江苏新高考数学理科一轮创新设计总复习训练8.6立体几何中的向量方法(一)
高考数学一轮复习第八章立体几何8.6空间向量及其运算课件新人教A版

(1)× (2)× (3)√ (4)× (5)×
关闭
答案
知识梳理
-8-
知识梳理 双基自测
12345
2.若 x,y∈R,有下列命题:
①若 p=xa+yb,则 p 与 a,b 共面;
②若 p 与 a,b 共面,则 p=xa+yb;
③若������������=x������������+y������������,则 P,M,A,B 共面;
因为异面直线所成角的范围是
0,
π 2
,所以异面直线
AG 与
CE 所成角的余弦值为23.
-15-
考点1
考点2
考点3
考点 1 空间向量的线性运算
例 1 如图,在平行六面体 ABCD-A1B1C1D1 中,设
������������1=a,������������=b,������������=c,M,N,P 分别是 AA1,BC,C1D1 的中点,试用 a,b,c 表示以下各向量:(1)������������;(2)������1������;(3)������������ + ������������1.
122=√6187,则|������������|=2√17.
关闭
解析 答案
知识梳理 双基自测
知识梳理
12345
-10-
4.(教材习题改编P98T10)如图,在棱长为1的正方体ABCD-
A1B1C1D1中,M,N分别是A1B1和BB1的中点,则直线AM和CN所成角
的余弦值为
.
关闭
2 5
答案
知识梳理 双基自测
考点1
考点2
考点3
-18-
对点训练 1 在三棱锥 O-ABC 中,M,N 分别是 OA,BC 的中点,G 是△ABC 的重心,用基向量������������, ������������, ������������表示������������, ������������.
【新】版高考数学一轮复习第八章立体几何8.6空间向量及其运算理

第八章 立体几何 8.6 空间向量及其运算 理1.空间向量的有关概念2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).【知识拓展】1.向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理:在空间中P 、A 、B 、C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )1.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2B.12a 2C.14a 2D.34a 2答案 C解析 如图,设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°.AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2.2.(2016·大连模拟)向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,a ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对答案 C解析 因为c =(-4,-6,2)=2(-2,-3,1)=2a , 所以a ∥c .又a ·b =(-2)×2+(-3)×0+1×4=0, 所以a ⊥b .故选C.3.与向量(-3,-4,5)共线的单位向量是________________________. 答案 ⎝⎛⎭⎪⎫3210,225,-22和⎝ ⎛⎭⎪⎫-3210,-225,22解析 因为与向量a 共线的单位向量是±a|a |,又因为向量(-3,-4,5)的模为-2+-2+52=52,所以与向量(-3,-4,5)共线的单位向量是±152(-3,-4,5)=±210(-3,-4,5). 4.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c . 5.(教材改编)正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,∴|EF →|=2,∴EF 的长为 2.题型一 空间向量的线性运算例1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. 用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.(2016·青岛模拟)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=(12a +12b +c )+(a +12c )=32a +12b +32c . 题型二 共线定理、共面定理的应用例2 (2016·天津模拟)如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).证明 (1)连接BG ,则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG .由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG → =12[12(OA →+OB →)]+12[12(OC →+OD →)] =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →) 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且基线过同一点M , ∴M ,A ,B ,C 四点共面. 从而点M 在平面ABC 内. 题型三 空间向量数量积的应用例3 (2017·济南月考)如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .(1)解 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×cos 120°=-1. ∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c | =a +b +c2=|a |2+|b |2+|c |2+a ·b +b ·c +c ·a=12+12+22+-1-= 2.∴线段AC 1的长为 2.(2)解 设异面直线AC 1与A 1D 所成的角为θ, 则cos θ=|cos 〈AC 1→,A 1D →〉|=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC1→||A 1D →|.∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c2=|b |2-2b ·c +|c |2=12--+22=7.∴cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0, ∴AA 1→⊥BD →,∴AA 1⊥BD .思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.18.坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解. 规范解答(1)解 如图,建立空间直角坐标系.依题意得B (0,1,0),N (1,0,1), 所以|BN →|=-2+-2+-2= 3.[2分](2)解 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2). 所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.[6分] (3)证明 依题意得C 1(0,0,2),M (12,12,2),A 1B →=(-1,1,-2), C 1M →=(12,12,0).[9分]所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .[12分]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( )A .0B .1C .2D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.2.(2017·郑州调研)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( )A .9B .-9C .-3D .3 答案 B解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.3.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143 C.145 D .2答案 D解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.4.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED → =1+1+1-2=3-2, 故|BD →|=3- 2.5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则异面直线a ,b 所成的角等于( )A .30°B .45°C .60°D .90° 答案 C解析 如图,设AC →=a ,CD →=b ,DB →=c ,则AB →=a +b +c ,所以cos 〈AB →,CD →〉=a +b +c b |a +b +c ||b |=12,所以异面直线a ,b 所成的角等于60°, 故选C.6.(2016·深圳模拟)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 答案 A解析 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a ,0,0),C 1(0,a ,a ),N (a ,a ,a 2).设M (x ,y ,z ), ∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ),∴x =23a ,y =a 3,z =a 3.∴M (2a 3,a 3,a 3),∴|MN →|= a -23a2+a -a32+a 2-a32=216a . 7.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个) 答案 锐角解析 因为BC →·BD →=(AC →-AB →)·(AD →-AB →) =AC →·AD →-AC →·AB →-AB →·AD →+AB →2 =AB →2>0,所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角.8.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______________.答案 14,14,14解析 如图所示,取BC 的中点E ,连接AE .OG →=34OG 1→=34(OA →+AG 1→)=34OA →+12AE → =34OA →+14(AB →+AC →) =34OA →+14(OB →-OA →+OC →-OA →) =14(OA →+OB →+OC →), ∴x =y =z =14.9.(2016·合肥模拟)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2). 10.(2016·天津模拟)已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.*11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上正确说法的个数为________. 答案 3解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,∴A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长;(4)异面直线AG 与CE 所成角的余弦值. 解 (1)设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c .EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14. (2)EF →·DC →=12(c -a )·(b -c )=12(b·c -a·b -c 2+a·c )=-14. (3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.*13.(2016·沈阳模拟)如图,在直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. (1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得,|a |=|b |=|c |, 且a·b =b·c =c·a =0, ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010. 14.如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,点M ,N 分别是A 1D ,B 1D 1的中点.(1)试用a ,b ,c 表示MN →; (2)求证:MN ∥平面ABB 1A 1. (1)解 ∵A 1D →=AD →-AA 1→=c -a , ∴A 1M →=12A 1D →=12(c -a ).同理,A 1N →=12(b +c ),∴MN →=A 1N →-A 1M →=12(b +c )-12(c -a )=12(b +a )=12a +12b .(2)证明 ∵AB 1→=AA 1→+AB →=a +b , ∴MN →=12AB 1→,即MN ∥AB 1,∵AB 1⊂平面ABB 1A 1,MN ⊄平面ABB 1A 1, ∴MN ∥平面ABB 1A 1.。
高考数学一轮复习 第八章立体几何8.6空间向量及其运算练习 理 新人教A版

