全球变化第二章全球变化的主要过程与驱动力
3 全球变化的主要特征与过程

(三) 年际至百年尺度
全球变化 • 这一时间尺度的事件发生在年际、年代际到世纪际 • 主要驱动因子包括太阳活动、火山活动、大气环流的长期变化、厄尔 尼诺—南方涛动等自然因子和大气温室效应的增强等人为因子。 • • • • • 太阳活动具有大致11 a和80 a的周期 火山尘埃指数的变化具有大致70 a的周期 赤道平流层纬向风具有准2a的振荡 厄尔尼诺—南方涛动具有3a一7a的短周期和大约70 a的长周期 近百年来地球大气中温室气体CO2含量的变化则呈现持续上升趋势。
板块运动、海陆变迁、山脉形成、大洋扩张、大气圈形成、生命起源与进化
(二)千年至万年尺度
全球变化
• 发生在地质年代表最新的一个地质时期 发生在地质年代表最新的一个地质时期——第四纪和人类历史时 第四纪和人类历史时 期内,主要受到地球轨道参数如偏心率、黄赤交角和岁差等变化 期内 的影响。 • 具有准周期性变化的特点,属于可逆过程中的事件。 • 典型事件包括第四纪冰期一间冰期的交替,冷暖、干湿变化 • 冰盖变化导致海面的大幅度升降 • 大气成分变化,尘埃含量变化;干旱区古土壤层的发育;生物种 的分布、迁移和灭绝 • 人类文明的诞生与发展:如北京猿人出现于(0.5 Ma),马坝人 (0.13Ma)、丁村文化(0.12Ma),仰韶文化(7 ka)
But those cosmic rays can't reach Earth when the sun is stormy with sunspots and the solar wind is roaring. So a tree ring containing low carbon-14 is a sign of few cosmic rays in that growth year, which is an indicator of a stormy sun, contend Max-Planck-Institut für Sonnensystemforschung's Sami Solanki and colleagues. Most striking in the new sunspot archive derived from the new method is how much today's ongoing stormy period stands out from past periods, the researchers said. "During the last eight millennia, the episode with the highest average sunspot number is the ongoing one that started about 60 years ago," reported Solanki. And although 11,400 years is merely a moment in the multi-billion-year life of the sun, it is enough to contain a record of 31 high sunspot periods which average about 30 years in length, the researchers said. The longest is 90 years long. That is enough of a sample to enable the researchers to venture a guess about how long the current stormy period will last. "The probability that it will continue until the end of the twenty-first century is below one percent," the researchers conclude. As for whether the last few decades of storminess on the sun is the cause of global warming over the same period, it's not likely, said Reimer. "The increased solar activity may account for part of the climate trend and it does come at a bad time," she said. "However, in terms of actual warming it probably isn't a large contributor."
全球变化第二章全球变化的主要过程与驱动力解读

太阳活动的历史记录(王绍武,1994)
表2-1
编号 1 名称 现代极大
5000年来太阳活动异常时期
可能时间范围 1780A.D.~现代 编 号 7 名称 希腊极小 可能时间范围 440B.C. 360B.C. ~
2
3 4 5 6
蒙德尔极小
施帕雷尔 极小 中世纪极大 中世纪极小 罗马极大
1640A.D. 1710A.D.
参数变化与全球变化之间必然存在一系列的反馈机制使得由地球
轨道参数变化所引起的变化被放大。第三,根据地质记录发现, 在2.4MaB.P.,19ka和23ka的岁差周期占主导地位;在
2.4MaB.P.~0.8MaB.P.期间,41ka的黄赤交角变化周期为主要周
期;而在0.8MaB.P.以来却是在三个地球轨道参数中强度最弱的 0.1Ma的偏心率周期最为显著;米兰柯维奇理论难以解释为什么
大气中CO2浓度逐渐增加的事实表明,海洋对CO2的调
节能力是有限的。可以设想,如果人类继续增加化石燃料 的使用量和森林的砍伐量,海洋吸纳CO2的能力终将会被
耗尽,那时,更大部分的CO2将被保留在大气圈中,必然
会导致更为显著的温室效应加剧、全球变暖和海平面上升 等 ~ ~ ~
20B.C.~80A.D.
