(仪器分析)10.1光学分析法基础
仪器分析光学分析法导论

电磁辐射具有波动性和微粒性(波粒二象性): (1) 光的波动性: 光的传播如光的折射、衍射、偏振和干扰等现象可以用光的波动性来解释。 描述波动性的重要参数是波长、频率和光速C,它们的关系是 :
=C ∕
波动性
波长
频率
c光速=2.9979×108m·s-1 =2.9979×1010cm·s-1
分子荧光分析法 某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。
3.原子荧光分析法
原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射线( X射线荧光),测定其强度可进行定量分析。
6.X射线荧光分析法
利用化学反应提供能量,使待测分子被激发,返回基态时发出一定波长的光,依据其强度与待测物浓度之间的线性关系进行定量分析的方法。
三、光分析法分类 type of optical analysis
光分析法可分为光谱法和非光谱法两大类。 光谱法是以光的吸收,发射和拉曼散射等作用而建立的光谱方法。这类方法比较多,是主要的光分析方法。 1.光谱法 光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。 1)吸收光谱法:它是利用物质吸收光后所产生的吸收光谱来进行分析的方法。 2)发光光谱法:物质中的粒子用一定的能量(如光、电、热等)激发到高能级后,当跃迁回低能级时,便产生出特征的发射光谱,利用此发射光谱进行的分析的方法 3)散射光谱法:利用物质对光的散射来进行分析的方法。
三、物质和光的作用
2、物质吸收和发光的过程示意图
不发光,发热
发光,波长最短,不发热
发光,波长最长,发热
发光,波长变长,发热
仪器分析-光谱分析法概论(第十章)

三个主要过程:(1)能源提供能量;(2)能量与被测物
质相互作用;(3)产生被检测信号。
第一节
电磁辐射及其物质的相互作用
一、电磁辐射和电磁波谱
1. 波动性(干涉、衍射、反射和折射) 用波长(nm)、波数(cm-1)和频率(Hz)表示。 =c/ = 1 / = /c
波长是在波的传播路线上具有相同振动相位的相邻两点间的线性距
光学分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原子吸收光谱原子发射光谱原子荧光光谱x射线荧光光谱折射法圆二色性法x射线衍射法干涉法旋光法紫外光谱法红外光谱法分子荧光光谱法分子磷光光谱法核磁共振波谱法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光x射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光x射线荧光化学发光第三节光谱分析仪器光学分析法三个基本过程
原 子 发 射
原 子 吸 收
原 子 荧 光
X 射 线 荧 光
紫 外 可 见
红 外 可 见
分 子 荧 光
分 子 磷 光
核 磁 共 振
化 学 发 光
原子光谱法 光谱分析法 吸收光谱法 原 子 吸 收 紫 外 可 见 红 外 可 见 核 磁 共 振
分子光谱法
发射光谱法
原 子 发 射
原 子 荧 光
分 子 荧 光
离;波数是每厘米长度中波的数目; 频率是每秒内的波动次数。
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小
2. 微粒性(光电效应、光的吸收和发射) 用每个光子具有的能量E作为表征。 E = h =h c / = h c h (普朗克常数) , h=6.6262×10-34J•s ※ 光量子的能量(E)与波长成反比, 而与频率(或波数) 成正比.