课时作业41 空间向量及其运算一、选择题1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ).A .0B .1C .2D .32.对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( ).A .一定不共面B .一定共面C .不一定共面D .与O 点的位置有关3.已知向量a =(2,-3,5)与向量b =⎝⎛⎭⎪⎫3,λ,152平行,则λ=( ). A.23 B.92 C .-92 D .-234.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( ).A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c5.若A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB →|取最小值时,x 的值为( ).A .19B .-87 C.87 D.19146.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ等于( ).A .2B .-2C .-2或255D .2或-2557.正方体ABCD A 1B 1C 1D 1的棱长为a ,点M 在AC 1→上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ).A.216aB.66aC.156aD.153a二、填空题8.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为__________.9.如图所示,已知空间四边形ABCD ,F 为BC 的中点,E 为AD 的中点,若EF →=λ(AB →+DC →),则λ=__________.10.如图,直三棱柱ABC A 1B 1C 1中,AB =AC =1,AA 1=2,∠B 1A 1C 1=90°,D 为BB 1的中点,则异面直线C 1D 与A 1C 所成角的余弦值为__________.三、解答题11.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.若m (a +b )+n (a -b )与2a -b 垂直,求m ,n 应满足的关系式.12.直三棱柱ABC A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.参考答案一、选择题1.A 解析:①中a 与b 所在的直线有可能重合; ②中a 与b 中可能有一个为零向量; ③中举反例“空间直角坐标系”; ④中前提必须是a ,b ,c 不共面.2.B 解析:34+18+18=1,∴P 点在平面ABC 内.3.C 解析:∵a ∥b ,∴b =m a ,m ∈R . ∴23=-3λ=5152. ∴λ=-92.4.A 解析:如题图,BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→-A 1B 1→)=c +12(b -a )=-12a +12b +c . 5.C 解析:AB →=(1-x ,2x -3,-3x +3), |AB →|=(1-x )2+(2x -3)2+(-3x +3)2=14x 2-32x +19=14⎝ ⎛⎭⎪⎫x -872+57. 当x =87时,|AB →|取最小值.6.C 解析:由已知得89=a ·b |a ||b |=2-λ+45+λ2·9, ∴85+λ2=3(6-λ),解得λ=-2或λ=255.7.A 解析:以D 为原点建立如图所示的空间直角坐标系D xyz ,则A (a ,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ). ∵点M 在AC 1→上且AM →=12MC 1→.∴(x -a ,y ,z )=12(-x ,a -y ,a -z ),∴x =23a ,y =a 3,z =a 3.于是M ⎝⎛⎭⎪⎫2a 3,a 3,a 3.∴|MN uuu r |=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a .二、填空题8.355 解析:∵b -a =(1+t ,2t -1,0), ∴|b -a |2=(1+t )2+(2t -1)2+0=5t 2-2t +2=5⎝⎛⎭⎪⎫t 2-25t +125+95=5⎝ ⎛⎭⎪⎫t -152+95. ∴当t =15时,|b -a |2最小=95,∴|b -a |最小=355.9.12解析:如图所示,取AC 的中点G ,连接EG ,GF ,则EF →=EG →+GF →=12(AB →+DC →).∴λ=12.10.1515解析:以A 为原点建立空间直角坐标系,如图,A 1(0,0,2),C (0,1,0),D (1,0,1),C 1(0,1,2),则C 1D →=(1,-1,-1),A 1C →=(0,1,-2),|C 1D →|=3,|A 1C →|=5, C 1D →·A 1C →=1,cos 〈C 1D →,A 1C →〉=C 1D →·A 1C →|C 1D →||A 1C →| =1515,故异面直线C 1D 与A 1C 所成角的余弦值为1515.三、解答题11.解:∵a =AB →=(1,1,0),b =AC →=(-1,0,2), a +b =(0,1,2),a -b =(2,1,-2), 2a -b =(3,2,-2).∴m (a +b )+n (a -b )=(2n ,m +n ,2m -2n ). ∵m (a +b )+n (a -b )与2a -b 垂直, ∴[m (a +b )+n (a -b )]·(2a -b )=3×2n +2(m +n )-2(2m -2n )=12n -2m =0,∴m =6n ,即当m =6n 时,可使m (a +b )+n (a -b )与2a -b 垂直.12.(1)证明:设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解:∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c=12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。
江苏专用2020版高考数学大一轮复习第八章立体几何8.6空间角的计算教案含解析2019083116

§8.6 空间角的计算考情考向分析 本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的数学运算素养,广泛应用函数与方程思想、转化与化归思想.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.2.怎样确定两平面法向量夹角和二面角相等还是互补?提示 当一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部时,二面角与两个平面的法向量夹角相等;当两个法向量同时指向二面角的内部或外部时,两个法向量的夹角与二面角互补.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].( √ )(4)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × ) 题组二 教材改编2.[P111T1]设a ,b 分别是两条异面直线l 1,l 2的方向向量,且cos 〈a ,b 〉=-22,则异面直线l 1和l 2所成的角为________. 答案 45°解析 ∵cos〈a ,b 〉=-22,∴〈a ,b 〉=135°, ∵异面直线所成角的范围是(0°,90°], ∴异面直线l 1和l 2所成的角是45°.3.[P111T2]若直线l 的方向向量为a =(-2,3,1),平面α的一个法向量为n =(1,0,1),则直线l 与平面α所成角的正弦值等于________. 答案714解析 ∵cos〈a ,n 〉=(-2,3,1)·(1,0,1)(-2)2+32+12×12+02+12=-714, ∴直线l 与平面α所成角的正弦值sin θ=|cos 〈a ·n 〉|=714.4.[P114T12(2)]如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,连结AD ,C 1D ,则A (0,0,0),B (2,0,0),A 1(0,0,22),C 1(1,3,22),D (1,0,22),∴AC 1—→=(1,3,22),C 1D —→=(0,-3,0),A 1B 1—→=AB →=(2,0,0),AA 1→=(0,0,22),AD →=(1,0,22). 又因为C 1D —→·A 1B 1—→=0,C 1D —→·AA 1—→=0, 所以C 1D ⊥A 1B 1,C 1D ⊥AA 1,又A 1B 1∩AA 1=A ,A 1B 1,AA 1⊂平面ABB 1A 1, 所以C 1D ⊥平面ABB 1A 1,则∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1—→·AD—→|AC 1—→||AD —→|=(1,3,22)·(1,0,22)12×9=32, 又∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,得∠C 1AD =π6.题组三 易错自纠5.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为________. 答案3010解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 6.过正方形ABCD 的顶点A 作线段PA ⊥平面ABCD ,若AB =PA ,则平面ABP 与平面CDP 所成的角为________. 答案 45°解析 如图,以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AB =PA =1,则A (0,0,0),D (0,1,0),P (0,0,1),由题意,知AD ⊥平面PAB ,设E 为PD 的中点,连结AE ,则AE ⊥PD , 又CD ⊥平面PAD ,∴CD ⊥AE ,从而AE ⊥平面PCD .∴AD →=(0,1,0),AE →=⎝ ⎛⎭⎪⎫0,12,12分别是平面PAB ,平面PCD 的法向量,且〈AD →,AE →〉=45°.故平面PAB 与平面PCD 所成的角为45°.题型一 求异面直线所成的角例1如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连结BD ,设BD ∩AC =G ,连结EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°, 可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系G -xyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22, C (0,3,0),所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为________. 答案710解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2,所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710.题型二 求直线与平面所成的角例2(2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. (1)证明 由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 如图,作PH ⊥EF ,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2(2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 如图,连结OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB . 因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系O -xyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ).由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3(2018·江苏泰州中学摸底)如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M ,N 分别是CC 1,BC 的中点,点P 在直线A 1B 1上,且满足A 1P —→=λA 1B 1—→(λ∈R ).(1)证明:PN ⊥AM ;(2)若平面PMN 与平面ABC 所成的锐二面角为45°,试确定点P 的位置.(1)证明 如图,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .则A (0,0,0),P (λ,0,1),N ⎝ ⎛⎭⎪⎫12,12,0,M ⎝ ⎛⎭⎪⎫0,1,12, 从而PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1,AM →=⎝ ⎛⎭⎪⎫0,1,12,所以PN →·AM →=⎝ ⎛⎭⎪⎫12-λ×0+12×1-1×12=0,所以PN ⊥AM .(2)解 由题意知平面ABC 的一个法向量n =AA 1—→=(0,0,1). 设平面PMN 的法向量m =(x ,y ,z ),由(1)得MP →=⎝ ⎛⎭⎪⎫λ,-1,12,NP →=⎝ ⎛⎭⎪⎫λ-12,-12,1,由⎩⎪⎨⎪⎧m ·NP →=0,m ·MP →=0,得⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫λ-12x -12y +z =0,λx -y +12z =0,解得⎩⎪⎨⎪⎧y =2λ+13x ,z =2(1-λ)3x ,令x =3,得m =(3,2λ+1,2-2λ).因为平面PMN 与平面ABC 所成的锐二面角为45°, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2(1-λ)|9+(2λ+1)2+4(1-λ)2=22,解得λ=-12, 故点P 在B 1A 1的延长线上,且A 1P =12.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.跟踪训练3(2018·南通模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =3,AC =4,B 1C ⊥AC 1.(1)求AA 1的长;(2)若BP =1,求二面角P -A 1C -A 的余弦值.解 (1)以A 为坐标原点,分别以AB ,AC ,AA 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系A -xyz ,设AA 1=t ,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0), 所以AC 1—→=(0,4,t ),B 1C →=(-3,4,-t ), 因为B 1C ⊥AC 1, 所以AC 1—→·B 1C —→=0, 即16-t 2=0,解得t =4, 所以AA 1的长为4.(2)因为BP =1,所以P (3,0,1), 又C (0,4,0),A 1(0,0,4),故A 1C —→=(0,4,-4),A 1P —→=(3,0,-3),设n =(x ,y ,z )为平面PA 1C 的法向量, 则⎩⎪⎨⎪⎧n ⊥A 1C —→,n ⊥A 1P —→,即⎩⎪⎨⎪⎧4y -4z =0,3x -3z =0,取z =1,解得y =1,x =1,∴n =(1,1,1)为平面PA 1C 的一个法向量, 显然,AB →=(3,0,0)为平面A 1CA 的一个法向量, 则cos 〈n ·AB →〉=n ·AB →|n |·|AB →|=331+1+1=33,据图可知,二面角P -A 1C -A 的余弦值为33.