2007-2010年江苏高考数学试卷及答案
2010年江苏高考数学试题答案

2010年江苏高考数学试题及参考答案一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________ 答案:1;2、右图是一个算法的流程图,则输出S的值是______▲_______答案:63;3、函数y=x2(x>0)的图像在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=____▲_____答案:21;解答题15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()·=0,求t的值(1)求两条对角线长即为求与,由,得,由,得。
(2),∵()·,易求,,所以由()·=0得。
16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB ∥DC,∠BCD=900(1)求证:PC⊥BC(2)求点A到平面PBC的距离(1)∵PD⊥平面ABCD,∴,又,∴面,∴。
(2)设点A到平面PBC的距离为,∵,∴容易求出17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大现在上传的图片版与WORD试卷都有错误,该题似乎缺少长度的条件,暂无法解答(1)∵,,∴(2)直线,化简得令,解得,即直线过轴上定点。
19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质求函数的单调区间(2)已知函数具有性质,给定,,且,若||<||,求的取值范围(1)估计该问题目有错,似乎为,则有如下解答:①∵时,恒成立,∴函数具有性质;【理科附加题】21(从以下四个题中任选两个作答,每题10分)(1)几何证明选讲AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC(证明略)(2)矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值(B点坐标不清,略)(3)参数方程与极坐标在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值(过程略)(4)不等式证明选讲已知实数a,b≥0,求证:(略)22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。
2007年江苏高考数学试卷及答案

2007年普通高等学校招生全国统一考试(江苏卷) 数 学参考公式:n 次独立重复试验恰有k 次发生的概率为:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
1.下列函数中,周期为2π的是 A .x y =sin2B .y=sin2xC .cos4x y = D .y=cos4x2.已知全集U=Z ,A={-1,0,1,2},B={x ︱x 2=x },则A ∩C U B 为A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}3.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为x -2y=0,则它的离心率为A2.24.已知两条直线,m n ,两个平面α,β,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是A .①、③B .②、④C .①、④D .②、③ 5.函数()sin ([,0])f x x x x π=∈-的单调递增区间是A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π- D .[,0]6π-6.设函数f (x )定义在实数集上,它的图像关于直线x=1对称,且当x ≥1时,f (x )=3x-1,则有A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<7.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为A .3B .6C .9D .128.设2()lg()1f x a x=+-是奇函数,则使f (x )<0的x 的取值范围是 A .(-1,0) B .(0,1) C .(-∞,0) D .(-∞,0)∪(1,+∞) 9.已知二次函数f (x )=ax 2+bx+c 的导数为f ′(x ),f ′(0)>0,对于任意实数x 都有f (x )≥0,则(1)'(0)f f 的最小值为A . 3B .52C .2D .3210.在平面直角坐标系xOy ,已知平面区域A={(x ,y )︱x+y ≤1且x ≥0,y ≥0},则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 A .2 B .1 C .12D .14二、填空题:本大题共6小题,每小题5分,共30分。
2010年江苏高考数学试题 参考答案

2010 年江苏高考数学试题
参考答案
第 4 页 共 5 页
(2)依题意,至少需要生产 3 件一等品
3 P C4 0.83 0.2 0.84 0.8192
答:利润不少于 10 万元的概率是 0.8192.