仪器分析基础问题 (一)

仪器分析基础问题(一)1 绪论2 光分析1.什么叫光学分析法?2.光学分析法一般包含哪三个过程?3.我们这门课程要学习什么光分析方法?4.看到原子发射光谱分析法,你就知道这个方法的什么信息?5.电磁辐射具有哪两个特性?分别对应的参数和公式是什么?6.如果一个特定的物质能吸收光线,是不是就能吸收任何波长的光线?1.原子光谱和分子光谱在各个方面的不同2.为什么原子光谱是线状的?而分子光谱是带状的?3.为什么可以根据原子光谱对元素进行定性分析?4.原子光谱涉及哪种能级的跃迁?分子能级呢?1.荧光量子产率的定义式是什么?2.影响荧光的分子结构因素有哪几个?分别是怎么影响的?1.无辐射去活化过程有哪几个?辐射去活化过程有哪几个?2:同一物质的激发光、荧光、磷光,三者的波长的大小顺序?3:荧光发射途径是什么?磷光呢?(即说出从哪个电子能级跃迁到哪个电子能级上)1.低温还是高温利于发射荧光?2.溶剂极性增加,一般会使荧光强度和波长怎样变化?1.分子中哪种跃迁类型最利于发射荧光?2.共轭度增加,荧光强度和波长会怎么变化?3.荧光素和酚酞结构式非常相似,为什么荧光素的荧光量子产率很大而酚酞没有荧光?4.苯酚的荧光量子产率比苯的更大还是更小?苯甲酸呢?1.荧光猝灭主要有哪几种?2.荧光分析时为什么要除氧?3.溴化物通常会发生哪种荧光猝灭?这种猝灭会使荧光、磷光强度分别如何变化?1:激发光谱是如何绘制出来的?发射光谱呢?测定时应该把第一单色器和第二单色器分别放置在什么波长的位置上?2:什么叫stocks位移?3.荧光光谱的形状受激发光波长的影响吗?能量最低的激发光谱和荧光光谱的形状有关系吗?有的话是什么关系?1.标准曲线法纵坐标和横坐标分别是什么?2.使用标准曲线法时需要注意什么?3.标准曲线法的特点是什么?4.标准曲线法的适用情况是哪两种情况?5.多组分混合物荧光分析时若激发光谱和荧光光谱都重叠,常采用列方程组的方法求解,那么列方程组是依据什么原理?1:荧光分光光度计有哪几大部件?作用分别是什么?2.荧光分光光度计和吸光光度计相比,有哪两个特点?1.什么叫光学分析法?光与物质相互作用引起物质的原子分子内部发生能级跃迁而产生对光线的发射吸收等现象,通过测量光线的波长与强度或者是其他性质的变化进行分析的方法。
仪器分析 10.1紫外可见分光光度法 图文

61-19
二、UV光谱的有关知识和概念
2、物质吸光的程度表达
辐射功率P:单位时间内所传输的能量, 光度法中用光强 I 代替。 透过率 T:透过光与入射光强度的比值 吸光度 A :
I T
I0
A lgT lg IO I
2020年9月13日星期日 上一内容 下一内容
61-20
3、UV吸收光谱——吸收曲线
镧系元素:f-f 跃迁
二、UV光谱的有关知识和概念
1、物质吸光的选择性
M h I0 M * It h
ΔΕ ΔΕe ΔΕv ΔΕr
分子轨道包括三种: 分子轨道能级的量子化:光吸收具有选择性 电子能级差:约为1~20ev(1250~60nm)
2020年9月13日星期日 上一内容 下一内容
一、分子轨道中的电子跃迁类型 二、UV光谱的常用概念 三、吸收带及其与分子结构的关系 四、影响吸收带的因素 五、物质对光的吸收与吸收曲线 五、朗伯-比尔定律
2020年9月13日星期日 上一内容 下一内容
61-3
练习:
下面五个电磁辐射区域
A:X射线区
B:红外区
C:无线电波
D:可见光区
E:紫外光区
请指出:
61-22
4、有关概念:
① 吸收带:吸收峰位置 ② 红移或长移 ③ 蓝移或短移 ④ 增色效应
减色效应
⑤ 强带 ε ≥104
弱带 ε ≤102
2020年9月13日星期日 上一内容 下一内容
61-23
⑥ 生色团(chromophore ):含π→π* 、 n →π* 等跃迁的基团,即能产生UV吸收的 基团
61-12
5、电荷迁移跃迁
Charge transfer transition
光学分析法资料

光学分析法是利用待测定组分所显示出的吸收光谱或发射光谱,既包括原子光谱也包括分子光谱。