利用空间向量求解空间角例(14分)(2018·苏州调研)如图,在正三棱柱ABC -A 1B 1C 1中,底面ABC 的边长为2,侧棱长为4,M 是线段AA 1上一点,O 是线段BC 的中点,D 为B 1C 1的中点,以{OB →,OD →,OA →}为正交基底,建立如图所示的空间直角坐标系O -xyz .(1)若AM =MA 1,求直线B 1C 1和平面BMC 1所成角的正弦值; (2)若二面角M -BC 1-B 1的正弦值为154,求AM 的长. 解 根据题意得B (1,0,0),B 1(1,4,0),C 1(-1,4,0), 所以B 1C 1—→=(-2,0,0),BC 1—→=(-2,4,0).(1)当M 是线段AA 1的中点时,M (0,2,3),BM →=(-1,2,3), 设平面BMC 1的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BM →=0,n ·BC 1—→=0,得⎩⎨⎧-x +2y +3z =0,-2x +4y =0,即⎩⎪⎨⎪⎧x =2y ,z =0,取y =1,得n =(2,1,0),[3分]设B 1C 1和平面BMC 1所成的角为α,则sin α=|cos 〈n ,B 1C 1—→〉|=|n ·B 1C 1—→||n ||B 1C 1—→|=|-4|5×2=255,所以B 1C 1和平面BMC 1所成角的正弦值为255.[7分](2)设AM =a (0≤a ≤4),则M (0,a ,3),BM →=(-1,a ,3), 设平面BMC 1的一个法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·BM →=0,n 1·BC 1—→=0,得⎩⎨⎧-x +ay +3z =0,-2x +4y =0,即⎩⎨⎧x =2y ,(a -2)y +3z =0,取y =1,得n 1=⎝⎛⎭⎪⎫2,1,2-a 3,[10分]显然OA →=(0,0,3)是平面BC 1B 1的一个法向量, 设二面角M -BC 1-B 1的大小为β, 则sin β=154,cos β=±14, 则|cos β|=|cos 〈n 1,OA →〉|=|n 1·OA →||n ||OA →|=|2-a |5+(2-a )23×3=14, 解得a =1或3,所以AM 的长为1或3.[14分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标; 第二步:求向量(直线的方向向量、平面的法向量)坐标; 第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为________. 答案 60°或120° 解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为________.答案55解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1—→·BC 1—→|AB 1—→||BC 1—→|=0+4-14+4+1×0+4+1=15=55.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________. 答案 23解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D —→=(0,1,-1),A 1E —→=⎝⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D —→·n 1=0,A 1E —→·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为________. 答案π2解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D —→=(-1,1,-1), ∵AC →·B 1D —→=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D —→,∴AC 与B 1D 所成角的大小为π2.5.已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与A 1C 所成角的余弦值为________. 答案 14解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C —→=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1—→·A 1C —→||AB 1—→|·|A 1C —→|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ=________.答案 23解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1. ∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ, 则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, ∴建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成角的大小是__________.答案 60°解析 以B 为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1—→=(2,0,2), ∴EF →·BC 1—→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1—→|EF →||BC 1—→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成角的大小为60°.10.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________. 答案23解析 方法一 延长FE ,CB 相交于点G ,连结AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连结EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系D -xyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·盐城期末)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=4,AB =2,点M 是BC 的中点.(1)求异面直线AC 1与DM 所成角的余弦值; (2)求直线AC 1与平面A 1DM 所成角的正弦值.解 (1)在正四棱柱ABCD -A 1B 1C 1D 1中,以D 为原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .因为M (1,2,0),A (2,0,0),C 1(0,2,4), 所以DM →=(1,2,0), AC 1—→=(-2,2,4),所以cos 〈DM →,AC 1—→〉=DM →·AC 1—→|DM →|×|AC 1—→|=1×(-2)+2×2+0×412+22+02×(-2)2+22+42=3030, 所以异面直线AC 1与DM 所成角的余弦值为3030. (2)DA 1—→=(2,0,4),设平面A 1DM 的一个法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧DA 1—→·n =0,DM →·n =0,得⎩⎪⎨⎪⎧2x +4z =0,x +2y =0,取y =1,得x =-2,z =1,故平面A 1DM 的一个法向量为n =(-2,1,1). 于是cos 〈n ,AC 1—→〉=n ·AC 1—→|n |×|AC 1—→|=(-2)×(-2)+2×1+4×1(-2)2+22+42×(-2)2+12+12=56, 所以直线AC 1与平面A 1DM 所成角的正弦值为56.12.(2018·江苏省南京外国语学校期末)如图,已知正方形ABCD 和矩形ACEF 中,AB =2,CE =1,CE ⊥平面ABCD .(1)求异面直线DF 与BE 所成角的余弦值; (2)求二面角A -DF -B 的大小.解 (1)以C 为坐标原点,分别以CD ,CB ,CE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系C -xyz ,则D (2,0,0),F (2,2,1),E (0,0,1),B (0,2,0),C (0,0,0), 所以DF →=(0,2,1),BE →=(0,-2,1), 从而cos 〈DF →,BE →〉=-13·3=-13.所以直线DF 与BE 所成角的余弦值为13.(2)平面ADF 的法向量为m =CD →=(2,0,0). 设平面BDF 的法向量为n =(x ,y ,z ). 又BF →=(2,0,1). 由n ·DF →=0,n ·BF →=0, 得2y +z =0,2x +z =0,取x =1,则y =1,z =-2,所以n =(1,1,-2), 所以cos 〈m ,n 〉=24·2=12. 又因为〈m ,n 〉∈[0,π],所以〈m ,n 〉=π3.所以二面角A -DF -B 的大小为π3.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝⎛⎭⎪⎫m 1+λ,4,0,∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即FA →·FE →=0, 则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P —→=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由. (1)证明 连结A 1Q .∵AA 1=AC =1,M ,Q 分别是CC 1,AC 的中点, ∴Rt△AA 1Q ≌Rt△CAM , ∴∠MAC =∠QA 1A ,∴∠MAC +∠AQA 1=∠QA 1A +∠AQA 1=90°, ∴AM ⊥A 1Q .∵N ,Q 分别是BC ,AC 的中点,∴NQ ∥AB . 又AB ⊥AC ,∴NQ ⊥AC .在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC , ∴NQ ⊥AA 1.又AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1, ∴NQ ⊥平面ACC 1A 1,又AM ⊂平面ACC 1A 1,∴NQ ⊥AM . 由NQ ∥AB 和AB ∥A 1B 1可得NQ ∥A 1B 1, ∴N ,Q ,A 1,P 四点共面, ∴A 1Q ⊂平面PNQ .∵NQ ∩A 1Q =Q ,NQ ,A 1Q ⊂平面PNQ ,∴AM ⊥平面PNQ ,∴无论λ取何值,总有AM ⊥平面PNQ .(2)解 如图,以A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝⎛⎭⎪⎫12,12,0,Q ⎝⎛⎭⎪⎫0,12,0,NM —→=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1—→=(1,0,0).由A 1P —→=λA 1B 1—→=λ(1,0,0)=(λ,0,0), 可得点P (λ,0,1), ∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1. 设n =(x ,y ,z )是平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·NM —→=0,n ·PN —→=0,即⎩⎪⎨⎪⎧-12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1). 假设存在符合条件的点P , 则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12, 化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h =________. 答案 2解析 设平面ABCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43,则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =|cos 〈n ·AP →〉|·|AP →|=2626×226=2.16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值. (1)证明 设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°,∴AB =2, ∴AC 2=AB 2+BC 2-2AB ·BC ·cos60°=3, ∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF . ∵EF ∥AC , ∴EF ⊥平面BCF .(2)解 以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), ∴AB →=(-3,1,0),BM →=(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量, 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BM →=0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
高考数学一轮复习 第八章 立体几何 第7讲 立体几何中的向量方法(一) 理(2021年最新整理)

证明 (1)建立如图所示的空间直角坐标系,
设 AC∩BD=N,连接 NE。
则 N错误!,E(0,0,1),
A(错误!,错误!,0),M错误!
∴错误!=错误!.
错误!=错误!。 ∴错误!=错误!且 NE 与 AM 不共线.∴NE∥AM。 又∵NE⊂ 平面 BDE,AM⊄ 平面 BDE, ∴AM∥平面 BDE。 (2)由(1)知错误!=错误!, ∵D(错误!,0,0),F(错误!,错误!,1), ∴错误!=(0,错误!,1) ∴错误!·错误!=0,∴AM⊥DF。 同理 AM⊥BF。 又 DF∩BF=F,∴AM⊥平面 BDF. 13.在四棱锥 P-ABCD 中,PD⊥底面 ABCD,底面 ABCD 为正方形,PD=DC,E、F 分别是 AB、PB
1
2018 版高考数学一轮复习 第八章 立体几何 第 7 讲 立体几何中的向量方法(一) 理
第 7 讲 立体几何中的向量方法(一)
一、选择题
1.直线 l1,l2 相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A.s1=(1,1,2),s2=(2,-1,0) B.s1=(0,1,-1),s2=(2,0,0) C.s1=(1,1,1),s2=(2,2,-2) D.s1=(1,-1,1),s2=(-2,2,-2) 解析 两直线垂直,其方向向量垂直,只有选项 B 中的两个向量垂直.
0),E(2,4,0),
P(0,0,h).