(二)米兰柯维奇天文理论 1.地球轨道参数的变化 偏心率、黄赤交角和岁差这些地球的轨道
参数都是随时间变化的,它们的变化均会导致
地球接受太阳辐射的季节和地区分布的变化。
地球轨道参数变化及其引起的地球接收太阳辐射 的变化
地球绕太阳运转的轨道呈椭圆形,太阳位于椭圆 轨道的一个焦点上,轨道偏离正圆的程度就是地球轨 道的偏心率。偏心率以10万年变化于0.005~0.06之间, 同 时 还 存 在 40 万 年 的 周 期 变 化 。 目 前 的 偏 心 率 为 0.0167 ,地球分别处于近日点和远日点时,日照量的 差别为7%,偏心率愈大,差异愈大。 因受太阳和月球的引力作用,使得地球自转像陀 螺一样地摇摆,由地轴进动引起的黄道和天赤道交点 的变化就是岁差,其变化周期约 21ka ( 23ka 和 19ka 两 个周期)。岁差导致地球近日点时间的变化,现在地 球在1月位于近日点,全球1月日射率稍大于7月,从而 使北半球冬季稍暖,夏季稍凉,而南半球冬季更冷, 夏季更暖。10.5ka以后,当近日点出现在 7月时,情况 将相反。
全球变化教学大纲

全球变化教学大纲引言:随着社会的快速发展和全球化的加剧,全球变化问题已经成为当今世界所面临的重要挑战之一。
为了拓展学生的知识面,培养他们对全球变化的认知和理解,本教学大纲旨在提供全面而系统的全球变化教学内容,以帮助学生形成全球视野和跨文化意识。
第一章全球变化的定义和背景1.1 全球变化的概念和范围1.1.1 全球变化的定义1.1.2 全球变化的主要内容1.2 全球变化的背景和原因1.2.1 全球化的趋势1.2.2 人类活动对全球变化的影响第二章全球气候变化2.1 气候变化的基本概念2.1.1 气候和气候变化的定义2.1.2 气候变化的主要特征和指标2.2 全球气候变化的成因2.2.1 温室气体和温室效应2.2.2 人类活动对气候变化的贡献2.3 全球气候变化的影响和应对措施2.3.1 生态系统变化和生物多样性损失 2.3.2 天气极端事件的增加2.3.3 减缓和适应气候变化的措施第三章全球海洋变化3.1 海洋变化的基本概念3.1.1 海洋环境的基本特征3.1.2 海洋变化的主要指标3.2 全球海洋变化的原因和过程3.2.1 全球海温的变化3.2.2 海洋酸化和海平面上升3.3 全球海洋变化对生态系统的影响3.3.1 海洋生态系统的脆弱性3.3.2 渔业资源的变化和可持续利用第四章全球土地变化4.1 土地变化的概念和特征4.1.1 土地利用和土地覆盖的定义4.1.2 全球土地变化的主要形式和趋势4.2 全球土地变化的原因和影响4.2.1 城市化和农业发展的影响4.2.2 土地退化和生态环境破坏4.3 可持续土地利用的策略和实践4.3.1 土地保护和恢复4.3.2 生态城市规划和可持续农业第五章全球变化的国际合作与未来展望5.1 全球变化治理的国际机制5.1.1 联合国气候变化框架公约5.1.2 巴黎协定与全球减排目标5.2 全球变化问题的未来展望5.2.1 低碳经济和可持续发展路线5.2.2 科技创新和绿色转型结语:通过本教学大纲的学习,学生将能够全面了解和掌握全球变化的基本概念、成因和影响,并能够分析和评估全球变化对人类社会和自然环境的挑战与机遇。
全球变化第二章

第二节大气系统中的主要过程
影响地球辐射平衡变化的因素归纳三个方面: 三是进入地球系统中太阳能在地球系统中滞 留的时间,与地球的温室效应相联系。
第二节大气系统中的主要过程
一、温室气体与温室效应 二、大气气溶胶过程 三、云过程
第二节大气系统中的主要过程
一、温室气体与温室效应 主要温室气体:水汽、二氧化碳、氧化亚氮、 甲烷、氯氟烃。
负反馈:系统中初始变化所引起的响应使得 初始变化受到抑制,使系统回到原来的状态。
正反馈
污染↑ ↑ ↑ 污染↑ ↑ 污染↑