利用被测定组分中的分子所产生的吸收光谱的分析方法,即通常所说的可见与紫外分光光度法、红外光谱法;利用其发射光谱的分析方法,常见的有荧光光度法。
利用被测定组分中的原子吸收光谱的分析方法,即原子吸收法;利用被测定组分的发射光谱的分析方法,包括发射光谱分析法、原子荧光法、X射线原子荧光法、质子荧光法等。
(一)比色法分光光度法的前身是比色法。
比色分析法有着很长的历史。
1830年左右,四氨络铜离子的深蓝色就被用于铜的测定。
奈斯勒的氨测定法起源于1852年,大约在同一年,硫氰酸盐被用来分析铁。
1869年,舍恩报道说钛盐与过氧化氢反应会产生黄色,1882年,韦勒(Weller)将此黄色反应改进成一种钛的比色法。
钒也能与过氧化物发生类似的反应,生成一种橙色络合物。
1912年,梅勒一方面利用1908年芬顿发现的一个反应(二羟基马来酸与钛反应呈橙黄色,与钒反应无此色),另一方面利用与过氧化物的反应,得出了一种钛和钒这两种元素的比色测定法。
吸收光度分析法提供了非化学计量法的一个很好例子。
有色化合物的光吸收强弱随着所用辐射波长的大小而变化。
因此早期的比色法主要凭经验将未知物与浓度近似相等的标准溶液进行对比。
比如象奈斯勒在氨测定法中所作的比较。
比色剂,如杜波斯克比色计,是通过改变透光溶液的厚度和利用比尔定律,来对未知物的颜色与标准液的浓度进行对比的,这种仪器并不适用于所有的有色物质,它充其量也不过经验程度很高罢了。
1729年,P·布古厄(Bouguer)观察到入射光被介质吸收的多少与介质的厚度成正比。
这后来又被J·H·兰贝特(Lambert,1728—1777)所发现,他对单色光吸收所作的论述得到了下列关系式:上式中I是通过厚度为x的介质的光密度,a是吸收系数。
利用边界条件x=0时,I=I0,积分得到:I=I0e-ax1852年,A·比尔(Beer)证实,许多溶液的吸收系数a是与溶质的浓度C成正比的。
《光学分析法概述》课件

光学分析法通常是非接触性的,不会对被 检测物质造成破坏或污染,这对于某些脆 弱的样品或环境十分重要。
实时监测
远程操作
光学分析法可以实现实时监测,对于快速 变化的过程或事件能够迅速响应。
在某些情况下,光学分析法可以通过远程 操作进行,无需直接接触被检测物质,增 加了操作的安全性和便利性。
缺点
对光源和探测器的依赖 光学分析法通常依赖于特定波长 或光谱范围的光源和探测器,而 这些设备的准确性和稳定性可能 会影响分析结果。
荧光光谱仪通常由光源、激发滤光片、单色器、样品池、发射滤光片和检测器组成,能够测量荧光物质 的激发光谱和发射光谱,从而分析荧光物质的性质和组成。
荧光光谱仪在生物学、医学、化学和环境科学等领域有广泛应用,可用于分析生物样品、药物、污染物 等样品。
拉曼光谱仪
拉曼光谱仪是一种用于测量拉曼散射光谱的仪 器。
《光学分析法概述》ppt 课件
CONTENTS
目录
• 光学分析法简介 • 光学分析法的基本原理 • 常用光学分析仪器介绍 • 光学分析法的优缺点 • 光学分析法的未来发展
CHAPTER
01
光学分析法简介
光学分析法的定义
光学分析法是一种基于光与物质相互作用来研究物质结构和性质的分析方法。它利用光的吸收、发射 、散射、折射等特性,结合各种光学器件和测量技术,实现对物质进行定性和定量分析的目的。
光的散射与干涉
光的散射
当光通过物质时,物质中的微小颗粒 会使光发生散射。散射光的强度和方 向与颗粒的大小、形状和折射率有关 ,可据此分析物质的粒度和分布。
光的干涉
两束或多束光波在空间相遇时,会因 相位差而产生加强或减弱的现象。利 用光的干涉现象可进行光学干涉测量 和干涉光谱分析。
仪器分析-光学分析导论

波长λ:相邻两个波峰或波谷 间的直线距离。
c
1
波数: 每厘米长度内含有的波 长数目。
2、光的微粒性 电磁波的波动性不能解释辐射的发 射和吸收现象。对于光电效应及黑 体辐射的光谱能量分布等现象,需 要把辐射视为微粒(光子)才能满 意地解释。
3、电磁波谱图
复习思考:
1 通常将仪器分析分为哪几类?