23、 (1)设三边长分别为 a , b, c , cos A 为
b2 c2 a 2 ,∵ a , b, c 是有理数, a , b, c 均可表示 2bc
1 cos(n 1) Acos A {cos[(n 1) A A] cos[(n 1) A A]} 2 ∴ cos nA 2cos(n 1) A cos A cos(n 2) A ,
∵cosA, cos 2 A 是有理数,∴ cos 3 A 是有理数,∴ cos 4 A 是有理数,……,依次类推, 当 cos(n 1) A,cos(n 2) A 为有理数时, cos nA 必为有理数。
b2 c2 a 2 q q ( p, q 为互质的整数)形式∴ 必能表示为 ( p, q 为互质的整数)形式, 2bc p p
∴cosA 是有理数 (2)∵ cos 2 A 2cos 2 A 1 ,∴ cos 2 A 也是有理数, 当 n 3 时,∵ cos nA cos(n 1) A cos A sin(n 1) A sin A
2010 年江苏高考数学试题
1、1 2、 3、 10、 4、30 11、 5、-1
参考答案
6、4 12、27 7、63 13、4 8、21 14、
9、 (+39,-39)
15、 (1) AB (3,5), AC (1,1) 求两条对角线长即为求 | AB AC | 与 | AB AC | , 由 AB AC (2,6) ,得 | AB AC | 2 10 , 由 AB AC (4,4) ,得 | AB AC | 4 2 。 (2) OC (2, 1) , ∵( AB t OC )· OC AB OC tOC ,
2010年江苏高考数学真题及答案

2010年江苏高考数学真题及答案参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=305、设函数f(x)=x(e x+ae -x)(x ∈R)是偶函数,则实数a =_______▲_________ [解析]考查函数的奇偶性的知识。
g(x)=e x+ae -x为奇函数,由g(0)=0,得a =-1。
6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______ [解析]考查双曲线的定义。
422MF e d ===,d 为点M 到右准线1x =的距离,d =2,MF=4。
7、右图是一个算法的流程图,则输出S 的值是______▲_______[解析]考查流程图理解。
2007年高考数学试题(江苏卷)含答案

2007年普通高等学校招生全国统一考试数 学(江苏卷)一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,恰有一项....是符合题目要求的. 1.下列函数中,周期为π2的是( ) A.sin2x y =B.sin 2y x =C.cos4x y =D.cos4y x =2.已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则U A B ð为( ) A.{}12-, B.{}10-, C.{}01,D.{}12,3.在平面直角坐标系xOy 中,双曲线的中心在坐标原点,焦点在y 轴上,一条渐近线的方程为20x y -=,则它的离心率为( )D.24.已知两条直线m n ,,两个平面αβ,.给出下面四个命题: ①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥. 其中正确命题的序号是( ) A.①、③ B.②、④C.①、④ D.②、③5.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是( ) A.5ππ6⎡⎤--⎢⎥⎣⎦, B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31xf x =-,则有( )A.132323f f f ⎛⎫⎛⎫⎛⎫<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B.231323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.213332f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.321233f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7.若对于任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( )A.3B.6C.9D.128.设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是( ) A.(10)-,B.(01),C.(0)-∞, D.(0)(1)-∞+∞ ,,9.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( ) A.3B.52C.2D.3210.在平面直角坐标系xOy 中,已知平面区域{}()100A x y x y x y =+,≤,且≥,≥,则平面区域{}()()B x y x y x y A =+-∈,,的面积为( ) A.2B.1C.12D.14二、填空题:本大题共6小题,每小题5分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ= _____. 12.某校开设9门课程供学生选修,其中A B C ,,三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有_____种不同的选修方案.(用数值作答)13.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=_____.14.正三棱锥P ABC -的高为2,侧棱与底面ABC 成45角,则点A 到侧面PBC 的距离为_____.15.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A CB+=_____. 16.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合.将A B ,两点间的距离(cm)d 表示成(s)t 的函数,则d =_____,其中[]060t ∈,. 三、解答题:本大题共5小题,共计70分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.17.(本题满分12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率;(4分) (2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.(4分) 18.(本题满分12分)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(4分)(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(4分)(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.(4分) 19.(本题满分14分)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2OA OB =,求c 的值;(5分) (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分)20.(本题满分16分)已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11a b =,221a b a =≠,记n S 为数列{}n b 的前n 项和.(1)若k m b a =(m k ,是大于2的正整数),求证:11(1)k S m a -=-;(4分) (2)若3i b a =(i 是某个正整数),求证:q 是整数,且数列{}n b 中的每一项都是数列{}n a 中的项;(8分)C BAG HMDEF1B1A1D1C(3)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.