两直线所成的角(夹角)

合集下载

两直线的夹角

两直线的夹角
两直线的夹角
一 二.夹角的定义: 夹角的求法:
d2
d1
2 1
d d θ 1.余弦形式: 平面上两条直线相交时,构成了四个角。它们 θ 是两对对顶角。规定两条直线相交成的锐角(或直 L1 :a1x b1y c1 0 角)称为两直线的夹角。
如果两条直线平行或重合,规定它们的夹角为0 设 L1 , L2的 夹 角 为 α 。直线L 1 , L2的 一 个 方 向 向 量 夹角的范围:[00 , 900] y 分别为: d1 ( b1 ,a1 ),d2 ( b 2 ,a 2 )y则 L2: L1 L1 π L2 α ; (1)若d1 ,d2夹角为θ [0 , ],则:α= α 2 x x π O O (2)若d1 ,d2夹角为θ ( , π),则:α=π -. 2 a1a 2 b1b 2 cosα ……夹角公式的余弦形式 2 2 2 2 a 1 b1 a 1 b 1
D A(- 5,3) B(0,6) B1
0
P(x,0)
C(0,2) C C O x O L B O O A(1,-2) B
x L xx
练习: 1.已 知 直 线 1 L : 3x y 4 0 ,L 2 : mx 4y 7 0, 当m
0 为 何 值 时 ,1 L 与 L2夹 角 为 45 。
若直线L ,L2的斜率分别为k k2 (k1 k2 1) 1 1,
则: α=θ θ 2 1
或: α=π (θ θ 1 2)
x
O
k 2 k1 tanα 1 k 2 k1
……夹角公式的正切形式
π 注:当 k1 k 2= 1时,α= 。 2
例 2.已 直 线 L过 点 P( 角 2 , 3) , 且另 与 直线 L : x 3y 例5.已知B(0,6 ),C(0,2),在 x轴的负半轴上求 4.已知 知 正 方 形 AB CD的 对 角 线 AC在 直 线 x 2y 1 0 2 0 3.等 腰 RtΔ AB C的 直 顶 点 C和 一 点 B都 在 直 线 0 π 一点P,使 BPC最大,并求出最 大值。 上 , 且 A( 5, , 3) , 1, B( m ,0) (m AB, 5), 求 顶 点 y B, C, 2x 3y 6 0上 A( 2) , 求 AC所 在 的 夹 角 为 , 求 直 线 L的 方 程 。 y y y 3。 D的 直 线坐 的标 方 程 P(2, 3 ) L

两条直线的夹角

两条直线的夹角

两条直线的夹角一、 教学目的:1. 分清直线1l 到直线2l 的角与直线2l 到直线1l 的角以及两条直线1l 与2l 的夹角的区别与联系。

2. 掌握直线1l 到直线2l 的角的计算公式3. 掌握直线1l 与直线2l 的夹角的计算公式二、 情感目标:通过对两直线的倾斜角与夹角的关系探索,找出夹角的正切值与两直线斜率之间的关系;运用两角差的正切公式,进一步渗透解析几何的思想,即用代数运算解决几何图形问题;培养学生思维的缜密性、条理性、深刻性。

三、 教学重、难点:1.当一条直线斜率不存在时,如何求解两直线的夹角。

2.根据题意正确使用夹角,到角公式,注意根据图形进行舍解。

四、 教学过程:(一)引入:平面内两条直线的位置关系有平行、重合和相交。

我们分别用直线的代数形式去描述了它们的位置关系。

在相交直线中特殊的位置关系是垂直,即两条直线所成角为90。

因此,我们可以用两直线的夹角大小来描述两条相交直线的位置关系。

平面上,两条相交直线1l 和2l 构成四个角,它们是两对对顶角。

为了区别这些角,通常规定:直线1l 绕着交点M 按逆时针方向旋转到和2l 重合时所得到的角,叫做1l 到2l 的角。

直线2l 绕着交点M 按逆时针方向旋转到和1l 重合时所得到的角,叫做2l 到1l 的角。

2lM 1l当1l ⊥2l 时,即1l 到2l 的角为90。

=⇔21k k 1-或一条直线斜率为零,另一条直线斜率不存在。

通过这充要条件启发我们,1l 到2l 的角的大小是否也可以与1l 、2l 的斜率建立关系呢?(二)推导:设两条直线方程分别是1l :11b x k y +=,2l :22b x k y +=(1k ,2k 均存在),1l 到2l 的角θ如果121-=k k ,那么θ=90。