生态系统中的反馈
狼狼 饿吃 死饱
负反馈
狼↑ 狼↓
吃了 吃了 较少 较多 兔子 兔子
鱼死亡↑ 鱼死亡↑ ↑ 鱼死亡↑ ↑ ↑
兔兔 吃饿 饱死
兔↑ 兔↓
植物↓ 植物↑
吃了 大量 的草
第二章地球系统与全球变化的关键过程
第一节地球系统 第二节大气系统中的主要过程 第三节海洋系统及其界面中的主要过程 第四节陆地系统及其界面中的主要过程 第五节人类生态系统的过程
第一节地球系统
大气圈
地 地圈
水圈
球
岩石圈
系
统 生物圈
物理气候系统 (5个子系统)
固体地球系统
人类生态系统从属于生物圈范围内,构建在各个子系统之 上,是水循环、生物地球化学循环和岩石圈循环过程的中 间环节的系统,是地球系统的一个重要组成部分。
第三节海洋系统及其界面中的主要过程
二、海气相互作用与周期性气候变化
海洋向大气提供的热量是驱动大气环流的主要因素。 大气环流中的四大涛动:ENSO北大西洋涛动、北太 平洋涛动、南极涛动。
长沙降水中δ18O与SOI、Nino3区SST的变化 长沙降水中δ18O与Nino3区SST具有大致相同的位相变化,而 与SOI则表现出大致负位相的变化。
全球变化与全球变化研究

大气化学成分的演变等。 几千年至几十万年:冰期和间冰期的交替,以及与此 相关联的大气成分、土壤的发育、 生物种类区域分布的相应变化等。
几十年至几百年: 气候变化、大气化学成分变化、地表
干燥度或酸度变化,以及地球和海洋
生物系统的变化等。
几天至几个季度: 天气现象、洋流中的旋涡,极区海
冰覆盖的季节增长和融化,地面径 流和风化以及植物生长的年循环等, 受制于日射年循环的时间尺度。
几秒到几小时: 陆地、海洋、冰、大气和生物群落
之间的质量、动量和能量通量全部 由时间尺度小于一天的过程所支配。
几十年至几百年的中等时间尺度变化是全球变化研究
的重点,在此时间尺度内的自然变化对人类有着重要 的影响,而人类活动对全球过程的影响也最为显著。
年际尺度的异常扰动也是全球变化研究特别关注的
问题。
不同尺度之间存在密切的联系:较长时间尺度的变化
是较短尺度变化的背景,较短尺度的变化有时是较长 尺度过程的表现。
(3)人类的作用
由于人类活动影响的加剧,全球变化过程正以前所未 有的速度加快进行,人类已经成为导致全球变化的营
力之一。开展全球变化研究是人类社会所面临的挑战,
和社会科学的发展,提高人类应付全球变化的能力。
定义:
全球环境(包括气候、土地生产力、海洋和 其他水资源、大气化学及生态系统等)中的、能 改变地球承载生命的能力的变化。
(1)全球观点与全球尺度
全球观点:就是从地球系统的思想出发把地球看作 一个整体,研究地球系统随时间的变化,集中研究 那些把系统中所有部分紧密地联系在一起的、并导
致系统发生变化的过程和机制,而不是孤立地研究
地球的不同组分和它的环境。
全球变化之全球变化科学导论(大气所考博真题知识点归纳)

全球变化之全球变化科学导论(大气所考博真题知识点归纳)XXX《全球变化科学导论》要点总结第一篇全球变化研究的基本问题第一章全球变化科学产生的背景及其研究内容及意义1、什么是全球变化?其产生背景?答:全球变化作为一个科学术语和一门交叉学科,是随着全球环境问题的出现和人类对其认识程度的不断深化而提出并发展起来的。
全球变化科学的精髓是系统地球观,强调将地球的各个组成部分作为统一的整体来加以考察和研究,将大气圈、水圈、岩石圈和生物圈之间的相互作用和地球上的物理的、化学的和生物的基本过程之间的相互作用,以及人类与地球之间的相互作用联系起来进行综合集成研究。
即全球变化科学是研究作为整体的地球系统的运行机制、变化规律和控制变化的机理(自然的和人为的),并预测其未来变化的科学。
它研究的首先是一个行星尺度的问题——将大气圈、水圈(含冰雪圈)、岩石圈和生物圈看成是有机联系的全球系统,把太阳和地球内部作为两个主要的自然驱动器,人类活动作为第三种驱动机制。