(1)易知错误!=(-4,2,0),错误!=(2,4,0),错误!=(0,0,h).
因为错误!·错误!=-8+8+0=0,错误!·错误!=0,所以 CD⊥AE,CD⊥AP.而 AP,AE 是平面
PAE 内的两条相交直线,所以 CD⊥平面 PAE.
(2)由题设和(1)知,错误!·错误!分别是平面 PAE,平面 ABCD 的法向量.而 PB 与平面 PAE
高考数学一轮复习题库:第八章立体几何8.6空间向量及其运算

D-xyz,则 A(a,0,0),C1(0,a,
设 M (x, y, z).
∵点
M
在
uuur AC1
上且
uuur AM
=
1 2
uuuur MC1
.
∴
(x-
a,
y,
z)=
1 2(-
x,
a-
y,
a-
z),
∴
x=23a,
y=
a3,
z=
a 3.
于是 M
2a, a, a 3 33
.
uuur ∴ | MN |=
参考答案
一、选择题
1.A 解析: ① 中 a 与 b 所在的直线有可能重合; ② 中 a 与 b 中可能有一个为零向量;
③ 中 举反例 “ 空间直角坐标系 ” ;
④ 中前提必须是 a, b, c 不共面. 2. B 解析: 34+ 18+ 18=1, ∴ P 点在平面 ABC 内.
3. C 解析: ∵ a∥ b,∴ b= ma, m∈ R.[来源数理化网]
得 p= xa+ yb+ zc. 其中正确命题的个数是 ( ).
A. 0
B.1
C.2
D.3
2.对空间任意一点
O,若
O→P= 34O→A+
1→ 8OB
+
18O→C,则
A, B, C,P 四点 (
).
A.一定不共面
B .一定共面
C.不一定共面
D.与 O 点的位置有关
3.已知向量
a= (2,- 3,5)与向量
课时作业 41 空间向量及其运算
一、选择题
1.在下列命题中: ①若向量 a, b 共线,则向量 a,b 所在的直线平行;
高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算教案理含解析新人教A版
高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算教案理含解析新人教A版§8.6空间向量及其运算最新考纲考情考向分析1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直.本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1.空间向量的有关概念及定理语言描述共线向量(平行向量)如果空间一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量共线向量定理两个空间向量a,b(b≠0),a∥b的充要条件是存在唯一的实数x,使a=x b共面向量定理如果两个向量a、b不共线,则向量c与向量a,b共面的充要条件是,存在唯一的一对实数x,y,使c=x a+y b空间向量分解定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c2.两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则角∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,通常规定0≤〈a ,b 〉≤π. 3.两条异面直线所成的角把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角. 4.数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b |cos 〈a ,b 〉; ②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a·a ,|a |=x 2+y 2+z 2. (2)向量的坐标运算:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3) 向量和 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 向量差 a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数量积 a·b =a 1b 1+a 2b 2+a 3b 3 数乘向量λa =(λa 1,λa 2,λa 3)共线a∥b (b ≠0)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3a ∥b ⇔a 1b 1=a 2b 2=a 3b 3(b 与三个坐标平面都不平行)垂直 a⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0夹角公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos120°+0+2×1×cos120°) =2,∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →, ∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 答案 2 6 解析 ∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18.题型一 空间向量的线性运算例1 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 题型二 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH . 证明 (1)连接BG , 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线 空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点PMP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1—→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1. 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos60°+a 2cos60°-a 2)=0. ∴MN →⊥AB →,即MN ⊥AB . 同理可证MN ⊥CD .(2)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p=12⎝ ⎛⎭⎪⎫q 2-12q ·p +r ·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2cos60°+a 2cos60°-12a 2cos60° =12⎝⎛⎭⎪⎫a 2-a 24+a 22-a 24=a22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p=x a +y b +z c .其中正确命题的个数是( ) A.0B.1C.2D.3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m,解得m =-2. 4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( ) A.(3,0,0) B.(0,3,0) C.(0,0,3) D.(0,0,-3)答案 C解析 设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2, 解得z =3.5.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6B.2π3 C.π3D.π6答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A.3B.2C.1D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 答案 -9解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0, 即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b ,由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c . 因此VA →=32PM →+32PN →,∴VA →,PM →,PN →共面. 又VA ⊄平面PMN , ∴VA ∥平面PMN .10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2; ②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1—→+A 1B 1—→)2=A 1A →2+A 1D 1—→2+A 1B 1—→2=3A 1B 1—→2,故①正确;②中,A 1B 1—→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M , ∴M ,A ,B ,C 四点共面. ∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ), 所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E 点的坐标为⎝ ⎛⎭⎪⎫-65,-145,25.13.(2018·本溪模拟)如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a , OG →=OM →+MG →=12OA →+23MN →=12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →, 所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定答案 C解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________. 答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |, 且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos〈AC ′→,CE →〉=AC ′→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
立体几何中的向量方法(Ⅰ)----证明平行与垂直 高考数学总复习 高考数学试题详细解析
8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直一、选择题1.若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( ). A .l 1∥l 2B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确 答案 B2.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A .s 1=(1,1,2),s 2=(2,-1,0) B .s 1=(0,1,-1),s 2=(2,0,0) C .s 1=(1,1,1),s 2=(2,2,-2) D .s 1=(1,-1,1),s 2=(-2,2,-2)解析 两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直. 答案 B3.已知a =⎝ ⎛⎭⎪⎫1,-32,52,b =⎝ ⎛⎭⎪⎫-3,λ,-152满足a∥b ,则λ等于( ).A.23B.92 C .-92 D .-23 解析 由1-3=-32λ=52-152,可知λ=92.答案 B4.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是 ( ). A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1) 解析 若l ∥α,则a·n =0. 而A 中a·n =-2, B 中a·n =1+5=6,C 中a·n =-1,只有D 选项中a·n =-3+3=0. 答案 D5.若平面α,β平行,则下面可以是这两个平面的法向量的是( ) A .n 1=(1,2,3),n 2=(-3,2,1) B .n 1=(1,2,2),n 2=(-2,2,1) C .n 1=(1,1,1),n 2=(-2,2,1) D .n 1=(1,1,1),n 2=(-2,-2,-2)解析 两个平面平行时其法向量也平行,检验知正确选项为D. 答案 D6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ).A.627B.637C.607D.657 解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎨⎧7=2t -μ5=-t +4μ,λ=3t -2μ∴⎩⎪⎨⎪⎧t =337μ=177λ=657.答案 D7.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( ) A .(1,-1,1)B.⎝ ⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32D.⎝⎛⎭⎪⎫-1,3,-32解析 对于选项A ,PA =(1,0,1),则PA ·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,PA =⎝ ⎛⎭⎪⎫1,-4,12,则PA ·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,验证可知C 、D 均不满足PA ·n =0. 答案 B 二、填空题8.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是_______. 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 平行9.平面α的一个法向量n =(0,1,-1),如果直线l ⊥平面α,则直线l 的单位方向向量是s =________.解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是 s =±⎝ ⎛⎭⎪⎫0,22,-22.答案 ±⎝⎛⎭⎪⎫0,22,-2210.已知点A ,B ,C ∈平面α,点P ∉α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC →=0的_______.解析由⎩⎪⎨⎪⎧AP →·AB →=0AP →·AC →=0,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →=0, 反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0⇒AP →·AB →=AP →·AC →,未必等于0. 答案 充分不必要条件11.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎨⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎨⎧x =12,y =-1,∴n =⎝ ⎛⎭⎪⎫12,-1,1,∴平面ABC 的单位法向量为±n |n|=±⎝ ⎛⎭⎪⎫13,-23,23.答案 ±⎝ ⎛⎭⎪⎫13,-23,2312.已知AB →=(1,5,-2),BC →=(3,1,z),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________. 解析 由题知:BP →⊥AB →,BP →⊥BC →.所以⎩⎨⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎨⎧1×3+5×1+-=0,x -1+5y +--=0,-+y -3z =0.解得x =407,y =-157,z =4.答案407,-157,4 三、解答题13.已知:a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a∥b ,b⊥c ,求:a ,b ,c .解析 因为a∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1).又因为b⊥c ,所以b·c =0,即-6+8-z =0, 解得z =2,于是c =(3,-2,2).14.