如果121-≠k k ,设1l 和2l 的倾斜角分别是1α和2α,则1k =1αtg ,2k =2αtg不论12ααθ-= 或 )(12ααπθ-+=,都有1212121)(ααααααθtg tg tg tg tg tg +-=-=, 即12121k k k k tg +-=θ 一条直线到另一条直线的角,可能不大于直角,也可能大于直角,如果只需要考虑不大于直角的角θ(叫做两条直线的夹角),那么有12121k k k k tg +-=θ (θ 90≠) 当两条直线平行或重合时,则它们的夹角是零度角,此时公式仍适用。

,,空间中直线与直线所成的角(夹角)

,,空间中直线与直线所成的角(夹角)

D
C
Q AA'C '中,EFAC '
A
B
FED '即异面直线AC '和B ' D '所成的角或其补角
设正方体棱长为a,则EF 1 AC ' 3 a, ED ' 2 a,
FD ' 5 a
2
2
2
EF 2 ED '2 FD '2 FED' 90
2
直线AC '和B ' D '的夹角是90
思考:如图,在棱长为4正四面体ABCD中,求异面
b bˊ
a

o
四.异面直线所成的角
定义:直线a、b为异面直线,经过空间任一点O, 分别引a′∥a,b′∥b,则相交直线a′,b′所 成的锐角(或直角)叫做两条异面直线a、b所成 的角(或夹角)
注1:异面直线a、b所成角,只与a、b的相互位置有关, 而与点O位置无关,一般常把点O取在直线a或b上;
C' B'
Q A' B ' DC,A' B ' DC
D
C
四边形A' B 'CD是平行四边形
A
B
A' DB 'C,A' D B 'C
BA' D即异面直线A' B和B 'C所成的角或其补角
Q A' D DB A' B BA' D 60,即异面直线A' B和B 'C的夹角为60.
典型例题
例1.如图,在正方体ABCD A' B 'C ' D '中,D' (3)直线A' B和B 'C的夹角是多少? A'

立体几何五 夹角的计算

立体几何五  夹角的计算

空间向量在立体几何中的应用一:两直线的夹角:1.当两条直线1l 与2l 共面时,我们把两条直线交角中,范围在0,2π⎡⎤⎢⎥⎣⎦内的角叫作两直线的夹角.当直线1l 与2l 是异面直线时,在直线1l 上任取一点A 作AB ∥2l ,我们把直线1l 和直线AB 的夹角叫作异面直线1l 与2l 的夹角.异面直线的夹角的范围是0,2π⎛⎤ ⎥⎝⎦.2. 直线夹角的向量计算方法:已知空间两条直线a ,b ,且A ,C 是直线a 上不同的两点,B ,D 是直线b 上不同的两点,设直线a ,b 的夹角θ由向量AC BD ,确定,满足||cos ||||AC BD AC BD θ⋅=⋅.要点诠释:空间两直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.例1. 如图所示,在四棱锥P ABCD -中,底面是矩形,⊥底面. 是的中点,已知,,,求异面直线与所成的角的大小.【变式2】如图,直三棱柱111ABC A B C -中,1AA AB =2=,AC BC =,D 为1BB 的中点,若异面直线1AB 与CD 的夹角为,求AC 的长.要点二:平面间的夹角1. 平面间的夹角的定义:平面1π与2π相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面1π上作直线1l ⊥l ,在平面2π上作直线2l ⊥l ,则12l l =R 。