(4分) 21.(本题满分16分)已知a b c d ,,,是不全为零的实数,函数2()f x bx cx d =++,32()g x ax bx cx d =+++.方程()0f x =有实数根,且()0f x =的实数根都是(())0g f x =的根;反之,(())0g f x =的实数根都是()0f x =的根.(1)求d 的值;(3分)(2)若0a =,求c 的取值范围;(6分)(3)若1a =,(1)0f =,求c 的取值范围.(7分)2007年普通高等学校招生全国统一考试数 学(江苏卷)参考答案一、选择题:本题考查基本概念和基本运算.每小题5分,共计50分.1.D 2.A 3.A 4.C 5.D 6.B 7.B 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,共计30分.11.12 12.75 13.32 14 15.54 16.π10sin 60t三、解答题17.本小题主要考查概率的基本概念、互斥事件有一个发生及相互独立事件同时发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分. 解:(1)5次预报中恰有2次准确的概率为22522355(2)0.8(10.8)100.80.20.05P C -=⨯⨯-=⨯⨯≈.(2)5次预报中至少有2次准确的概率为551(0)(1)P P --005011515510.8(10.8)0.8(10.8)C C --=-⨯⨯--⨯⨯-10.000320.00640.99=--≈.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为1412340.80.8(10.8)40.80.20.02C -⨯⨯⨯-=⨯⨯≈.18.本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.满分12分. 解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB == ∠∠23132BC BG CF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠. 因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB == ∠∠1BM ===tan EMMHθ== 解法二:(1)建立如图所示的坐标系,则(301)BE = ,,,(032)BF =,,,1(333)BD = ,,, C BAG HMDE F 1B1A1D1CN所以1BD BE BF =+ ,故1BD ,BE ,BF共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF = ,,,由题设得23203GM BF z =-+=得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB = ,,,(030)BC =,,,所以10ME BB = ,0ME BC = ,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y = ,,⊥截面1EBFD ,于是BP BE ⊥,BP BF⊥. 而(301)BE = ,,,(032)BF = ,,,得330BP BE x =+= ,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA = ,,⊥平面11BCC B ,所以BP 和BA的夹角等于θ或πθ-(θ为锐角). 于是cos BP BA BP BAθ==故tan θ=19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+, 将该方程代入2y x =得20x kx c --=. 令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫- ⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--.又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下: 设0()Q x c -,.若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-, 得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 20.本小题主要考查等差、等比数列的有关知识,考查运用方程、分类讨论等思想方法进行分析、探索及论证问题的能力.满分16分.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)kb q m d --=-,11111(1)(1)(1)(1)(1)111k k b q m a q m d S m a q q q ------====----.故等式成立.(2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--, 移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a q a k a q --=--,得1221121n n q k q q q q ---=+=++++- . 因2q i =-,当1i =时,1q =-,22n q q q-+++ 为1-或0,则k 为1或2;而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取12q =,21b b q =,341b b q =. 33141112(1)11)2b b b q b b b ⎡⎤⎢⎥+=+=+==⎢⎥⎝⎭⎣⎦. 所以1b ,2b ,4b 成等差数列.21.本小题主要考查函数、方程、不等式的基本知识,考查综合运用分类讨论、等价转化等思想方法分析问题及推理论证的能力.满分16分.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++. 由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+, 则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++.方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意. (ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2cx b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,. (3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根. 当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得2()f x cx cx =-+=,即202c cx cx ±-+=,⑤则方程⑤应无实数根,所以有2()402c c c--<且2()402c c c ---<.当0c <时,只需220c --<,解得1603c <<,矛盾,舍去.当4c ≥时,只需220c -+,解得1603c <<.因此,1643c <≤.综上所述,所求c 的取值范围为1603⎡⎫⎪⎢⎣⎭,.。
2010江苏省高考数学真题(含答案)

62
4、[解析]考查频率分布直方图的知识。 100×(0.001+0.001+0.004)×5=30
6
5、[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由 g(0)=0,得 a=-1。
6、[解析]考查双曲线的定义。 MF e 4 2 , d 为点 M 到右准线 x 1 的距离, d
2、设复数 z 满足 z(2-3i)=6+4i(其中 i 为虚数单位),则 z 的模为______▲_____.