发生在该系统中的全球变化是在上述驱动力的推动下,通过物理、化学和生物学过程相互作用的结果。
全球变化科学是在时代发展、科学进步、人类活动的强烈影响和社会需要的背景下产生的,主要表现在以下几个方面:(1)硬件条件。
在20世纪末,全球国际性应用的探测器和预测预报系统已有约1000个高空站、个气象站、3000个飞行器、7000艘充气船、500个浮标、长期立体动态信息库,还有全球海洋观测系统、全球陆地观测系统、全球气候观测系统。
(2)由于强烈的人类活动和社会经济的飞速发展,目前在环球范围内产生以下十大情况问题,急需国际社会合作共同解决。
主要有大气污染、温室气体排放和气候变暖、臭氧层破坏、土地退化、水资源匮乏和水体污染、海洋环境恶化、森林锐减、物种濒危、垃圾成灾、人口增长过快。
(3)从人类社会文明发展看,全球变化科学的产生是历史进程的必然。
(4)从历史发展角度看,全球变化研究有其科学思想的代表。
当前全球变化的主要驱动力

当前全球变化的主要驱动力
三方面驱动力
第一外部因素:太阳辐射直接驱动了发生在地球表面的各种过程。
太阳辐射的变化改变了到达大气顶层的能量,并通过影响物理气候系统的能量收支平衡导致气候变化。
同时也受其他天体引力的作用改变地球运动轨道参数。
第二地球内部因素:地球内力对全球变化的驱动力主要表现在板块运动所造成的海陆分布形式,海陆地形变化,火山活动等。
地球内部物质重新分布导致地极漂移也有影响。
第三人为因素:人类从自然环境中逐步分离,最终独立于自然系统,同时影响自然过程,人类活动无论从时间尺度还是空间尺度对地球影响都非常明显
最后地球系统内部存在反馈作用,在各个圈层内部,圈层之间均有复杂的反馈机制,驱动与响应之间存在复杂的非线性过程。
(类似于蝴蝶效应,个人认为人为因素应该归类为地球内部的反馈作用,因为是人为因素导致地球反馈表达,但是作为变化的原因,人为因素也可以看做是一种驱动力)
上面的内容都是从学校内部教材摘抄的,有错误不足还请指正。
全球变化

全球变化的驱动力:天文因素 全球变化的驱动力: 3、地外物体撞击
当小行星以宇宙速度撞击地球时,将产生一系列的物理、化学和地质 作用过程 巨大的天体冲击能够导致地球内部物质的重新分配,对地球内部过程 产生 深刻影响。巨大陨石的接击作用可能是海底扩张和大陆漂移等地 球内部驱动过 程变化的触发因素,陨石撞击可能导致地峻柱的生成, 而这些地授柱又可以将板 块破裂并使大陆分离。
全球变化的驱动力:地文因素 全球变化的驱动力: 1、海陆分布
大陆漂移和海底扩张以及与此相关的海面升降, 造成海陆分布格局及海洋 和陆地面积对比的变化, 陆地的位置和组合关系不同,对全球的温度和降 水格局 均会产生深刻的影响。对联合古陆存在时 期(三叠纪)的气候模拟结果表明,巨大的陆地使得 三叠纪) 冬季寒冷,夏季炎热,气候的大陆性极其显著, 并存在大 尺度的冬夏季风环流。
全球变化的驱动力:天文因素 全球变化的驱动力: 3、地形:高海拔山地或高原的隆起
高海拔的高原、山地的低温环境为冰川和积雪的积累提供了大范围的 场所. 这些冰雪通过反射率的反馈作用成为温度升降变化的放大器, 增强气候变化的 不稳定性,从而对全球变化产生与极地冰盖性质相近 的作用。 高山和高原通过热力和动力作用对全球大气环流运动所产生的深刻影 响更 为重大。青藏高原和北美西部的山系等均对近地面行星风系的运 动乃至结构有 强烈的改造作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数变化与全球变化之间必然存在一系列的反馈机制使得由地球
轨道参数变化所引起的变化被放大。第三,根据地质记录发现, 在2.4MaB.P.,19ka和23ka的岁差周期占主导地位;在