我们把直线1l 和2l 的夹角叫做平面1π与2π的夹角.2. 平面间夹角的向量计算方法:设平面1π与2π的法向量分别为1n 和2n ,平面1π与2π的夹角为θ,则121212cos =cos =.θ⋅n n n n n n ,两平面的夹角范围是02π⎡⎤⎢⎥⎣⎦,. 3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面.二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角--a αβ或--AB αβ.(2)区别:平面间的夹角 二面角 构成 面-线-面半平面-线-半平面范围 02π⎡⎤⎢⎥⎣⎦, []0π,表示法语言叙述语言叙述或符号表示例2. 如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,AF AB BC FE====12AD,求平面ACD和平面CDE的夹角的余弦值.变式:如图,在四棱锥P ABCD-中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD DC=,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PB⊥平面EFD;(2)求平面与平面的夹角的大小.三:直线和平面的夹角1.斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面的夹角.如图,l 是平面α的一条斜线,斜足为O ,OA 是l 在平面α内的射影,POA ∠就是直线l 与平面α的夹角.(1)直线和平面所成角的范围是02π⎡⎤⎢⎥⎣⎦,.(2)最小角定理:斜线和射影所成的角,是斜线 和这个平面内所有直线所成角中最小的角;2. 线面角的向量计算方法设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ,则有||sin |cos |||||θϕ⋅==⋅a u a u .例3. 如图,在正四面体ABCD 中,E 为AD 的中点,求直线CE 与平面BCD 成的角.变式:四棱锥S ABCD -中,底面ABCD 为平行四边形,45ABC =∠,2AB =,22BC =,侧面SBC ⊥底面ABCD .3SA SB ==. (Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的正弦值.DBCAS变式:如图,四棱锥P ABCD -中,AB AP =,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,4AB AD +=,CD =2,45CDA ∠=︒.若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长.习题1:如图,在ABC ∆中,ABC ∠︒=60,90,BAC ∠=︒AD BC 是上的高,沿AD 把ABD 折起,使090BDC ∠=. 设E 为BC 的中点,求AE与DB 夹角的余弦值.习题2:如图,直三棱柱111ABC A B C -中,AB ⊥AC ,D E 、分别为11AA B C 、的中点,DE ⊥平面1BCC ,若平面ABD 和平面BCD 为60°,求1B C 与平面BCD 的夹角的大小.。

两条直线的 夹角

两条直线的 夹角
θ的取值范围是(0,π).
设l1 到l2 的角是θ1, l2到 l1的角是θ2,
则θ1与θ2不一定相同,它们的关系是:
θ1+θ2= π其中θ1,θ2∈(0, π)
直线l1的斜率存在而直线l2的斜率不存在
y l2 l1
y l1
l2
1
1
2
o
x
1
2 o
1 x
1


2
1
1
2

1
求“两条直线的夹角 ”
l2

l1
l1

l2
设直线 l1:y = k1 x +b 1 、l2: y = k2 x +b2 ,
的夹角为α, l1 到l2 的角是θ1, l2到 l1的角
是θ2 若 若
1+k1 1+k1
k2= k2≠
0时, 0时,


2
1
2
tg1

k2 1
k1 k2k1
l2
:
y

x

1 5 0 l2 : 2x 3y 1 0
(3) l1 : x 5 0
l2 : 2x 4y 3 0
(4) l1 : 2 y 3 0
l2 : x 3y 2 0
例2、已知锐角△ABC的三边所在的 直线方程为:lAB:y=x+6; lBC:y=0; lCA:7x+4y-35=0,求△ABC 的三个内角。
1 ( 1) 1
8 11
26
tg 2
km k2 1 km k2


(
1 2
)

两条相交直线所成的角的范围

两条相交直线所成的角的范围

两条相交直线所成的角的范围两条相交直线所成的角是初中几何中的基础知识,让我们先来回顾一下公式:垂直的两条直线所成的角为90度,而相邻的两个角互补,它们的和是180度。

