是多少立方厘米( π 3 )5cm11cm【例 11】(第四届希望杯2)如,底面50 平方厘米的柱形容器中装有水,水面上飘扬着一棱 5 厘米的正方体木,木浮出水面的高度是 2 厘米.若将木沉着器中取出,水面将下降 ________厘米.2厘米【例12】有两个棱8厘米的正方体盒子, A 盒中放入直径8 厘米、高8 厘米的柱体一个,B 盒中放入直径 4 厘米、高8 厘米的柱体 4 个,在 A 盒注水,把 A 盒的水倒入 B 盒,使 B 盒也注水, A 盒余下的水是多少立方厘米【例 13】州来的傅擅做拉面,拉出的面条很很,他每次做拉面的步是的:将一个面先搓成柱形面棍, 1.6 米.尔后折,拉到 1.6 米;再折,拉到 1.6 米⋯⋯照此行下去,最后拉出的面条粗(直径 )有本来面棍的 1 .:最后傅拉出的些面条的64有多少米 (假傅拉面的程中.面条始保持粗平均的柱形,而且没有任何浪)【例14】一个柱形容器内放有一个方形.打开水往容器中灌水. 3 分水面恰好没方体的面.再18 分水灌容器.已知容器的高50 厘米,方体的高20 厘米,求方体底面面与容器底面面之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80 平方厘米,高是15厘米,水深8 厘米.现将一个底面积是 16 平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【牢固】一只装有水的圆柱形玻璃杯,底面积是80 平方厘米,高是15厘米,水深 10 厘米.现将一个底面积是 16 平方厘米,高为12 厘米的长方体铁块竖放在水中后.现在水深多少厘米【牢固】一只装有水的圆柱形玻璃杯,底面积是80 平方厘米,高是15厘米,水深 13 厘米.现将一个底面积是 16 平方厘米,高为12 厘米的长方体铁块竖放在水中后.现在水深多少厘米【例 16】一个圆柱形玻璃杯内盛有水,水面高 2.5 厘米,玻璃杯内侧的底面积是72 平方厘米.在这个杯中放进棱长 6 厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米【例 17】一个盛有水的圆柱形容器,底面内半径为 5 厘米,深20 厘米,水深15 厘米.今将一个底面半径为 2 厘米,高为17 厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米【例18】有甲、乙两只圆柱形玻璃杯,其内直径依次是淹没着一铁块,当取出此铁块后,甲杯中的水位下降了的水未外溢.问:这时乙杯中的水位上升了多少厘米10 厘米、 20 厘米,杯中盛有适合的水.甲杯中2 厘米;尔后将铁块淹没于乙杯,且乙杯中【牢固】有一只底面半径是20 厘米的圆柱形水桶,里面有一段半径是 5 厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了 6 厘米.这段钢材有多长【例19】一个圆锥形容器高中,水面高多少厘米24 厘米,其中装满水,若是把这些水倒入和圆锥底面直径相等的圆柱形容器【例20】(2009 年”希望杯” 一试六年级)如图,圆锥形容器中装有水50 升,水面高度是圆锥高度的一半,这个容器最多能装水升.r1r2h12h【例 21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的1 ,乙容器中水的高度是锥高的2 ,比33较甲、乙两容器,哪一只容器中盛的水多多的是少的的几倍乙甲【例22】(2008 年仁华考题 )如图,有一卷紧紧围绕在一起的塑料薄膜,薄膜的直径为直径为 8 厘米的卷轴,已知薄膜的厚度为0.04 厘米,则薄膜张开后的面积是20 厘米,中间有一平方米.20cm8cm100cm【牢固】图为一卷紧绕成的牛皮纸,纸卷直径为20 厘米,中间有素来径为 6 厘米的卷轴.已知纸的厚度为毫米,问:这卷纸张开后大体有多长【牢固】如图,厚度为0.25 毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50 厘米.