2.4MaB.P.~0.8MaB.P.期间,41ka的黄赤交角变化周期为主要周
期;而在0.8MaB.P.以来却是在三个地球轨道参数中强度最弱的 0.1Ma的偏心率周期最为显著;米兰柯维奇理论难以解释为什么
太阳黑子活动引起太阳辐射质和量的变化,太阳活动高峰期 能够引起太阳紫外辐射和微粒辐射的极大增加。一些地球物理现 象,如极光、磁暴、电离层扰动等可间接反映太阳活动。太阳活 动高峰年份,与太阳微粒辐射密切相关的极光现象明显增加;对 树木年轮中的 14C测量的结果表明,太阳活动强时, 14C 含量低; 反之, 14C 含量高,可能是由于强磁场使宇宙射线偏离了地球。 观测的结果表明,紫外辐射对臭氧层有强烈影响,太阳活动高峰 期臭氧层变厚并且升温,哥伦比亚大学的 ቤተ መጻሕፍቲ ባይዱhindell 等人 (1999) 提出,臭氧在很大程度上放大了太阳活动周期的效应,其模型表 明,首先是太阳辐射增加,加速平流层中臭氧的生成,然后臭氧 的增加引起温室效应,进一步加热平流层,此后热流传递至对流 层。两个大气层的耦合作用十分重要,可能是太阳活动影响气候 的一个中间环节,使得只有 0.1% 、而且只是直接影响上层大气 的太阳辐射变化,成为影响地球气候变化的因素。
太阳辐射直接驱动了发生在地球表面的各种过程。太阳辐射 的变化改变了到达大气顶层的能量,并通过影响物理气候系统的 能量收支平衡导致气候变化,进而引起全球变化。 太阳是一颗不断演化的恒星,太阳的辐射输出是随着太阳 年龄的增长而变化的,在地球诞生之初的 45 亿年前,太阳的辐 射输出较现代低 30%,在此后的45亿年历史中,太阳的辐射输出 不断增加到现代水平。除太阳辐射的长期变化外,发生在10a ~ 100a时间尺度上的太阳活动更为引人注意。 太阳活动是太阳表面上一切扰动现象的总称。主要包括:发 生在光球表面的黑子、光斑,发生在色球层的谱斑、耀斑,以及 日珥、日冕等。一般用黑子活动代表太阳活动,黑子越多,太阳 活动越强,其他太阳活动都和黑子活动呈同步变化,太阳常数的 短期变化也与黑子的变化一致。
第二章 全球变化的主要过程与驱动力
第一节 全球变化的主要过程
一、气候系统与水文循环过程
物理气候系统由大气、海洋、冰雪、陆地表面和生物圈所 组成。如果气候系统的能量收支与时空分布的平衡受到破 坏,将导致气候变化。
(一)地球表面的能量收支平衡与温室效应
(二)大气和海洋环流
(三)水文循环
地球水体分为淡水和咸水,淡水主要来自陆地冰雪,占43 400×1015kg; 咸水主要贮存于深海,为89000×103km3。全球水分循环主要是通过地表径 流与河流、蒸发、风和降水等作用实现循环。
全球水文循环过程图(通量单位1015kg/a,各源汇中水量占全球总 水量用百分比表示。Moore,1996)
全球水循环图反映了以下特点:
( 1 )全球 97% 的水在海洋, 86% 的水是海洋蒸发的,大气 从海洋上空携带水汽输往陆地,以降水形式落下,以冰雪堆积 在陆地表面的43 400×103km3水量超过了地下水水量。 ( 2 )陆地水分通过植物蒸腾和地表蒸发回到大气,有些 还存在于土壤表面。 (3)植物在水循环中通过截流、根部吸收和以蒸腾方式 把水分送回大气。由于植物种类不一样,对水分循环作用也不 一样,例如森林和草原在水分循环中作用是不同的,因此植物 本身也使得全球水分循环不均。
太阳活动的历史记录(王绍武,1994)
表2-1
编号 1 名称 现代极大
5000年来太阳活动异常时期
可能时间范围 1780A.D.~现代 编 号 7 名称 希腊极小 可能时间范围 440B.C. 360B.C. ~
2
3 4 5 6
蒙德尔极小
施帕雷尔 极小 中世纪极大 中世纪极小 罗马极大
1640A.D. 1710A.D.