如图所示,在正方体ABCD A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1, 则M ⎝ ⎛⎭⎪⎫0,1,12,N⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →=⎝ ⎛⎭⎪⎫12,0,12,设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n ,又MN ⊄平面A 1BD ,∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→, ∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .15.如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥面BCC 1B 1.证明 (1)建立如图所示的坐标系,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3).所以BD 1→=BE →+BF →, 故BD 1→、BE →、BF →共面. 又它们有公共点B , 所以E 、B 、F 、D 1四点共面.(2)如图,设M (0,0,z ),则GM →=⎝ ⎛⎭⎪⎫0,-23,z ,而BF →=(0,3,2),由题设得GM →·BF →=-23×3+z ·2=0,得z =1.因为M (0,0,1),E (3,0,1),所以ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0), 所以ME →·BB 1→=0,ME →·BC →=0, 从而ME ⊥BB 1,ME ⊥BC . 又BB 1∩BC =B , 故ME ⊥平面BCC 1B 1.16.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ; (2)AM ⊥平面BDF .证明 (1)建立如图所示的空间直角坐标系, 设AC ∩BD =N ,连接NE . 则点N 、E 的坐标分别为⎝ ⎛⎭⎪⎫22,22,0、(0,0,1).∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1.又点A 、M 的坐标分别是(2,2,0)、⎝ ⎛⎭⎪⎫22,22,1∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴NE →=AM →且NE 与AM 不共线.∴NE ∥AM . 又∵NE ⊂平面BDE ,AM ⊄平面BDE , ∴AM ∥平面BDE .(2)由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵D (2,0,0),F (2,2,1),∴DF →=(0,2,1) ∴AM →·DF →=0,∴AM ⊥DF . 同理AM ⊥BF .又DF ∩BF =F ,∴AM ⊥平面BDF .。
高考数学一轮复习 第八章 立体几何 8.6 空间向量及其
第八章 立体几何 8.6 空间向量及其运算 理1.空间向量的有关概念2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).【知识拓展】1.向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理:在空间中P 、A 、B 、C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )1.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2B.12a 2C.14a 2D.34a 2答案 C解析 如图,设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°.AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2.2.(2016·大连模拟)向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,a ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对答案 C解析 因为c =(-4,-6,2)=2(-2,-3,1)=2a , 所以a ∥c .又a ·b =(-2)×2+(-3)×0+1×4=0, 所以a ⊥b .故选C.3.与向量(-3,-4,5)共线的单位向量是________________________. 答案 ⎝⎛⎭⎪⎫3210,225,-22和⎝ ⎛⎭⎪⎫-3210,-225,22解析 因为与向量a 共线的单位向量是±a|a |,又因为向量(-3,-4,5)的模为-2+-2+52=52,所以与向量(-3,-4,5)共线的单位向量是±152(-3,-4,5)=±210(-3,-4,5). 4.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c . 5.(教材改编)正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,∴|EF →|=2,∴EF 的长为 2.题型一 空间向量的线性运算例1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. 用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.(2016·青岛模拟)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=(12a +12b +c )+(a +12c )=32a +12b +32c . 题型二 共线定理、共面定理的应用例2 (2016·天津模拟)如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).证明 (1)连接BG ,则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG .由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG → =12[12(OA →+OB →)]+12[12(OC →+OD →)] =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →) 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且基线过同一点M , ∴M ,A ,B ,C 四点共面. 从而点M 在平面ABC 内. 题型三 空间向量数量积的应用例3 (2017·济南月考)如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .(1)解 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×cos 120°=-1. ∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c | =a +b +c2=|a |2+|b |2+|c |2+a ·b +b ·c +c ·a=12+12+22+-1-= 2.∴线段AC 1的长为 2.(2)解 设异面直线AC 1与A 1D 所成的角为θ, 则cos θ=|cos 〈AC 1→,A 1D →〉|=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC1→||A 1D →|.∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c2=|b |2-2b ·c +|c |2=12--+22=7.∴cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0, ∴AA 1→⊥BD →,∴AA 1⊥BD .思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.18.坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解. 规范解答(1)解 如图,建立空间直角坐标系.依题意得B (0,1,0),N (1,0,1), 所以|BN →|=-2+-2+-2= 3.[2分](2)解 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2). 所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.[6分] (3)证明 依题意得C 1(0,0,2),M (12,12,2),A 1B →=(-1,1,-2), C 1M →=(12,12,0).[9分]所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .[12分]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( )A .0B .1C .2D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.2.(2017·郑州调研)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( )A .9B .-9C .-3D .3 答案 B解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.3.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143 C.145 D .2答案 D解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.4.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED → =1+1+1-2=3-2, 故|BD →|=3- 2.5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则异面直线a ,b 所成的角等于( )A .30°B .45°C .60°D .90° 答案 C解析 如图,设AC →=a ,CD →=b ,DB →=c ,则AB →=a +b +c ,所以cos 〈AB →,CD →〉=a +b +c b |a +b +c ||b |=12,所以异面直线a ,b 所成的角等于60°, 故选C.6.(2016·深圳模拟)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 答案 A解析 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a ,0,0),C 1(0,a ,a ),N (a ,a ,a 2).设M (x ,y ,z ), ∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ),∴x =23a ,y =a 3,z =a 3.∴M (2a 3,a 3,a 3),∴|MN →|= a -23a2+a -a32+a 2-a32=216a . 7.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个) 答案 锐角解析 因为BC →·BD →=(AC →-AB →)·(AD →-AB →) =AC →·AD →-AC →·AB →-AB →·AD →+AB →2 =AB →2>0,所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角.8.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______________.答案 14,14,14解析 如图所示,取BC 的中点E ,连接AE .OG →=34OG 1→=34(OA →+AG 1→)=34OA →+12AE → =34OA →+14(AB →+AC →) =34OA →+14(OB →-OA →+OC →-OA →) =14(OA →+OB →+OC →), ∴x =y =z =14.9.(2016·合肥模拟)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2). 10.(2016·天津模拟)已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.*11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上正确说法的个数为________. 答案 3解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,∴A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长;(4)异面直线AG 与CE 所成角的余弦值. 解 (1)设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c .EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14. (2)EF →·DC →=12(c -a )·(b -c )=12(b·c -a·b -c 2+a·c )=-14. (3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.*13.(2016·沈阳模拟)如图,在直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. (1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得,|a |=|b |=|c |, 且a·b =b·c =c·a =0, ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010. 14.如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,点M ,N 分别是A 1D ,B 1D 1的中点.(1)试用a ,b ,c 表示MN →; (2)求证:MN ∥平面ABB 1A 1. (1)解 ∵A 1D →=AD →-AA 1→=c -a , ∴A 1M →=12A 1D →=12(c -a ).同理,A 1N →=12(b +c ),∴MN →=A 1N →-A 1M →=12(b +c )-12(c -a )=12(b +a )=12a +12b .(2)证明 ∵AB 1→=AA 1→+AB →=a +b , ∴MN →=12AB 1→,即MN ∥AB 1,∵AB 1⊂平面ABB 1A 1,MN ⊄平面ABB 1A 1, ∴MN ∥平面ABB 1A 1.。
2020高考数学一轮复习第八章立体几何8.6空间向量在立体几何中的应用练习理