这卷铜版纸的总长是多少米【例23】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10 厘米,侧面上的洞口是边长为 4 厘米的正方形,上下底面的洞口是直径为 4 厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 24】如图,ABC是直角三角形,AB 、 AC 的长分别是 3 和 4.将ABC 绕 AC 旋转一周,求ABC 扫出的立体图形的体积.( π )CB A 【例 25】已知直角三角形的三条边长分别为3cm , 4cm , 5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米( π取 )【牢固】如图,直角三角形若是以BC 边为轴旋转一周,那么所形成的圆锥的体积为,以AC边为轴旋转16π一周,那么所形成的圆锥的体积为,那么若是以AB 为轴旋转一周,那么所形成的几何体的体积12π是多少BC A【例 26】如图,ABCD是矩形,BC6cm , AB10cm ,对角线 AC 、 BD 订交 O . E 、 F 分别是 AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米 ( π取 3)A E DOB FC 【牢固】 (2006 年第十一届华杯赛决赛试题)如图,ABCD是矩形,BC6cm , AB10cm ,对角线 AC 、 BD圆柱、圆锥常用表格面积、体积公式订交 O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米A DOB C11 / 11。
扇形的周长和面积公式初中

扇形的周长和面积公式初中扇形是圆的一部分,由两个半径和一段弧围成。
在初中数学中,我们学习了扇形的周长和面积的计算公式,以及它们的特点、原理和应用。
接下来,我们将详细介绍扇形周长和面积的计算公式及其相关知识。
一、扇形面积公式1.扇形面积公式:S扇= (LR)/2其中,L为扇形弧长,R为半径。
2.扇形面积公式:S扇= R²/2 ×(θ/360)其中,R为半径,θ为扇形圆心角的度数。
3.扇形面积公式:S扇= (R²×θ)/360其中,R为半径,θ为扇形圆心角的度数。
4.扇形面积公式:S扇= (R²×n)/360其中,n为扇形的度数。
二、扇形周长公式1.扇形周长公式:C扇= L +2R其中,L为扇形弧长,R为半径。
2.扇形周长公式:C扇=2πR ×(θ/360)其中,R为半径,θ为扇形圆心角的度数。
3.扇形周长公式:C扇=2R + L其中,R为半径,L为扇形弧长。
4.扇形周长公式:C扇=2R +2R ×(m/360)其中,R为半径,m为扇形圆心角的度数。
三、扇形面积和周长的计算公式的特点扇形面积和周长的计算公式具有以下特点:1.公式中的参数均与扇形的半径和圆心角有关。
2.面积公式中的角度可以采用度数或弧度制表示。
3. 周长公式中的角度可以表示为圆心角的度数或弧度。
四、扇形面积和周长的计算原理1.扇形面积公式是基于圆的面积公式推导出来的,扇形是圆的一部分,其面积与圆的面积成比例。
2.扇形周长公式是根据圆的周长公式和弧长公式推导出来的,扇形的周长等于圆的周长加上两个半径与弧长的和。
在实际应用中,扇形面积和周长公式可以帮助我们计算各种扇形的面积和周长,例如圆柱、圆锥等几何体的扇形部分。
此外,这些公式在物理、化学等学科中也有广泛的应用。
五、关于扇形的延申知识1.扇形还可分为小扇形和大扇形,小扇形的度数小于180度,大扇形的度数大于180度。
圆锥公式表面积

圆锥公式表面积圆锥是数学中的基本几何图形之一,它由底面为圆的一个空间图形组成,底面上的每个点到一个点(称为圆锥的顶点)连线的长度相等,该长度常常被称为圆锥的母线。
圆锥公式是计算圆锥表面积的基本方法,本文将围绕圆锥公式展开详细的内容。
一、圆锥的表面积圆锥的表面积是指圆锥所有表面积之和。
任何一个完整的圆锥都由底面、侧面和顶面组成。
圆锥底面的面积是一个圆的面积,如果底面半径为r,则底面面积为πr²。
如果圆锥高度为h,则侧面的面积可以表示为πrh。
圆锥的顶面则为一个点,因此不存在其面积。