米兰柯维奇认为夏半年日照量的减少是冰期 形成的主要因素。米兰柯维奇的理论较好地解释 了第四纪冰期-间冰期变化的驱动因素,但最初 因缺乏实证而未被普遍接受。直到1950年以后, 从深海沉积、巴巴多斯等地的珊瑚礁阶地、陆上 的黄土沉积等过去环境变化的记录中均分别检测 出地球轨道参数变化的几个特征周期,如0.4Ma、 0.1Ma的偏心率周期,41ka的地轴倾斜率周期, 以及23ka和19ka的岁差周期,反映了第四纪气候 变化与地球轨道参数变化的高度相关性,使得米 兰柯维奇的理论得到广泛接受。
米兰柯维奇理论虽然比较成功地解释了第四纪冰期-间冰期 的变化,但仍存在不少问题。首先它不能解释冰期建立的机制, 即为什么冰期出现在第四纪而不发生在始新世或上新世等其他时 期,因此第四纪冰期的建立可能还受到更长尺度的因素作用。其 次,从计算结果来看,地球轨道参数变化本身所引起的气候变化 比地球上实际发生的全球变化的幅度小得多,因此,在地球轨道
大气中CO2浓度逐渐增加的事实表明,海洋对CO2的调
节能力是有限的。可以设想,如果人类继续增加化石燃料 的使用量和森林的砍伐量,海洋吸纳CO2的能力终将会被
耗尽,那时,更大部分的CO2将被保留在大气圈中,必然
会导致更为显著的温室效应加剧、全球变暖和海平面上升 等一系列人类生存环境的变化。
第二节 全球变化的驱动力
在无机环境中,碳主要以CO2或者碳酸盐和重碳酸盐 的形式存在。生态系统中的碳循环基本上是伴随着光合、 呼吸和分解过程进行的,在较长的时间尺度上,地质因素 对于碳循环也是重要的,因为贮存在沉积岩中的大量碳 (煤、石油和天然气等)是生态系统在过去年代中所固定的, 它们暂时退出了生物圈活跃的生物地球化学循环。自然界 碳的活动贮存库主要是海洋、大气和有机体。
按照全球变化驱动力的来源,可以将驱动因素分为三种 类型:地球外因素,地球内力因素以及地球系统自身相 互间的影响和反馈。
一、驱动全球变化的地球外力因素
地球的环境状态与太阳有密切的关系,同时受到其 他天体的深刻影响。影响是多方面的,其中受关注较多 的是太阳辐射输出变化,受其他天体的引力作用产生的 地球运动轨道参数的改变,以及小行星和彗星等天体对 地球的撞击等。 (一)太阳活动
2.米兰柯维奇天文理论要点
地球轨道参数变化可能导致气候变化的思想可以 追溯到17世纪。19世纪末期科罗尔(James Croll)对 地球轨道参数变化的影响进行了深入的讨论,提出地 球轨道变化可能影响季节变化,从而形成冰期。20世 纪早期,米兰柯维奇(Milankovitch)对地球轨道参 数变化的影响进行了更深入的研究,提出了第四纪冰 期的天文假说(1920年),他认为偏心率、黄赤交角 和岁差的周期变化改变地表的日照量,足以导致冰盖 的大规模进退,是形成第四纪冰期和间冰期更替的主 要原因。
二、固体地球系统与岩石圈循环过程
(一)板块运动过程
(二)陆上风化与侵蚀堆积过程 (三)海洋沉积过程
三、生态系统与生物地球化学循环过程
全球碳循环(IPCC,1996)
大气中及溶解在河流、湖泊和海洋等水体中的CO2,是 可供生物圈利用的主要无机碳源,陆上植物和海洋浮游植 物等有机物通过对CO2的光合作用而捕获太阳能为生物圈提 供能量,同时使得碳进入生物圈,并向大气提供氧气。
~
~ ~ ~ ~
20B.C.~80A.D.