那么,两条相交直线所成的角的范围是多少呢?下面,我们逐步来讲解这个问题。

1. 两条相交直线所成的角的定义及意义两条相交的直线,它们所交的交点处有一个角,这个角叫做两条直线所成的角。

在几何中,两条直线所成的角是一个基本图形,所有的角都可以通过两条直线所成的角来计算。

因此,掌握两条直线所成角的相关知识对学好几何非常重要。

2. 对称角和补角两条相交直线所成的角除了被称为相邻角,还可以分为对称角和补角。

两个角互为对称角,当且仅当它们的顶点相同,两边的方向相反。

而两个角互为补角,则它们的和等于90度。

3. 两条相交直线所成的角的度数范围两条相交直线所成的角的度数范围是0°~180°。

如果两条直线正交,它们所成的角是90度。

如果两条直线不是正交的,那么它们所成的角的度数则介于0度到180度之间。

其中,0度表示两条直线重合,而180度则表示两条直线是平行的。

对于直线所成的角度数有一个注意点:角度数的范围是不包括0度和180度的。

4. 两条相交直线所成的角的重要特性两条相交直线所成的角虽然是一个基本图形,但它有一些重要的特性。

其中,比较常见的有:(1)相邻角的和等于180度。

(2)对称角相等。

(3)补角互补。

除此之外,两条直线所成的角还有很多特性,需要我们进一步去探究。

5. 应用两条直线所成角的应用非常广泛,不仅是几何中的一个基本概念,也在物理、工程学中有着广泛的应用。

在建筑、机械等领域,需要考虑直线和角的关系,从而实现最优化的设计,提高生产效率和质量。

总之,掌握两条相交直线所成的角的度数范围及其重要特性,对学好几何非常重要。

在具体应用中,我们可以根据不同的情况,灵活选用各种性质,从而得到更优的解答。

平面上两直线的夹角求法解析

平面上两直线的夹角求法解析

平面上两直线的夹角求法解析一、容概述在2004年审定的人教A和B版教材中,平面两条直线的夹角概念与相应问题没有涉及到.但是,该问题完全可以作为三角恒等式中两角差的正切公式:,平面向量中直线法向量夹角的余弦及直线方向向量夹角的余弦的应用来进行考查.二、基本概念①平面上直线方程的两种常用表示:直线的点斜式方程:;直线的一般式方程:不全为.②平面上两条相交直线夹角的概念:平面上两条相交直线,所成四个角中的最小角,叫做两条直线的夹角.③平面上两条直线所成角的围:如果两条直线平行或重合,规定它们所成的角为;如果两条直线垂直,规定它们的夹角为;如果两条直线相交且互不垂直,则两直线的夹角围为.④平面上直线的方向向量:基线与平面上一条直线平行或重合的向量,叫做直线的方向向量;直线点斜式方程的一个方向向量为.⑤平面上直线的法向量:基线与平面上一直线垂直的向量,叫做直线的法向量;直线的一般式方程不全为的一个法向量为.三、理论推导1.已知倾斜角,根据两角差的正切公式求两直线夹角.证明:如下图所示,在平面直角坐标系中,直线的倾斜角为,直线的倾斜角为.假设为直线,所成的一角,显然,则,由公式得:又因为平面上两条相交且互不垂直的直线夹角围是,所以.从而得:即,平面上直线与直线的夹角.2.已知直线的一般式方程,运用直线法向量夹角余弦求平面上两直线夹角.证明:如下图所示,在平面直角坐标系中,直线的一般式方程为,一法向量;直线的一般式方程为,一法向量.假设为直线,所成的一角,显然(左图)或(右图)由法向量夹角的余弦得:又因为平面上两条相交且互不垂直的直线夹角围是,所以.从而得:即,平面上直线与直线的夹角.3.已知直线的点斜式方程,利用直线方向向量夹角余弦求平面上两直线夹角.证明:如下图所示,在平面直角坐标系中,直线的点斜式方程为,一方向向量;直线的点斜式方程为,一方向向量.假设为直线,所成的角,显然(左图)或(右图),由方向向量夹角的余弦得:又因为平面上两条相交且互不垂直的直线夹角围是,所以.从而得:即,平面上直线与直线的夹角.注意:可以求出直线一般式方程的某个方向向量,也可以求出直线点斜式方程的某个法向量.但是,无论利用哪一种方法,都必须谨记平面上两直线所成角与两直线夹角的区别:两直线夹角的围是,即的三角函数值一定是非负的.四、例题解析对于有关平面上两直线的夹角问题,理论简单,方法也易于掌握,该部分难点是如何根据题意选取恰当的理论和方法来解决问题.下面结合具体实例谈谈求解方法是如何选择的.例1已知直线,的斜率是二次方程的根,试求直线与的夹角.解析:设直线,的斜率分别为,,解二次方程得,,将代入公式得,.所以直线与的夹角.点评:本题结合二次方程求解问题考查第一种方法的运用,解决此类问题的时候,要理解直线倾斜角与直线斜率的关系,并能准确选择求直线夹角的方法.例2求直线与直线的夹角.解析:题目中的直线方程是一般式形式且互不垂直,因此我们选择法向量求夹角的方法.直线一法向量;直线一法向量.将代入公式得,.所以直线与的夹角.点评:本题主要考查对公式的选择及熟练程度,也可以尝试利用方向向量求解,鼓励一题多解.例3光线沿直线照射到直线上后反射,求反射光线线所在直线的方程.解析:联立得反射点的坐标为,由题意知直线过该点,则设的方程为(其中为直线的法向量,不同时为零).由物理学中的反射原理可知:直线与直线的夹角等于直线与直线的夹角,即:,解得或(舍去,否则与重合).所以,直线的方程为.点评:本题首先应思考将问题转化为求过定点,且与所给直线夹角已知的直线方程;其次,在求直线方程时,往往采用待定系数法——先设出所求直线的方程,再利用直线的夹角求解方法列式求解.五、沉思提高已知直线过点,且与直线的夹角为,求直线方程.。