因而,圆锥的表面积S可以表示为:S = πr² + πrl其中,r为底面半径,l为圆锥的母线,也可以表示为:S = πr² + πr√(r²+h²)其中h为圆锥的高度,所以圆锥的总表面积等于底面面积和侧面面积之和。
二、圆锥公式的应用圆锥公式的应用非常广泛,我们可以用它来计算各种形状的圆锥表面积。
下面就让我们通过几个示例来演示。
例1:一个半径为2cm、高为3cm的圆锥的表面积是多少?根据圆锥的公式,我们可以将r=2,h=3代入,从而得到:S = πr² + πr√(r²+h²)S = 4π + 2π√13因此,该圆锥的表面积约为23.26平方厘米。
例2:一个底面圆半径为3cm,侧棱长为4cm的圆锥的表面积是多少?根据圆锥的公式,我们可以将r=3,l=4代入,从而得到:S = πr² + πrlS = 9π + 12π因此,该圆锥的表面积约为45.84平方厘米。
例3:圆锥的底面直径为10cm,顶角为86度,高度为8cm,求圆锥的表面积。
首先,根据圆锥的顶角,我们可以计算出其切割角A,A=90度-86度=4度。
然后,根据勾股定理,我们可以计算出圆锥的底面半径r,r=5cm。
接下来,我们可以将r=5,h=8代入圆锥的公式中,从而得到:S = πr² + πr√(r²+h²)S = 25π + 40π因此,该圆锥的表面积约为188.5平方厘米。
圆锥面积公式

圆锥面积公式是:V=1/3Sh(S是底面积,h是高)。
圆锥体积:V=1/3Sh(S是底面积,h是高);圆锥表面积的计算公式是:圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形。
),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离)。
圆锥的表面积:
圆锥的表面积计算公式为:S=πr+πrl。
圆锥的表面积由侧面积和底面积两部分组成,全面积(S)=S侧+S底。
圆锥的表面积计算中,S为表面积,r为地面圆的半径,l为圆锥母线。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式
V=Sh(V=πr^2h),得出圆锥体积公式:V=1/3Sh,其中S是圆柱的底面积,h是圆柱的高,r是圆柱的底面半径。
扇形、圆柱、圆锥面积公式及计算

扇形面积公式、圆柱、圆锥侧面展开图
1.弧长公式:
n
Lπ
÷
=R
180
n是圆心角,R是扇形半径,L是扇形中圆心角所对应的弧长;
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为L=nπR÷180。
2. 扇形面积公式:
3.圆柱
圆柱的侧面展开图是两邻边分别为圆柱的高和圆柱底面周长的矩形。
圆柱的侧面积等于底面周长乘以圆柱的高。
4.圆锥
圆锥是由一个底面和一个侧面组成的。
圆锥的底面是一个圆,侧面是一个曲面,这个曲面在一个平面上展开后是一个扇形,这个扇形
的半径是圆锥的母线(把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线),扇形的弧长是圆锥底面的周长。
因此,圆锥的侧面积是圆锥的母线与底面周长积的一半。
如图所示,若圆锥的底面半径为r,母线长为l,则。
圆锥形的面积公式

圆锥 表面积
圆锥的表面积计算公式为:S 圆锥表面积
=πr 2+πrl (其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离)
思路:圆锥的表面积由侧面积和底面积两部分组成,S 圆锥表面积=S 侧+S 底,(r 为底面圆的半径,l 为圆锥母线,圆锥的顶点到圆锥的底面圆周之间的距离),如下图,圆锥侧面展开是一个角度为θ扇形,所以圆锥侧面积可以转为求扇形面积,扇形面积跟θ有关,θ可以通过弧AB 求得。
过程:弧AB=圆O 的周长=2πr
弧AB=2πl ×(θ/360°)(弧AB 是以l 半径圆弧的一部分)
2πl ×(θ/360°)=2πr
θ=360°r /l
S 扇=πl 2×(θ/360°)
=πl 2×360°r /l /360°
=πrl
S 底=πr 2
则S 圆锥表面积=S 侧+S 底=S 扇+S 底=πrl+πr 2