第二章 光学分析法导论
一、光的二象性
1、 光的波动性 光是一种电磁波,电磁波具 有波动性和微粒性。
周期 T :相邻两个波峰或波谷通过空 间某一固定点所需要的时间间隔称为 周期,单位为s(秒)。
频率 :单位时间内通过传播方向上 某一点的波峰或波谷的数目,即单位 时间内电磁场振动的次数称为频率, 它等于周期的倒数1/T。
发射线是514.5 nm和488.0 nm。另外Kr+激 光器也是激光光谱仪的常备激光器。
(2) 固体激光器 光谱分析中常用的固体激光 器是红宝石(Al2O3掺Cr3+)激光器和Nd: YAG (掺钕的钇铝石榴石)激光器。前者的 激光波长为694.3 nm,后者使用的激光波长是 1064 nm。
二、 单色器
1、单道光子检测器 (1) 光电池 硒光电池是最常用的阻挡层光电 池。将一层半导体硒涂在铁或铝的金属底板 上,金属底板和硒之间是欧姆接触。在硒表 面再涂一层导电性和透光性良好的金属薄膜 如金、银等作为收集极,然后再在金属薄膜 表面涂一层保护层即成。 图10-17
(2) 光电管 光电管也称真空光电二极管。
光谱,这种光谱法有原子发射光
谱和火焰光度法等。
图10-6
光致发光 物质吸收光能后跃迁至
激发态,当回到低能态或基态时将
发射辐射,这种光谱法有原子荧光
仪器分析之光学分析法概论

吸
光
度
?1
(A)
? (nm)
?1
?1 ?2 ?3 ?4 ?5 ?6 … ?n
光谱的不同形式
nm
带状光谱
线状光谱
?连续光谱:由炽热的固体或液体发射。
太阳连续光谱
非光谱法 不涉及物质内部能级的跃迁,仅 通过测量电磁辐射的某些基本性质(反射、折 射、干涉、衍射和偏振)的变化, 主要有折射 法,旋光法,浊度法,X-射线衍射法和圆二 色法等。
光学分析法概论
中药分析教研室 曹骋
第1节 电磁辐射与电磁波谱
光学分析法 :根据物质发射电磁辐射,或物质与辐 射的相互作用,对物质作定性或定量的测定,这一 类分析方法统称为 ~。
光从本质上讲是电磁辐射 (电磁波),光具 有波粒二象性,即波动性与微粒性。
光的波粒二象性
光的干涉、衍射、偏振现象说明光具有波动性, 热辐射、光电效应又表明光具有粒子性, 单独使用任何一种都无法完整地描述光的所有 性质,因此光具有波粒二象性。
◆波长越长,波动性越明显, 频率越大,粒子性越明显;
◆大量光子的行为表现波动性, 单个光子的行为表现粒子性;
◆传播过程中表现波动性,和其他物质相互 作用时表现粒子性。
1.波动性 光的波动性体现在折射、干涉、 衍射以及偏振等现象。波动性常用波长λ、 波数σ和频率υ等参数来表征。
? ? c/?
? ? 1/? ? ? /c
波数:每 1cm长度内含有波的个数
衍射现象
干涉现象
2.微粒性 体现在吸收、发射、热辐射、光电 效应等方面。
光是不连续的粒子流,这种粒子称为光子 (或光量子) 。
E ? h? ? hc/ ? ? hc?
h是普朗克常数,其值等于6.6262×10-34J·S
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丁铎尔散射:
光通过含有许多大质点(其颗粒大小的数量级等 于光波的波长)的介质时产生的散射光。
乳浊液、悬浮物溶液、胶体溶液等所引起的散射。
分子散射(瑞利散射和拉曼散射):
辐射能与比辐射波长小得多的分子或分子聚集体 之间的相互作用而产生的。
2020/7/23
(1) 瑞利散射
光子与分子间“弹性碰撞”。 入射光能量小,分子外层电子不跃迁,分子跃迁 到“受激虚态”(较高的振动能级),不稳定,在10-15~ 10-12 s 回到基态,将吸收的能量以入射光同样的波长释 放,相当于光子改变了运动方向。
2020/7/23
3.原子荧光分析法
气态原子吸收特征波长的辐射后,外层电子从基态 或低能态跃迁到高能态,10-8 s 后跃回基态或低能态时, 发射出与吸收波长相同或不同的荧光辐射,在与光源成 90度的方向上,测定荧光强度进行定量分析的方法。
4.分子荧光分析法
某些物质被紫外光照射激发后,在回到基态的过程 中发射出比原激发波长更长的荧光,通过测量荧光强度 进行定量分析的方法。
拉曼位移是表征物质分子 振动、转动能级特性的一个物 理量,反映了分子极化率的变 化,可用于物质的结构分析。
2020/7/23
△ ν =ν-ν0 拉曼位移
2020/7/23
2020/7/23
10.1.3 光学分析法的分类
光谱法—基于物质与辐射能作用时,分子发生能级跃 迁而产生的发射、吸收或散射的波长或强度进行分析的方 法;
分子光谱法
发射光谱法