§8.6空间向量在立体几何中的应用考纲解读考点内容解读要求高考示例常考题型预测热度空间向量及其应用①理解直线的方向向量与平面的法向量;②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用掌握2017浙江,9;2017课标全国Ⅱ,19;2017天津,17;2017江苏,22;2017北京,16;2017浙江,19;2017山东,17;2016课标全国Ⅲ,19;2016山东,17;2016浙江,17;2015课标Ⅱ,19;2014陕西,17;2013课标全国Ⅱ,18解答题★★★分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.五年高考考点空间向量及其应用1.(2017江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.解析在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{,,}为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,∠BAD=120°,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos<,>===-,因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,,2)为平面BA1D的一个法向量,从而cos<,m>===.设二面角B-A1D-A的大小为θ,则|cos θ|=.因为θ∈[0,π],所以sin θ==.因此二面角B-A1D-A的正弦值为.2.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB 上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).所以cos<n,p>==.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|==.所以直线MC与平面BDP所成角的正弦值为.3.(2017课标全国Ⅱ,19,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.解析(1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EF∥AD,EF=AD.由∠BAD=∠ABC=90°得BC∥AD,又BC=AD,所以EF BC,四边形BCEF是平行四边形,CE∥BF,又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.(2)由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).设M(x,y,z)(0<x<1),则=(x-1,y,z),=(x,y-1,z-).因为BM与底面ABCD所成的角为45°,而n=(0,0,1)是底面ABCD的法向量,所以|cos<,n>|=sin 45°,=,即(x-1)2+y2-z2=0.①又M在棱PC上,设=λ,则x=λ,y=1,z=-λ.②由①,②解得(舍去),或所以M,从而=.设m=(x0,y0,z0)是平面ABM的法向量,则即所以可取m=(0,-,2).于是cos<m,n>==.易知所求二面角为锐角.因此二面角M-AB-D的余弦值为.4.(2016课标全国Ⅲ,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析(1)由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.(3分)又AD∥BC,故TN AM,故四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(6分)(2)取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,且AE===.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即(10分)可取n=(0,2,1).于是|cos<n,>|==.即直线AN与平面PMN所成角的正弦值为.(12分)教师用书专用(5—25)5.(2017浙江,9,5分)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,==2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α,β,γ,则( )A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α答案 B6.(2014广东,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是( )A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)答案 B7.(2015浙江,15,6分)已知e1,e2是空间单位向量,e1·e2=.若空间向量b满足b·e1=2,b·e2=,且对于任意x,y∈R,|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1(x0,y0∈R),则x0= ,y0= ,|b|= .答案1;2;28.(2017山东,17,12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.解析(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.易知所求角为锐二面角,因此所求的角为60°.9.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3).又=(-10,4,8),故|cos<n,>|==.所以AF与平面EHGF所成角的正弦值为.10.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH∥平面ABC;(2)已知EF=FB=AC=2,AB=BC.求二面角F-BC-A的余弦值.解析(1)证明:设FC中点为I,连接GI,HI.在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.(2)解法一:连接OO',则OO'⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2,0,0),所以=(-2,-2,0),过点F作FM垂直OB于点M.所以FM==3,可得F(0,,3).故=(0,-,3).设m=(x,y,z)是平面BCF的法向量.由可得可得平面BCF的一个法向量m=.因为平面ABC的一个法向量n=(0,0,1),所以cos<m,n>==.所以二面角F-BC-A的余弦值为.解法二:连接OO'.过点F作FM垂直OB于点M.则有FM∥OO'.又OO'⊥平面ABC,所以FM⊥平面ABC.可得FM==3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin 45°=.从而FN=,可得cos∠FNM=.所以二面角F-BC-A的余弦值为.11.(2016浙江,17,15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.解析(1)延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以,AC⊥平面BCK,因此,BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解法一:过点F作FQ⊥AK于Q,连接BQ.因为BF⊥平面ACK,所以BF⊥AK,则AK⊥平面BQF,所以BQ⊥AK.所以,∠BQF是二面角B-AD-F的平面角.在Rt△ACK中,AC=3,CK=2,得FQ=.在Rt△BQF中,FQ=,BF=,得cos∠BQF=.所以,二面角B-AD-F的平面角的余弦值为.解法二:如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形.取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,),A(-1,-3,0),E,F.因此,=(0,3,0),=(1,3,),=(2,3,0).设平面ACK的法向量为m=(x1,y1,z1),平面ABK的法向量为n=(x2,y2,z2).由得取m=(,0,-1);由得取n=(3,-2,).于是,cos<m,n>==.所以,二面角B-AD-F的平面角的余弦值为.12.(2015陕西,18,12分)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.解析(1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC,又CD∥BE,所以CD⊥平面A1OC.(2)因为平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得=,=,==(-,0,0).设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos<n1,n2>|==,即平面A1BC与平面A1CD夹角的余弦值为.13.(2015四川,18,12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)求二面角A-EG-M的余弦值.解析(1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点.因为M,N分别是BC,GH的中点,所以OM∥CD,且OM=CD,HN∥CD,且HN=CD.所以OM∥HN,OM=HN.所以MNHO是平行四边形,从而MN∥OH.又MN⊄平面BDH,OH⊂平面BDH,所以MN∥平面BDH.(3)解法一:连接AC,过M作MP⊥AC于P.在正方体ABCD-EFGH中,AC∥EG,所以MP⊥EG.过P作PK⊥EG于K,连接KM,所以EG⊥平面PKM,从而KM⊥EG.所以∠PKM是二面角A-EG-M的平面角.设AD=2,则CM=1,PK=2.在Rt△CMP中,PM=CMsin 45°=.在Rt△PKM中,KM==.所以cos∠PKM==.即二面角A-EG-M的余弦值为.解法二:如图,以D为坐标原点,分别以,,方向为x,y,z轴的正方向,建立空间直角坐标系D-xyz.设AD=2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,=(2,-2,0),=(-1,0,2).设平面EGM的法向量为n1=(x,y,z),由得取x=2,得n1=(2,2,1).在正方体ABCD-EFGH中,DO⊥平面AEGC,则可取平面AEG的一个法向量为n2==(1,1,0),所以cos<n1,n2>===,故二面角A-EG-M的余弦值为.14.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m·=0,m·=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos<,m>==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos<,>==.设1+2λ=t,t∈[1,3],则cos2<,>==≤.当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最小值.又因为BP==,所以BQ=BP=.15.(2015福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F 分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.(2)如图,在平面BEC内,过B点作BQ∥EC.因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ.以B为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得取z=2,得n=(2,-1,2).从而cos<n,>===,所以平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)证明:如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.(2)同解法一.16.(2014陕西,17,12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.解析(1)证明:由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥D C,BD=DC=2,AD=1.由题设,知BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥DC,AD⊥BD,BD∩DC=D,∴AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),=(0,0,1),=(-2,2,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),∵EF∥AD,FG∥BC,∴n·=0,n·=0,得取n=(1,1,0),∴sin θ=|cos<,n>|===.解法二:以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),∵E是AB的中点,∴F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0).∴=,=(-1,1,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),则n·=0,n·=0,得取n=(1,1,0),∴sin θ=|cos<,n>|===.17.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.解析(1)证明:因为BQ∥AA1,BC∥AD,BC∩BQ=B,AD∩AA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以===,即Q为BB1的中点.(2)如图1,连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V 下,设BC=a,则AD=2a.图1=×·2a·h·d=ahd,V Q-ABCD=··d·h=ahd,所以V下=+V Q-ABCD=ahd,又=ahd,所以V上=-V下=ahd-ahd=ahd,故=.(3)解法一:如图1,连接AC,在△ADC中,作AE⊥DC,垂足为E,连接A1E.因为DE⊥AA1,且AA1∩AE=A,所以DE⊥平面AEA1,于是DE⊥A1E.所以∠AEA1为平面α与底面ABCD所成二面角的平面角.因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.又因为梯形ABCD的面积为6,DC=2,所以S△ADC=4,AE=4.于是tan∠AEA1==1,∠AEA1=.故平面α与底面ABCD所成二面角的大小为.解法二:如图2,以D为原点,,的方向分别为x轴和z轴正方向建立空间直角坐标系.图2设∠CDA=θ.由(2)知||=a.因为S四边形ABCD=·2sin θ=6,所以a=.从而C(2cos θ,2sin θ,0),A1,所以=(2cos θ,2sin θ,0),=.设平面A1DC的法向量为n=(x,y,1),由得x=-sin θ,y=cos θ,所以n=(-sin θ,cos θ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos<n,m>==,易知平面α与底面ABCD所成二面角的平面角为锐角,故平面α与底面ABCD所成二面角的大小为.18.(2014天津,17,13分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.解析解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PC 的中点,得E(1,1,1).(1)证明:向量=(0,1,1),=(2,0,0),故·=0.所以BE⊥DC.(2)向量=(-1,2,0),=(1,0,-2).设n=(x,y,z)为平面PBD的法向量,则即不妨令y=1,可得n=(2,1,1)为平面PBD的一个法向量.于是有cos<n,>===.所以直线BE与平面PBD所成角的正弦值为.(3)向量=(1,2,0),=(-2,-2,2),=(2,2,0),=(1,0,0).由点F在棱PC上,设=λ,0≤λ≤1.故=+=+λ=(1-2λ,2-2λ,2λ).由BF⊥AC,得·=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=.即=.设n1=(x,y,z)为平面FAB的法向量,则即不妨令z=1,可得n1=(0,-3,1)为平面FAB的一个法向量.取平面ABP的法向量n2=(0,1,0),则cos<n1,n2>===-.易知,二面角F-AB-P是锐角,所以其余弦值为.解法二:(1)证明:如图,取PD的中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EM∥DC,且EM=DC,又由已知,可得EM∥AB且EM=AB,故四边形ABEM为平行四边形,所以BE∥AM.因为PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,从而CD⊥平面PAD,因为AM⊂平面PAD,于是CD⊥AM,又BE∥AM,所以BE⊥CD.(2)连接BM,由(1)有CD⊥平面PAD,得CD⊥PD,而EM∥CD,故PD⊥EM.又因为AD=AP,M为PD的中点,故PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD.所以直线BE在平面PBD内的射影为直线BM,而BE⊥EM,可得∠EBM为锐角,故∠EBM为直线BE与平面PBD所成的角.依题意,有PD=2,而M为PD的中点,可得AM=,进而BE=.故在直角三角形BEM中,tan∠EBM===,因此sin∠EBM=.所以直线BE与平面PBD所成角的正弦值为.