A B . . θ
o .。
图形公式大全表

图形公式大全表所有图形的公式一、平面图形公式:1、正方形 s=a²或对角线×对角线÷2 c=4a2、平行四边形 s=ah3、三角形s=ah÷24、梯形s=(a b)×h÷25、圆形s=πr2 c=πd6、椭圆s=πr7、扇形 s=lr/2二、立体图形公式:1、长方体的表面积=2×(长×宽长×高宽×高) 用符号表示是:s=2(ab bc ca)2、长方体的体积 =长×宽×高用符号表示是:v=abh 或底面积×高用符号表示是:v=sh3、正方体的表面积=棱长×棱长×6 用符号表示是:s=a²×64、正方体的体积=棱长×棱长×棱长用符号表示是:v=a³5、圆柱的侧面积=底面周长×高用符号表示是:s侧=πd×h6、圆柱的表面积=2×底面积侧面积用符号表示是:s=πr²×2 dπh7、圆柱的体积=底面积×高用符号表示是:v=πr²×h8、圆锥的体积=底面积×高÷3 用符号表示是:v=πr²×h÷39、圆锥侧面积=1/2*母线长*底面周长10、圆台体积=[s s′ √(ss′)]h÷311、球体体积=(1/3*s*h)*(4*pi*r²)/s=4/3*pi*r²三、立体几何图形:1、柱体:包括圆柱和棱柱。
棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;棱柱体积都等于底面面积乘以高,即v=sh;2、锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及n棱锥;棱锥体积为v=sh/3 ;3、旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。
圆的有关计算(例题+练习+详解)

知识框架知识点一:扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π= 3 .圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+ (2)圆锥的体积:213V r h π=知识点二:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;(2)正四边形S lBAO母线长底面圆周长C 1D 1DCBAB1RrCBAODCBAOECBADOD(B ')A(A ')D 'C 'CBCBDOA 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =:(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.【例题经典】考点1:圆的周长、弧长中考中对圆的周长及弧长公式的考查内容难度较小,常以填空选择题出现。
[例1]如图,一块边长为8cm 的正方形木板ABCD,在水平桌面上绕点A 按逆时针方向旋转至A ′B ′C ′D ′的位置,则顶点C•从开始到结束所经过的路径长为( ) A.16cm B.162cm C.8πcm D.42πcm[例2] 如图,Rt △ABC 的斜边AB=35,AC=21,点O 在AB 边上,OB=20,一个以O 为圆心的圆,分别切两直角边边BC 、AC 于D 、E 两点,求DE 的长度.【分析】求弧长时,只要分别求出圆心角和半径,特别是求半径时,要综合应用所学知识解题,如此题求半径时,就用到了相似.考点2:扇形及不规则图形的面积求不规则图形的面积一直是历年来中考考查的主要内容,一般方法是运用割补法和整体减局部的方法把不规则图形转化为规则图形,从而利用扇形公式等计算,从而达到考查目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扇形面积公式、圆柱、圆锥侧面展开图[学习目标]1. 掌握基本概念:正多边形,正多边形的中心角、半径、边心距以及平面镶嵌等。
2. 扇形面积公式:n是圆心角度数,R是扇形半径,l是扇形中弧长。
3. 圆柱是由矩形绕一边旋转360°形成的几何体,侧面展开是矩形,长为底面圆周长,宽为圆柱的高r底面半径h圆柱高4. 圆锥侧面积圆锥是由直角三角形绕一直角边旋转360°形成的几何体。