3、盒子中有大小相同的 3 只白球,1 只黑球,若从中随机地摸出两只球,两只球颜色不 同的概率是_ ▲__.
4、某棉纺厂为了了解一批棉花的质量,从中随机抽 取了 100根棉花纤维的长度(棉花纤维的长度是棉 花质量的重要指标),所得数据都在区间[5,40]中, 其频率分布直方图如图所示,则其抽样的 100根 中,有_▲___根在棉花纤维的长度小于 20mm。
23、(本小题满分 10分)
5
已知△ABC的三边长都是有理数。 (1)求证 cosA是有理数;(2)求证:对任意正整数 n,cosnA是有理数。
2010年答案 填空题 1、[解析] 考查集合的运算推理。3 B, a+2=3, a=1 2、[解析] 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与 3+2 i 的模相等,z 的 模为 2。
3
(1)设动点 P 满足 PF PB 4 ,求点 P 的轨迹;
(2)设 x1
2, x2
1
2
,求点
2
T
的坐标;
3
(3)设t 9 ,求证:直线 MN必过 x 轴上的一定点(其坐标与 m 无关)。
2010江苏省高考数学真题(含答案)

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。
3一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(e x+ae-x)(xR)是偶函数,则实数a=_______▲_________2y2x6、在平面直角坐标系x Oy中,双曲线1上一点M,点M的横坐标是3,则M到412双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S的值是______▲_______8、函数y=x2(x>0)的图像在点(ak,a k2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____2y29、在平面直角坐标系x Oy中,已知圆x4上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____10、定义在区间0,上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作2PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。
2010江苏省高考数学真题(含答案)

Sn 是公差
为 d 的等差数列。
(1)求数列 a n 的通项公式(用 n, d 表示);
( 2) 设 c 为 实 数 , 对 满 足 m n 3k且m n 的 任 意 正 整 数 m, n, k , 不 等 式
Sm
Sn
cS
k
都成立。求证:
c
的最大值为
9 2
。
20、(本小题满分 16分)
设 f (x) 是定义在区间 (1, ) 上的函数,其导函数为 f '(x) 。如果存在实数 a 和函 数 h(x) ,其中 h(x) 对任意的 x (1, ) 都有 h(x) >0,使得 f '( x) h(x)(x 2 ax 1) ,则称函数 f (x) 具有性质 P(a) 。 (1)设函数 f (x) ln x bx 12 (x 1) ,其中b 为实数。
(2)设实数 t 满足( ABLeabharlann tOC )·OC =0,求 t 的值。
16、(本小题满分 14分) 如图,在四棱锥 P-ABCD中,PD⊥平面 ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1)求证:PC⊥BC; (2)求点 A 到平面 PBC的距离。
17、(本小题满分 14分) 某兴趣小组测量电视塔 AE的高度 H(单位:m),如示意图,垂直放置的标杆 BC的高度 h=4m,仰角∠ABE= ,∠ADE= 。 (1)该小组已经测得一组 、 的值,tan =1.24,tan =1.20,请据此算出 H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距 离 d(单位:m),使 与 之差较大,可以提高测量精确度。若电视 塔的实际高度为 125m,试问 d 为多少时, - 最大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高校招生全国统一考试(江苏卷数学1. (cos(6f x wx π=-的最小正周期为5π,其中0w >,则w = ▲ 。
【解析】本小题考查三角函数的周期公式。
2105T w w ππ==⇒=。
答案102.一个骰子连续投2次,点数和为4的概率为▲ 。
【解析】本小题考查古典概型。
基本事件共66⨯个,点数和为4的有(1,3、(2,2、(3,1共3个,故316612P ==⨯。
答案112 3.11i i-+表示为a bi +(,a b R ∈,则a b += ▲ 。
【解析】本小题考查复数的除法运算, 1,0,11ii a b i-=∴==+ ,因此a b +=1。