两条直线的夹角

两条直线的夹角

直线夹角 的大小. uur
uur
解:根据l1与l2的方程,取 d1 (b1, a1), d2 (b2, a2 )
为 l1与 l2的方向向量. 由向量的夹角公式得: cos
uur uur duur1 udur2
a1a2 b1b2
由cos cos
d1 d2
a12 b12 a22 b22
所以两直线的夹角公式: cos
典型例题
例1.求下列各组直线的夹角 :
(2)l1 : 3x y 12 0,l2 : x 0;
解:(2)根据l1与l2的方程及两直线夹角公式可得:
cos 311 0 3 10
(1)2 32 12 02 10
因为 0,,所2 以
arccos 3 10
10
即直线
l1 和
l2 的夹角为
p
cos a =
= 0, \ a =
a2 + 12 ? 12 (- a)2
2
05:21:23
典型例题
例2.已知直线l 经过点P(-2,1),且与直线l0:3x-4y+5=0
的夹角为arccos 3 ,求直线l 的方程。
解:
5 1)直线斜率不存在时,验证知x+2=0也满足题意;
2)当直线斜率存在时,设直线方程为y-1=k(x+2),
三、两直线夹角公式的推导 uur uur
两直线 l1、l2的夹角为 ;方向向量 d1、d2的夹角为
若 时: 若 为钝角时:
2
d1
于是得:cos cos
y
yd1
d2
d2
l2
d
x
2
l2
x
d1
o l1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两直线所成的角(夹角)
教学目标 (一) 知识教学点:
一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题. (二) 能力训练点
通过课题的引入,训练学生由特殊到一般,定性、定量逐层深入研究问题的思想方法;通过公式的推导,培养学生综合运用知识解决问题的能力. (三) 学科渗透点
训练学生由特殊到一般,定性、定量逐步深入地研究问题的习惯. 二、教材分析
1. 重点:前面研究了两条直线平行与垂直,本课时是对两直线相交的情况作定量的研究.两
直线所成的角公式可由一条直线到另一条直线的角公式直接得到,教学时要讲请1l 、2l 的公式的推导方法及这一公式的应用. 2,难点:公式的记忆与应用.
2. 疑点:推导1l 、2l 的角公式时的构图的分类依据. 三、活动设计
分析、启发、讲练结合. 四、教学过程 学生活动
答1:通过直线的斜率或从方程的特点来观察
答2:通过它们相交所得到的角的大小。

教师活动
前言:不重合的两条直线的位置关系,除了平行就是相交,在相交的情况下垂直关系是非常特殊的,那么还有那么多的一般的相交情况值得我们去研究。

一、提出问题、
1. 解析几何中怎样判断两条直线的平
行和垂直?
2. 对于两条相交的直线,怎样来刻画它
们之间的相交程度呢?
二、新课、
(出示图形)两条直线相交就构成了两对对顶角,同学们已经想到用角的大小来刻画两
答:学生说出哪个角为2l 到1l 的角。