侧面展开是扇形,扇形半径是圆锥的母线,弧长是底面圆周长。
5. 了解圆柱由两平行圆面和一曲面围成,明确圆柱的高和母线,它们相等。
6. 了解圆锥由一个曲面和一个底面圆围成,明确圆锥的高和母线,知道可以通过解高、母线、底面半径所围直角三角形,解决圆锥的有关问题。
7. 圆柱圆柱的侧面展开图是两邻边分别为圆柱的高和圆柱底面周长的矩形。
圆柱的侧面积等于底面周长乘以圆柱的高。
如图所示,若圆柱的底面半径为r,高为h,则:,。
8. 圆锥圆锥是由一个底面和一个侧面组成的。
圆锥的底面是一个圆,侧面是一个曲面,这个曲面在一个平面上展开后是一个扇形,这个扇形的半径是圆锥的母线,扇形的弧长是圆锥底面的周长。
因此,圆锥的侧面积是圆锥的母线与底面周长积的一半。
如图所示,若圆锥的底面半径为r,母线长为l,则。
[重点、难点]扇形面积公式及圆柱、圆锥侧面积公式的理解和灵活应用。
【典型例题】例1. 已知如图1,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积。
图1解:∵AB=1,BC=2,F点在以B为圆心,BC为半径的圆上,∴BF=2,∴在Rt△ABF中,∠AFB=30°,∠ABF=60°∴例2. 已知扇形的圆心角150°,弧长为,则扇形的面积为____________。
解:设扇形的面积为S,弧长为l,所在圆的半径为R,由弧长公式,得:∴由扇形面积公式,,故填。
点拨:本题主要考查弧长公式和扇形面积公式。
例3. 已知弓形的弦长等于半径R,则此弓形的面积为__________。
(弓形的弧为劣弧)。
解:∵弓形弦长等于半径R∴弓形的弧所对的圆心角为60°∴扇形的面积为。
三角形的面积为。
∴弓形的面积为。
即。
故应填。
点拨:注意弓形面积的计算方法,即弓形的面积等于扇形面积与三角形面积的和或差。
本题若没有括号里的条件,则有两种情况。
例 4. 若圆锥的母线与底面直径都等于a,这个圆锥的侧面积为_____________。
解:∵圆锥的底面直径等于a。
∴底面半径为,∴底面圆的周长为。
又∵圆锥的母线长为a,∴圆锥的侧面积为。
故应填点拨:圆锥的侧面积即展开图的扇形面积,可利用扇形的面积公式求得。
例5. 如图2所示,OA和OO1是⊙O中互相垂直的半径,B在上,弧的圆心是O1,半径是OO1,⊙O2与⊙O、⊙O1、OA都相切,OO1=6,求图中阴影部分的面积。
图2解:设⊙O2与⊙O、⊙O1、OA分别切于点D、C、E,设⊙O2的半径为r,连结O1O2,O2E,过点O2作O2F⊥O1O于F,连结O1B、OB、OO2。
∵O1O=6,l ∴∴又∵,∴,,,∴(舍去)又∵是等边三角形,∴扇形和扇形的面积相等且都等于。
∴所组成的图形面积为扇形O1BO和扇形OO1B的面积之和减去三角形O1OB的面积,即:又∵扇形OAO1的面积为:∴阴影部分的面积为:点拨:本题比较复杂,考查的知识面比较多,要正确作辅助线,找出解题的思路。
例6. 在半径为2的圆,引两条平行弦,它们所对的弧分别为120°和60°,求两弦间所夹图形的面积及周长。
解:分两条弦在圆心的同侧或两侧这两种情况:①如图3所示,由题意,图3则∠AOB=120°,∠COD=60°又∵AB∥CD,∴,∴∠AOC=∠BOD又∵∠AOC+∠BOD=180°∴∠AOC=∠BOD=90°∴又∵故所求面积为又∵∠AOC=90°,∴,同理又∵△OCD是等边三角形,∴CD=OC=OD=2又∵∴所求的周长②如图4所示,由第一种情况,得所求面积:图4所求周长点拨:要注意本题的两种情况,另外,弧长公式和扇形以及弓形的面积求法要求正确掌握,熟练运用。
例7. 如图5所示,已知正方形的边长是4cm,求它的切圆与外接圆组成的圆环的面积。
(答案保留)(1999年)图5解:设正方形外接圆、切圆的半径为R、r,面积为。
∵∴。
常见错误:此题最容易产生的问题是找不出正方形边长的一半与两圆的半径之间的勾股关系。
即不会运用圆接正方形与圆外切正方形的性质来解题。
这一点读者应认真体会。
例8. 如图6所示,已知△ABC接于⊙O,且AB=BC=CA=6cm图6(1)求证:∠OBC=30°;(2)求OB的长(结果保留根号);(3)求图中阴影部分的面积(结果保留)。