(二)米兰柯维奇天文理论 1.地球轨道参数的变化 偏心率、黄赤交角和岁差这些地球的轨道
参数都是随时间变化的,它们的变化均会导致
地球接受太阳辐射的季节和地区分布的变化。
地球轨道参数变化及其引起的地球接收太阳辐射 的变化
地球绕太阳运转的轨道呈椭圆形,太阳位于椭圆 轨道的一个焦点上,轨道偏离正圆的程度就是地球轨 道的偏心率。偏心率以10万年变化于0.005~0.06之间, 同 时 还 存 在 40 万 年 的 周 期 变 化 。 目 前 的 偏 心 率 为 0.0167 ,地球分别处于近日点和远日点时,日照量的 差别为7%,偏心率愈大,差异愈大。 因受太阳和月球的引力作用,使得地球自转像陀 螺一样地摇摆,由地轴进动引起的黄道和天赤道交点 的变化就是岁差,其变化周期约 21ka ( 23ka 和 19ka 两 个周期)。岁差导致地球近日点时间的变化,现在地 球在1月位于近日点,全球1月日射率稍大于7月,从而 使北半球冬季稍暖,夏季稍凉,而南半球冬季更冷, 夏季更暖。10.5ka以后,当近日点出现在 7月时,情况 将相反。
由于行星的摄动作用,黄赤交角发生周期 性的变化。现代黄赤交角是 23°27′,在几百 万 年 内, 黄 赤交 角 的变 化 范围 为 21°39′ ~ 24°36′,变化周期约 40ka 。这一变化被比喻 为好像船的左右摇摆。黄赤交角影响地球上不 同纬度和不同季节的气候差异程度的大小,黄 赤交角越大,冬季和夏季的差异越大。黄赤交 角变化对极区影响最大,若黄赤交角减小,极 地地区变暖,反之,极地地区更为寒冷。
海洋在全球变化中的作用 由于全球97%的水在海洋,因此海洋在全球变化中的作用极其 巨大。海洋在全球变化中的作用主要表现在以下几方面。 ( 1 )在水和能量循环方面:①贮存了全球 97% 的水量; ②贡献了全球 86% 的蒸发量;③吸收了 70% 以上到达地球表面 的太阳能量。 (2)在生物地球化学循环方面:①贮存了地球上非沉积 的90%以上的C和N;②吸收了至少一半以上人为排放的CO2;③ 海洋环流决定了全球C输送的时空分布和收支的基本特征;④ 上层海洋的垂直混合运动决定了全球变化的大的循环过程。
现已发现,太阳黑子活动在10a~100a尺度上均存在显著的 周期变化。如11a的沃尔夫周期、22a的海尔周期、80a的世纪周 期、 180a 的双世纪周期等。根据历史记载可以追溯上千年的太 阳活动历史,树木年轮中14C含量的变化更提供了长达5ka,甚至 9ka的太阳活动的记录 ,进而从过去 5ka太阳活动的历史中区分 出若干异常时期。极地的硝酸盐是太阳微粒辐射与极地大气相互 作用的产物,在太阳活动弱的时期极地冰雪中硝酸根离子的含量 也低,利用保存在南极冰芯中的硝酸盐可以将太阳活动的历史追 溯到几万年前。根据树木年轮中14C含量的变化和极地冰芯中10Be 的变化可以识别出2~2.5ka的太阳活动周期变化。