答案14. {}2(137,A x x x =-<-则A Z 的元素个数为▲ 。
【解析】本小题考查集合的运算和解一元二次不等式。
由2 (137x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ= ,元素的个数为0。
答案0 5.,a b 的夹角为0120,1,3a b == ,则5a b -= ▲ 。
【解析】本小题考查向量的线形运算。
因为1313(22a b ⋅=⨯⨯-=-,所以22225(52510a b a b a b a b -=-=+-⋅ =49。
因此5a b -=7。
答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为▲ 。
【解析】本小题考查古典概型。
如图:区域D表示边长为4的正方形ABCD的内部(含边界,区域E表示单位圆及其内部,因此214416Pππ⨯==⨯。
答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h,随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的频率分布表。
序号(i分组(睡眠时间组中值(iG频数(人数频率(iF1 [4,5 4.5 6 0.122 [5,6 5.5 10 0.203 [6,7 6.5 20 0.404 [7,8 7.5 10 0.205 [8,9 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S的值是▲。
【解析】本小题考查统计与算法知识。
答案6.428.直线12y x b=+是曲线ln(0y x x=>的一条切线,则实数b=▲。
【解析】本小题考查导数的几何意义、切线的求法。
1yx'=,令112x=得2x=,故切点为(2,ln2,代入直线方程,得1ln222b=⨯+,所以ln21b=-。
答案ln21b=-9.在平面直角坐标系中,设三角形ABC的顶点坐标分别为(0,,(,0,(,0A aB bC c,点(0,P p在线段OA上(异于端点,设,,,a b c p均为非零实数,直线,BP CP分别交,AC AB于点E,F,一同学已正确算出OE的方程:1111x yb c p a⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭,请你求OF的方程:▲。
【解析】本小题考查直线方程的求法。
画草图,由对称性可猜想1111 ((0x y c b p a-+-=。
事实上,由截距式可得直线:1x yAB a b +=,直线:1x y CD c p+=,两式相减得1111((0x y c b p a-+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求的直线OF 的方程。
答案1111((0x y c b p a-+-=。
10.将全体正整数排成一个三角形数阵:12345678910按照以上排列的规律,第n 行(3n ≥从左向右的第3个数为▲ 。
【解析】本小题考查归纳推理和等差数列求和公式。
前1n -行共用了123(1n +++-(12n n -个数,因此第n 行(3n ≥从左向右的第3个数是全体正整数中的第(132n n-+个,即为262n n -+。
答案262n n -+11.2,,,230,y x y z R x y z xz*∈-+=的最小值为▲ 。
【解析】本小题考查二元基本不等式的运用。
由230x y z -+=得32x z y +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当3x z =时取“=”。
答案3。
12.在平面直角坐标系中,椭圆22221(0x y a b a b+=>>的焦距为2,以O 为圆心,a 为半径的圆,过点2(,0a c作圆的两切线互相垂直,则离心率e =▲ 。
【解析】本小题考查椭圆的基本量和直线与圆相切的位置关系。
如图,切线,PA PB 互相垂直,又OA PA ⊥,所以OAP ∆是等腰直角三角形,故22a a c =,解得22c e a ==。
答案2213.若2,2AB AC BC ==,则ABC S ∆的最大值▲ 。
【解析】本小题考查三角形面积公式及函数思想。
因为AB=2(定长,可以以AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则(1,0,(1,0A B -,设(,C x y ,由2AC BC =可得2222(12(1x y x y ++=-+,化简得22(38x y -+=,即C 在以(3,0为圆心,22为半径的圆上运动。
又1222ABC c c S AB y y ∆=⋅⋅=≤。
答案2214.3(31f x ax x =-+对于[]1,1x ∈-总有(0f x ≥成立,则a = ▲ 。
【解析】本小题考查函数单调性及恒成立问题的综合运用,体现了分类讨论的数学思想。