归纳:“到”角的三个要点:
始边、终边和旋转方向。

就此提出“到”角实际上是一个“方向角”。

答:1l 到2l 的角与2l 到1l 的角的和是180° 答:“到”角的范围为:),0(π
通过动画的演示由学生归纳出两直线的斜率变化的的确确导致了1l 到2l 的角的变化,增强信心推导公式。

条直线的相交程度。

(取个名字是很重要的) 1、 概念的建立:
(1)“到”角:两直线相交,把直线1l 按逆
时针方向旋转到与2l 重合时所转的角,叫做
1l 到2l 的角。

题一:
(1) 求直线1l :13+=
x y 到直线2l :
1=x 的角的大小。

(2) 求直线1l :2=y 到直线2l :
1+-=x y 的角的大小。

(3) 求直线1l :32+-=x y 到直线2l :
2
3
-
=x y 的角的大小。

(第3小题的解决带来的困难引出新课) 2.1l 到2l 的角的计算公式的推导: (几何画板演示)
问题1:两条直线的平行和垂直关系从解析几何研究的角度我们只要研究一下他们斜率的关系就可以,那么大胆预测1l 到2l 的角与两直线的斜率会有关系吗?
答:从图形中发现与1l 到2l 的角有直接联系的还应该是角。

于是得到
12ααθ-=
学生活动:关于第二幅图的情况由学生进行找角和推导的工作,教师做适当和必要的提示。

)
tan()](tan[tan )
()(12121221ααααπθααπααπθ-=-+=∴-+=--=
学生活动:归纳理解公式 (1) 应用了两角差的正切公式 (2) 只能求斜交的两直线的夹角。

(3) 两直线垂直时应直接进行判断。

问题2:1l 到2l 的角与它们的斜率有关,是直接的关系吗?
问题3:公式如何得以推导? 设1l 、2l 的倾斜角分别为12,αα,则
11tan k =α,22tan k =α(如图)
12ααθ-=
所以:
1
212
1212121tan tan 1tan tan )
tan(tan k k k k +-=+-=
-=ααααααθ
3. 概念的建立二:
夹角(两直线所成的角)的定义
两直线相交,不大于90°时的角叫做两直线所成的角,简称夹角。

范围是]2
,0(π
4. 两直线夹角公式的推导: 若设1l 到2l 的角的角为θ
(1) 当0tan >θ时,︒<<︒900θ,
则夹角就等于“到”角。

(2) 当
tan <θ时,
︒<<︒18090θ,则夹角就等于
θπ-
则:1
21
21tan k k k k +-=α
题二:
(1) 求直线1l :32+-=x y 与直线2l :
2
3
-
=x y 的夹角。

学生活动:求两直线所成角的步骤:
1. 判断
(1)是否存在斜率 (2)是否垂直 2. 求斜率 3. 利用公式计算 4. 求出角。

(2) 求直线1l :33
1
+=
x y 与直线2l :43--=x y 的夹角。

(3) 求直线1l :1=x 与直线2l :
12-=x y 的夹角。

三、课堂练习:
1. 两条直线06=+-y x 与06=++y x 的夹角是( ) A.
4
π B.
4
3π C. 0 D.
2
π 2. 直线52
1
-=
x y 与直线23+=x y 的夹角是______________。

3. 直线012=-+y x 到直线03=++my x 的角是4

,则m 的值是( )
A. 3
B. 31
C. -3
D. -3
1
4. 直线α的夹角为与32:3:21+==x y l x l ,则=αtan ( ) A.
2
1
B. -
2
1 C.
2 D. -2
5. 已


线
0:1111=++C y B x A l 和

线
:2222=++C y B x A l (0,0,0212121≠+≠≠B B A A B B ),直线1l 到直线2l 的角是θ, 求证:2
1211
221tan B B A A B A B A +-=θ
四、小结
1.求角推导求角公式定义角⇒⇒ 2.主要的数学思想:
3.对于以上两个求角公式,在解决实际问题时,要注意根据具体情况选用.。

相关文档
最新文档