解:(1)AB=BC=CA,∴∠A=60°∴∠BOC=120°,又∵OB=OC,∴∠OBC(2)过O作OD⊥BC于D,∵OB=OC,BC=6cm,∴∵,∴(3)∵∴即阴影部分面积是。
常见错误:此题常见的问题是不会运用正三角形这一条件,从而无法证明∠OBC=30°;当然,解直角三角形失误,求扇形面积时公式记错产生的错误,也是考试中的常见错误,应引起警惕。
例9. 一个圆锥的高是10cm,侧面展开图是半圆,求圆锥的侧面积。
点悟:如图7所示,欲求圆锥的侧面积,即求母线长l,底面半径r。
由圆锥的形成过程可知,圆锥的高、母线和底面半径构成直角三角形即Rt△SOA,且SO=10,SA=l,OA=r,关键找出l与r的关系,又其侧面展开图是半圆,可得关系,即。
图7解:设圆锥底面半径为r,扇形弧长为C,母线长为l,由题意得∴①在Rt△SOA中,②由①、②得:。
∴所求圆锥的侧面积为。
例10. 圆锥的轴截面是等腰△PAB,且PA=PB=3,AB=2,M是AB上一点,且PM=2,那么在锥面上A、M两点间的最短距离是多少?点悟:设圆锥的侧面展开图是扇形PBB',A点落在A'点,则所求A'、M之间的最短距离就是侧面展形图中线段A'M的长度。
解:如图8所示,扇形的圆心角=360°图8∴∠A'PB=60°,在△A'PM中,过A'作A'N⊥PM于N,则∴,【模拟试题】(答题时间:40分钟)一、填表(1)已知:正n边形边长为a(2)已知:正n边形半径R二、填空题:1. 如果扇形半径长3cm,圆心角120°,则它的面积是_____________cm2。
2. 若圆锥母线长5cm,高3cm,则其侧面展开图的圆心角是_____________度。
3. 若圆锥底面半径为3cm,母线长5cm,则它的侧面展开图面积是_____________cm2。
4. 有一圆柱状玻璃杯,底面半径3cm,高为8cm,今有一长12cm的吸管斜放入杯中,若不考虑吸管粗细,则吸管最少露出杯口处的长度是_____________cm。
5. 用一个半径为30cm,圆心角为120°的扇形纸片做成一圆锥侧面,那么圆锥底面半径是_____________cm。
6. 如图1,正方形ABCD边长为2,分别以AB、BC为直径在正方形作半圆,则图中阴影部分面积为_____________平方单位。
图1 图27. 如图2,AB=2cm,∠AOB=90°,AO=BO,以O为圆心,OA为半径作弧AB,以AB为直径做半圆AmB,则半圆和弧AB所围阴影部分面积是_____________cm2。
8. 若圆锥侧面积为,母线长5cm,则圆锥的高为_____________cm。
9. 圆柱表面积为,它的高为2cm,则底面半径为_____________cm。
10. 矩形ABCD中,AC=4cm,∠ACB=30°,以直线AB为轴旋转一周,得到圆柱表面积为_____________cm2。
三、解答题:11. 已知扇形的半径为,它的面积恰好等于一个半径为的圆面积,那么这个扇形的圆心角为多少度?12. 如图3,已知半圆O,以AD为直径,AD=2cm,B、C是半圆弧的三等分点,求图中阴影部分面积。
图313. 已知如图,割线PCD过圆心O,且PD=3PC,PA、PB切⊙O 于点A、B,∠PAB=60°,PA=,AB与PD相交于E,求弓形ACB的面积。
【试题答案】一、填表:(1)正n边形中心角半径边心距周长面积n=3 120°3an=4 90°4an=6 60° a 6a(2)正n边形中心角半径边心距周长面积n=3 120°n=4 90°n=6 60°R 6R二、填空题:1. 2. 288 3.4. 25. 106.7. 1 8. 4cm 9. 3cm10.三、解答题:11. 解:由题意,设所求圆心角为°,则答:所求扇形圆心角为60°12. 解:连结OB、OC∵∴13. 解:连结OA、OB,在Rt△AEP中,∠PAB=60°∴∠APD=30°在Rt△OAP中,∴∠AOP=60°,OA=4,PO=8∴∠AOB=120°∴由题意,PD=3PC∴PC=4,PD=12∴CD=8由题意:∴∴OE=3∴∴。