要使(0f x ≥恒成立,只要min (0f x ≥在[]1,1x ∈-上恒成立。
22(333(1f x ax ax '=-=-01 当0a =时,(31f x x =-+,所以min (20f x =-<,不符合题意,舍去。
02当0a <时22(333(10f x ax ax '=-=-<,即(f x 单调递减,min ((1202f x f a a ==-≥⇒≥,舍去。
03当0a >时1(0f x x a'=⇒=±①若111a a ≤⇒≥时(f x 在11,a ⎡⎤--⎢⎥⎣⎦和 1,1a ⎡⎤⎢⎥⎣⎦上单调递增, 在11,a a ⎛⎫- ⎪⎪⎝⎭上单调递减。
所以min1(min (1,(f x f f a ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭(1400411(120f a a f a a -=-+≥⎧⎪≥⇒⇒=⎨=-≥⎪⎩②当111a a>⇒<时(f x 在[]1,1x ∈-上单调递减, min ((1202f x f a a ==-≥⇒≥,不符合题意,舍去。
综上可知a=4.答案4。
15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为225,105。
(1 求tan(αβ+的值; (2 求2αβ+的值。
【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式。
由条件得225cos ,cos 105αβ==, α 为锐角, 故72sin 0sin 10αα>=且。
同理可得5sin 5β=, 因此1tan 7,tan 2αβ==。
(117tan tan 2tan(11tan tan 172αβαβαβ+++==--⨯=-3。
(2132tan(2tan[(]11(32αβαββ-++=++=--⨯=-1,0,0,22ππαβ<<<<3022παβ∴<+<,从而324παβ+=。
16.在四面体ABCD 中,CB=CD ,AD BD ⊥,且E ,F 分别是AB ,BD 的中点, 求证(I 直线EF D 面AC ;(II EFC D ⊥面面BC 。
证明:(I E ,F 分别为AB ,BD 的中点EF AD ⇒EF AD AD ACD EF ACD EF ACD ⎫⎪⇒⊂⇒⎬⎪⊄⎭面面面。
(II EF AD EF BDAD BD CD CB CF BD BD EFC F BD EF CF F⎫⎫⇒⊥⎬⎪⊥⎭⎪⎪=⎫⎪⇒⊥⇒⊥⎬⎬⎭⎪⎪=⎪⎪⎭面为的中点又BD BCD ⊂面,所以EFC D ⊥面面BC17.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10CD km =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界,且A ,B与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为ykm 。
(I 按下列要求写出函数关系式:①设(BAO rad θ∠=,将y 表示成θ的函数关系式; ②设(OP x km =,将y 表示成x 的函数关系式。
(II 请你选用(I 中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。
【解析】本小题考查函数最值的应用。
(I ①由条件可知PQ 垂直平分AB ,(BAO rad θ∠=,则10AQ OA COS BAO COS θ==∠DEFCAB故10OB COS θ=,又1010tan OP θ=-,所以10101010tan y OA OB OP COS COS θθθ=++=++-2010sin 10(0cos 4θπθθ-=+<<。
②(OP x km =,则10OQ x =-,所以222(101020200OA OB x x x == -+=-+,所以所求的函数关系式为2220200(010y x x x x =+-+<<。
(I选择函数模型①。
22210cos (2010sin (sin 10(2sin 1cos cos y θθθθθθ-----'==。
令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=。
当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数。
所以当6πθ=时min 10310y =+。
当P 位于线段AB 的中垂线上且距离AB 边1033km 处。
18.设平面直角坐标系xoy 中,设二次函数2(2(f x x x b x R =++∈的图象与坐标轴有三个交点,经过这三个交点的圆记为C 。
(1 求实数b 的取值范围; (2 求圆C 的方程;(3 问圆C 是否经过某定点(其坐标与b 无关?请证明你的结论。
【解析】本小题考查二次函数图象与性质、圆的方程的求法。
(1010(00b b f ∆>⎧⇒<≠⎨≠⎩且(2 设所求圆的方程为220x y Dx Ey F ++++=。