(3)如图,在△PAC中,过点F作FH∥PA交AC于点H.因为PA⊥底面ABCD,故FH⊥底面ABCD,从而FH⊥AC.又BF⊥AC,得AC⊥平面FHB,因此AC⊥BH.在底面ABCD内,可得CH=3HA,从而CF=3FP.在平面PDC内,作FG∥DC交PD于点G,于是DG=3GP.由于DC∥AB,故GF∥AB,所以A,B,F,G四点共面.由AB⊥PA,AB⊥AD,得AB⊥平面PAD,故AB⊥AG.所以∠PAG为二面角F-AB-P的平面角.在△PAG中,PA=2,PG=PD=,∠APG=45°,由余弦定理可得AG=,cos∠PAG=.所以二面角F-AB-P的余弦值为.19.(2014四川,18,12分)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.解析(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC中点.(2)解法一:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A-NP-M的一个平面角.由(1)知,△ABD,△BCD是边长为2的正三角形,所以AO=OC=.由俯视图可知,AO⊥平面BCD.因为OC⊂平面BCD,所以AO⊥OC.因此在等腰Rt△AOC中,AC=.作BR⊥AC于R.在△ABC中,AB=BC,所以BR==.因为在平面ABC内,NQ⊥AC,BR⊥AC,所以NQ∥BR.又因为N为AB的中点,所以Q为AR的中点,因此NQ==.同理,可得MQ=,所以在等腰△MNQ中,cos∠MNQ===.故二面角A-NP-M的余弦值是.解法二:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图,以O为坐标原点,以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M,N,P.于是=(1,0,-),=(-1,,0),=(1,0,0),=.设平面ABC的法向量n1=(x1,y1,z1),则即有从而取z1=1,则x1=,y1=1,所以n1=(,1,1).设平面MNP的法向量n2=(x2,y2,z2),则即有从而取z2=1,所以n2=(0,1,1).设二面角A-NP-M的大小为θ,则co s θ===.故二面角A-NP-M的余弦值是.20.(2013课标全国Ⅱ,18,12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.解析(1)证法一:连接AC1交A1C于点F,则F为AC1的中点.又D是AB的中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.证法二:由AC=CB=AB得,AC⊥BC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).设n=(x1,y1,z1)是平面A1CD的法向量,则即可取n=(1,-1,-1).∵=(0,0,2)-(0,2,0)=(0,-2,2).从而n·=(1,-1,-1)·(0,-2,2)=0.∴BC1∥平面A1CD.(2)设m=(a,b,c)是平面A1CE的法向量,则即可取m=(2,1,-2).从而cos<n,m>==,故sin<n,m>=.即二面角D-A1C-E的正弦值为.21.(2013湖南,19,12分)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解析解法一:(1)如图1,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1.图1又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ).如图1,连接A1D.因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1D⊥AD1.故AD1⊥平面A1B1D,于是AD1⊥B1D.由(1)知,AC⊥B1D,所以B1D⊥平面ACD1,故∠ADB1=90°-θ.在直角梯形ABCD中,因为AC⊥BD,所以∠BAC=∠ADB.从而Rt△ABC∽Rt△DAB,故=,即AB==.连接AB1.易知△AB1D是直角三角形,且B1D2=B+BD2=B+AB2+AD2=21,即B1D=.在Rt△AB1D中,cos∠ADB1===,即cos(90°-θ)=.从而sin θ=.即直线B1C1与平面ACD1所成角的正弦值为.解法二:(1)易知,AB,AD,AA1两两垂直.如图2,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).图2从而=(-t,3,-3),=(t,1,0),=(-t,3,0).因为AC⊥BD,所以·=-t2+3+0=0,解得t=或t=-(舍去).于是=(-,3,-3),=(,1,0).因为·=-3+3+0=0,所以⊥,即AC⊥B1D.(2)由(1)知,=(0,3,3),=(,1,0),=(0,1,0).设n=(x,y,z)是平面ACD1的一个法向量,则即令x=1,则n=(1,-,).设直线B1C1与平面ACD1所成角为θ,则sin θ=|cos<n,>|===.即直线B1C1与平面ACD1所成角的正弦值为.22.(2013重庆,19,13分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B-AF-D的正弦值.解析(1)如图,连接BD交AC于O,因为BC=CD,即△BCD为等腰三角形,又AC平分∠BCD,故AC⊥BD.以O为坐标原点,,,的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系O-xyz,则OC=CDcos=1,而AC=4,得AO=AC-OC=3,又OD=CDsin=,故A(0,-3,0),B(,0,0),C(0,1,0),D(-,0,0).因PA⊥底面ABCD,可设P(0,-3,z),由F为PC边中点,得F.又=,=(,3,-z),因AF⊥PB,故·=0,即6-=0,z=2(舍去-2),所以||=2.(2)由(1)知=(-,3,0),=(,3,0),=(0,2,).设平面FAD的法向量为n1=(x1,y1,z1),平面FAB的法向量为n2=(x2,y2,z2),由n1·=0,n1·=0,得因此可取n1=(3,,-2).由n2·=0,n2·=0,得故可取n2=(3,-,2).从而法向量n1,n2的夹角的余弦值为cos<n1,n2>==.故二面角B-AF-D的正弦值为.23.(2013天津,17,13分)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.解析解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)证明:易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1).设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m,>===-,从而sin<m,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1).设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sin θ=|cos<,>|===.于是=,解得λ=,所以AM=.解法二:(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1.经计算可得B1E=,B1C1=,EC1=,从而B1E2=B1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G.由(1)知B1C1⊥CE,故CE⊥平面B1C1G,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x.在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x.在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos 135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.24.(2013江西,19,12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.解析(1)在△ABD中,因为E是BD中点,所以EA=EB=ED=AB=1,故∠BAD=,∠ABE=∠AEB=,因为△DAB≌△DCB,所以△EAB≌△ECB,从而有∠FED=∠BEC=∠AEB=,所以∠FED=∠FEA,故EF⊥AD,AF=FD,又因为PG=GD,所以FG∥PA.又PA⊥平面ABCD,所以GF⊥AD,故AD⊥平面CFG.(2)以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C,D(0,,0),P,故=,=,=.设平面BCP的法向量n1=(1,y1,z1),则解得即n1=.设平面DCP的法向量n2=(1,y2,z2),则解得即n2=(1,,2).从而平面BCP与平面DCP的夹角的余弦值为cos θ===.25.(2013浙江,20,15分)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.解析解法一:(1)取BD的中点O,在线段CD上取点F,使得DF=3FC,连接OP,OF,FQ.因为AQ=3QC,所以QF∥AD,且QF=AD.因为O,P分别为BD,BM的中点,所以OP是△BDM的中位线,所以OP∥DM,且OP=DM.又点M为AD的中点,所以OP∥AD,且OP=AD.从而OP∥FQ,且OP=FQ,所以四边形OPQF为平行四边形,故PQ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)作CG⊥BD于点G,作GH⊥BM于点H,连接CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BDcos θ=2cos θ,CG=CDsin θ=2cos θsin θ,BG=BCsin θ=2sin2θ.在Rt△BDM中,HG==.在Rt△CHG中,tan∠CHG===.所以tan θ=.从而θ=60°.即∠BDC=60°.解法二:(1)如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知A(0,,2),B(0,-,0),D(0,,0).设点C的坐标为(x0,y0,0),因为=3,所以Q.因为M为AD的中点,故M(0,,1).又P为BM的中点,故P,所以=.又平面BCD的一个法向量为u=(0,0,1),故·u=0.又PQ⊄平面BCD,所以PQ∥平面BCD.(2)设m=(x,y,z)为平面BMC的一个法向量.由=(-x0,-y0,1),=(0,2,1),知取y=-1,得m=.又平面BDM的一个法向量为n=(1,0,0),于是|cos<m,n>|===,即=3.①又BC⊥CD,所以·=0,故(-x0,--y0,0)·(-x0,-y0,0)=0,即+=2.②联立①,②,解得(舍去)或所以tan∠BDC==.又∠BDC是锐角,所以∠BDC=60°.三年模拟A组2016—2018年模拟·基础题组考点空间向量及其应用1.(2017湖南五市十校3月联考,15)有公共边的等边三角形ABC和BCD所在平面互相垂直,则异面直线AB和CD 所成角的余弦值为.答案2.(2018广东茂名模拟,18)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧的两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E-BD-F的正弦值.解析(1)证明:∵四边形ABCD是矩形,∴CD⊥AD.∵AE⊥AB,CD∥AB,∴CD⊥AE.又AD∩AE=A,∴CD⊥平面ADE.∵CD⊂平面CDF,∴平面CDF⊥平面ADE.(2)∵AD=BC=1,EA=2,DE=,∴DE2=AD2+AE2,∴AE⊥AD.又AE⊥AB,AB∩AD=A,∴AE⊥平面ABCD.以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).∴=(1,2,0),=(0,2,1),设平面BDF的法向量为m=(x,y,z),∴令x=2,得m=(2,-1,2).同理可求得平面BDE的一个法向量为n=(2,-1,-1),∴cos<m,n>===,∴sin<m,n>=.故二面角E-BD-F的正弦值为.3.(2017河南洛阳二模,19)已知三棱锥A-BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2,E,F分别是AC,BC的中点,P 为线段BC上一点,且CP=2PB.(1)求证:AP⊥DE;(2)求直线AC与平面DEF所成角的正弦值.解析(1)证明:作PG∥BD交CD于G.连接AG.∴==2,∴GD=CD=.∵AD⊥平面BCD,∴AD⊥DC,∵在△ADG中,tan∠GAD=,∴∠DAG=30°,在Rt△ADC中,AC2=AD2+CD2=4+12=16,∴AC=4,又E为AC的中点,∴DE=AE=2,又AD=2,∴∠ADE=60°,∴AG⊥DE.∵AD⊥面BCD,∴AD⊥BD,又∵BD⊥CD,AD∩CD=D,∴BD⊥面ADC,∴PG⊥面ADC,∴PG⊥DE.又∵AG∩PG=G,∴DE⊥面AGP,又AP⊂面AGP,∴AP⊥DE.(2)以D为坐标原点,直线DB、DC、DA所在直线分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,则D(0,0,0),A(0,0,2),B(2,0,0),C(0,2,0),E(0,,1),F(1,,0),∴=(1,,0),=(0,,1),=(0,2,-2).设平面DEF的法向量为n=(x,y,z),则即令x=3,则n=(3,-,3).设直线AC与平面DEF所成角为θ,则sin θ=|cos<,n>|===,所以AC与平面DEF所成角的正弦值为.B组2016—2018年模拟·提升题组(满分:30分时间:30分钟)一、填空题(共5分)1.(人教A选2—1,三,3-2A,4,变式)已知在正方体ABCD-A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为.答案二、解答题(共25分)2.(2018云南玉溪模拟,19)如图,四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为直角梯形,∠ABC=90°,AD∥BC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.(1)求证:CD⊥平面PBD;(2)求二面角A-BE-D的余弦值.解析(1)证明:因为底面ABCD为直角梯形,∠ABC=90°,所以AB⊥BC,因为PB⊥底面ABCD,CD⊂底面ABCD,所以PB⊥CD.在梯形ABCD中,因为∠ABC=∠BAD=90°,AB=AD=BC,所以BD=CD=BC,所以BD⊥CD.又因为PB∩BD=B,所以CD⊥平面PBD.(2)建立如图所示的空间直角坐标系,不妨设AB=1.设平面EBD的法向量为n=(x,y,z),易知B(0,0,0),E,D(1,1,0),=,=(1,1,0).则即令y=-1,得n=(1,-1,2).又因为平面ABE的一个法向量为m=(1,0,0),所以cos<n,m>==.由图可知二面角A-BE-D的平面角为锐角,所以二面角A-BE-D的余弦值为.3.(2017河南4月质检,19)如图,四棱锥P-ABCD,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=,点E在AD上,且AE=2ED.(1)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;(2)当二面角A-PB-E的余弦值为多少时,直线PC与平面PAB所成的角为45°?解析(1)证明:∵AB⊥AC,AB=AC,∴∠ACB=45°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 立体几何中的向量方法(一) ——证明平行与垂直
基础巩固题组 (建议用时:40分钟) 一、填空题 1.(2014·徐州模拟)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).若|a|=3,
且a分别与AB→,AC→垂直,则向量a为________. 解析 由条件知AB→=(-2,-1,3),AC→=(1,-3,2),设a=(x,y,z)则有
-2x-y+3z=0,
x-3y+2z=0,x2+y2+z2=3,解可得a=±(1,1,1).