原原分分 X 化
子子子子 射 学
发
荧
荧
磷
线 荧
发
射光光光 光 光
10.1.4 各种光学分析方法简介
1.原子发射光谱分析法 以火焰、电弧、等离子炬等作为光源,使气态原
子的外层电子受激发射出特征光谱进行定量分析的方 法。 2.原子吸收光谱分析法
利用特殊光源发射出待测元素的共振线,并将溶 液中离子转变成气态原子后,测定气态原子对共振线 吸收而进行的定量分析方法。
X 射 线 荧 光 光 谱
分分核 紫红子子磁 外外荧磷共 光光光光振 谱谱光光波 法法谱谱谱
法法法
2020/7/23
原 原原 X
子 子子 射
发
吸荧
线 荧
射 收光 光
原子光谱法
光谱分析法
吸收光谱法
原紫红核 子外外磁 吸可光共 收见谱振
2020/7/23
紫红分分核化 外外子子磁学 可光荧磷共发 见谱光光振光
利用分子中基团吸收红外光产生的振动-转动吸收光 谱进行定量和有机化合物结构分析的方法。
10.核磁共振波谱分析法
2020/7/23
三个基本过程: (1)能源提供能量。 (2)能量与被测物之间的相互作用。 (3)产生信号,检测信号。
基本特点: (1)所有光分析法均包含这三个基本过程。 (2)选择性测量,不涉及混合物分离(不同于色谱 分析)。 (3)涉及大量光学元器件。
2020/7/23
10.1.2 电磁辐射的基本性质
(2) 发射:将吸收的能量以光的形式释放出; (3) 散射:丁铎尔散射和分子散射(下一页讲); (4) 折射:折射是光在两种介质中的传播速度不同; (5) 反射: (6) 干涉:干涉现象; (7) 衍射:光绕过物体而弯曲地向后面传播的现象; (8) 偏振:只在一个固定方向有振动的光称为平面偏 振光。
2020/7/23
5. 分子磷光分析法
处于第一最低单重激发态分子以无辐射弛豫方式进入 第一三重激发态,再跃迁返回基态发出磷光。测定磷光 强度进行定量分析的方法。
6. X射线荧光分析法
原子受高能辐射,其内层电子发生能级跃迁,发射出 特征X射线( X射线荧光),测定其强度可进行定量分析。
7. 化学发光分析法
2020/7/23
(2)拉曼散射
光子与分子间“非弹性碰撞”,有能量变化,产 生与入射光波长不同的散射光。拉曼散射光。
波长短于入射光的称为“反斯托克线”;反之称 为“斯托克线。
2020/7/23
(3)拉曼位移
拉曼散射光与瑞利散射光 的频率差。
与物质分子的振动与转动 能级有关。
不同分子有不同的拉曼位 移。
(仪器分析)10.1光学分析法基础
10.1.1 光学分析法及其特点
光分析法:基于电磁辐射能量与待测物质相互 作用后所产生的辐射信号与物质组成及结构关系所建 立起来的分析方法。
电磁辐射范围:射线~无线电波所有范围。 相互作用方式:发射、吸收、反射、折射、散 射、干涉、衍射等。 光分析法在研究物质组成、结构表征、表面分 析等方面具有其他方法不可取代的地位。
利用化学反应提供能量,使待测分子被激发,返回 基态时发出一定波长的光,依据其强度与待测物浓度之 间的线性关系进行定量分析的方法。
2020/7/23
8. 紫外吸收光谱分析法
利用溶液中分子吸收紫外和可见光产生跃迁所记录 的吸收光谱图,可进行化合物结构分析,根据最大吸收 波长强度变化可进行定量分析。
9.红外吸收光谱分析法
电磁辐射(电磁波):以接近光速(真空中为 光速)传播的能量;
c =λν =ν/σ E = hν = h c /λ c:光速;λ:波长;ν:频率;σ:波数 ; E :能量; h:普朗克常数 电磁辐射具有波动性和微粒性;
2020/7/23
辐射能的特性:
(1) 吸收:物质选择性吸收特定频率的辐射能,并从 低能级跃迁到高能级;
非光谱法:
不涉及能级跃迁,物质与辐射作用时,仅改变传播 方向等物理性质;偏振法、干涉法、旋光法等。
2020/光谱分析法
折 射 法
圆 二 色 性 法
X 射 线 衍 射 法
干 涉 法
旋 光 法
原子光谱分析法 分子光谱分析法
原 子 吸 收 光 谱
原 子 发 射 光 谱
原 子 荧 光 光 谱
原子光谱、分子光谱、非光谱法 原子光谱(线性光谱):最常见的三种
基于原子外层电子跃迁的原子吸收光谱(AAS); 原子发射光谱(AES)、原子荧光光谱(AFS); 基于原子内层电子跃迁的 X射线荧光光谱(XFS); 基于原子核与射线作用的穆斯堡谱。
2020/7/23
分子光谱(带状光谱):
基于分子中电子能级、振-转能级跃迁; 紫外光谱法(UV); 红外光谱法(IR); 分子荧光光谱法(MFS); 分子磷光光谱法(MPS); 核磁共振与顺磁共振波谱(N)。