答案 (1,1,1)或(-1,-1,-1) 2.若AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是________. 解析 ∵AB→=λCD→+μCE→,∴AB→,CD→,CE→共面.则AB与平面CDE的位置关系是平行或在平面内. 答案 平行或在平面内 3.设a=(1,2,0),b=(1,0,1),则“c=23,-13,-23”是“c⊥a,c⊥b且c为单位向量”的________条件. 解析 当c=23,-13,-23时,c⊥a,c⊥b且c为单位向量,反之则不成立. 答案 充分不必要 4. 如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=3,AD=22,P为C1D1
的中点,M为BC的中点.则AM与PM的位置关系为________(填“平行”、“垂直”、“异面”). 解析 以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如图所示的空间直角坐标系D-xyz,
依题意,可得,D(0,0,0),P(0,1,3),C(0,2,0),A(22,0,0),M(2,2,0). ∴PM→=(2,2,0)-(0,1,3)=(2,1,-3), AM→=(2,2,0)-(22,0,0)=(-2,2,0), ∴PM→·AM→=(2,1,-3)·(-2,2,0)=0, 即PM→⊥AM→,∴AM⊥PM. 答案 垂直 5. 如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=2,AF=1,M在EF上,且AM∥平面BDE.则M点的坐标为________. 解析 连接OE,由AM∥平面BDE,且AM⊂平面ACEF,平面ACEF∩平面BDE=OE,∴AM∥EO, 又O是正方形ABCD对角线交点, ∴M为线段EF的中点. 在空间坐标系中,E(0,0,1),F(2,2,1). 由中点坐标公式,知点M的坐标22,22,1. 答案 22,22,1 6.已知平面α和平面β的法向量分别为a=(1,1,2),b=(x,-2,3),且α⊥β,则x=________. 解析 ∵α⊥β,∴a·b=x-2+6=0,则x=-4. 答案 -4 7.已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n= (-1,-1,-1).则不重合的两个平面α与β的位置关系是________.
解析 AB→=(0,1,-1),AC→=(1,0,-1),∴n·AB→=0,n·AC→=0,∴n⊥AB→,n⊥AC→,故n也是α的一个法向量.又∵α与β不重合,∴α∥β. 答案 平行
8.已知点P是平行四边形ABCD所在的平面外一点,如果AB→=(2,-1,-4), AD→=(4,2,0),AP→=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③AP→是平面ABCD的法向量;④AP→∥BD→.其中正确的是________. 解析 ∵AB→·AP→=0,AD→·AP→=0, ∴AB⊥AP,AD⊥AP,则①②正确.
又AB→与AD→不平行, ∴AP→是平面ABCD的法向量,则③正确. 由于BD→=AD→-AB→=(2,3,4),AP→=(-1,2,-1), ∴BD→与AP→不平行,故④错误. 答案 ①②③ 二、解答题 9. 如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.
证明 ∵平面PAD⊥平面ABCD且ABCD为正方形, ∴AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0). ∴PB→=(2,0,-2),FE→=(0,-1,0),FG→=(1,1,-1), 设PB→=sFE→+tFG→, 即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
∴ t=2,t-s=0,-t=-2,解得s=t=2.∴PB→=2FE→+2FG→,
又∵FE→与FG→不共线,∴PB→,FE→与FG→共面. ∵PB⊄平面EFG,∴PB∥平面EFG. 10. 如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
(1)求证:CM∥平面PAD; (2)求证:平面PAB⊥平面PAD. 证明 以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系C-xyz.
∵PC⊥平面ABCD, ∴∠PBC为PB与平面ABCD所成的角, ∴∠PBC=30°.∵PC=2,∴BC=23,PB=4.
∴D(0,1,0),B(23,0,0),A(23,4,0),P(0,0,2),M32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM→=32,0,32, (1)设n=(x,y,z)为平面PAD的一个法向量,则 DP→·n=0,DA→·n=0,即
-y+2z=0,23x+3y=0,∴ z=12y,x=-32y,
令y=2,得n=(-3,2,1). ∵n·CM→=-3×32+2×0+1×32=0,∴n⊥CM→, 又CM⊄平面PAD,∴CM∥平面PAD. (2)取AP的中点E,并连接BE,
则E(3,2,1),BE→=(-3,2,1), ∵PB=AB,∴BE⊥PA.
又BE→·DA→=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA→,则BE⊥DA. ∵PA∩DA=A.∴BE⊥平面PAD, 又∵BE⊂平面PAB,∴平面PAB⊥平面PAD. 能力提升题组
(建议用时:25分钟) 一、填空题
1.已知AB→=(1,5,-2),BC→=(3,1,z),若AB→⊥BC→,BP→=(x-1,y,-3),且BP⊥平面ABC,则x+y的值为________.
解析 ∵AB→⊥BC→,∴AB→·BC→=0,即3+5-2z=0,得z=4,又BP⊥平面ABC,∴BP→⊥AB→,BP→⊥BC→, 则 x-1+5y+6=0,3x-1+y-12=0,解得x=407,y=-157.于是x+y=407-157=257. 答案 257 2. 如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则 ①A1M∥D1P; ②A1M∥B1Q; ③A1M∥平面DCC1D1; ④A1M∥平面D1PQB1. 以上正确说法的序号为________.
解析 A1M→=A1A→+AM→=A1A→+12AB→,D1P→=D1D→+DP→=A1A→+12AB→,∴A1M→∥D1P→,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥面DCC1D1,A1M∥面D1PQB1.①③④正确. 答案 ①③④ 3. 如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________. 解析 以D1A1,D1C1,D1D分别为x,y,z轴建立空间直角坐标系,设CE=x,DF=y,则易知E(x,1,1),B1(1,1,0),F(0,0,1-y),B(1,1,1),∴B1E→=(x-1,0,1),∴FB→=(1,1,y),由于B1E⊥平面ABF,所以FB→·B1E→=(1,1,y)·(x-1,0,1)=0⇒x+y=1. 答案 1 二、解答题 4.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点. (1)求证:EF⊥CD; (2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论. (1)证明 如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,
则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),Ea,a2,0,P(0,0,a), Fa2,a2,a2. EF→=-a2,0,a2,DC→=(0,a,0). ∵EF→·DC→=0,∴EF→⊥DC→,即EF⊥CD. (2)解 设G(x,0,z),则FG→=x-a2,-a2,z-a2, 若使GF⊥平面PCB,则由