圆柱圆锥圆台PPT

合集下载

圆柱圆锥圆台PPT课件

圆柱圆锥圆台PPT课件
§2.4 圆柱、圆锥、圆台
一、素质教育目标
(一)知识教学点
1.圆柱、圆锥、圆台的概念和性质。
2.圆柱、圆锥、圆台的直观图的画法。
3.圆柱、圆锥、圆台的侧面积。
(二)能力训练点
1.理解圆柱、圆锥、圆台的概念,掌握它们的性质,能利用它们之间的内在联 系进行转化,不断提高学生分析问题的能力。
2.通过它们直观图画法的教学,使学生掌握正等测法的作图,进一步提高学生 作图及识图能力。
3.掌握它们侧面积的计算公式,能综合应用这些公式计算有关图形的面积, 提高学生综合应用知识的能力。
完整版课件
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
生:有,应该加上全等两个字.
(教师肯定学生的答案后,板书出两条性质.)
师:性质2.给出了圆柱、圆锥、圆台的本质特征.今后有关三个几何 体的计算问题只要在它们轴截面上作文章,甚至今后分析有关问题可直 接在其轴截面上进行而不必画出它们的实际图形.另外有了性质1.我们 可以认为圆台是一个圆锥截掉一个小圆锥后余下的部分,所以有关圆台 的问题就可以转化为圆锥的问题来解决.
性质2给出了圆柱圆锥圆台的本质特征今后有关三个几何体的计算问题只要在它们轴截面上作文章甚至今后分析有关问题可直接在其轴截面上进行而不必画出它们的实际图形另外有了性质1我们可以认为圆台是一个圆锥截掉一个小圆锥后余下的部分所以有关圆台的问题就可以转化为圆锥的问题来解决例1把一个圆锥截成圆台已知圆台的上下底面半径是14母线长是10cm求圆锥的母线长分析

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

AA’’
叫做圆柱的侧面。

(4)无论旋转到什么位置,不垂直于轴 线
的边都叫做圆柱的母线。
O’ B’
A
O
B
矩 形
轴 侧 面 底面
3
2.圆柱的表示:用表示它的轴的字母表示,如圆柱OO1。
3.圆柱与棱柱统称为柱体。
O


棱 柱 圆 柱


O1
母 线

底面
4
二、圆锥的结构特征 1.定义:以直角三角形的直角边所在直线为旋转轴,
1.1.6旋转体的结构特征
——圆柱、圆锥、圆台、球
1
旋转一周。。。
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台

2
一、圆柱的结构特征
圆柱O定1义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的曲面所围成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成的圆面叫
O
做圆柱的底面。
(3)平行于轴的边旋转而成的曲面
B
O
E
O
16 C
题型一、旋转体的概念
例 下列叙述中正确的是____③____.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆锥截去一个小圆锥后剩余部分是圆台; ④用一个平面去截圆锥,得到一个圆锥和一个圆台.
[解题过程] ①中以直角三角形的直角边为轴旋 转所得的旋转体是圆锥,以斜边为轴旋转所得的旋 转体是两个圆锥的组合体.故①不正确. ②中以直角梯形中垂直于底边的腰为轴旋转所得 的旋转体是圆台,以不垂直底边的腰为轴旋转所得 的旋转体是圆柱和圆锥的组合体,故②不正确. ③正确.

《圆柱、圆锥、圆台的表面积》课件

《圆柱、圆锥、圆台的表面积》课件
1.看图回答问题
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

(5)轴截面是等腰三角 形.
O B
底面
圆台的结构特征 如何描述它们具有的共同结构特征?
圆台 圆柱、圆锥可以看
作是由矩形或三角形绕 用一个平行于圆锥底面的 其一边旋转而成,圆台 平面去截圆锥,底面与截面之 是否也可看成是某图形 间的部分是圆台. 绕轴旋转而成? O’
O
圆台的性质: ①圆台的轴通过两底面圆的圆心,并 且与底面垂直. ②圆台的母线长都相等. ③平行于底面的截面都是圆. ④轴截面(经过圆台轴的平面截圆台所得的 截面)是全等的等腰梯形,腰长就是母线长.
O P
Q
例2.我国首都靠近北纬40°纬线。求北纬 40°纬线的长度约等于多少km(地球半径 约为6 370km).
K
A
A
40°
O
B
轴截面
O
B
解:如图,A是北纬40°纬线上的一点,AK是它的 半径,所以OK⊥AK.设c是北纬40°的纬线长, 因为∠AOB=∠OAK=40°,所以 c =2π·AK = 2π·OAcosOAK
如何描述右图的几何结构特征?
圆锥的结构特征
圆锥
以直角三角形的一条直角边 所在直线为旋转轴,其余两边旋 转形成的曲面所围成的几何体叫 做圆锥.
S
顶点
性质 (1)底面是圆 母 (2)侧面展开图是以母线长为半径的扇形 线 (3)母线相交于顶点 (4)平行于底面的截面是与底 面平行且半径不相等的圆
A
轴 侧 面
(4)经过球面上不同的两点只能作一个大圆. (5)球半径是5,截面圆半径为3,则球心到截 面圆所在平面的距离为4.
( ( × )
√)
经度纬度
经度的定义
纬度的定义
地球的经度
经度纬度

圆柱、圆锥、圆台的表面积与体积课件

圆柱、圆锥、圆台的表面积与体积课件
8.3.2圆柱、圆锥、圆台
的表面积和体积
复习
棱柱、棱锥、棱台的表面积:围成它们的各个面的面
积的和,即侧面积+底面积
那你认为圆柱、圆锥、圆台的表面积又是怎样的呢?
S
O'
O'
r O
l
l
r O
r'
l
rO
圆柱、圆锥、圆台的表面积是围成它们的各个面的面
积和,即 S S 底 S 侧
1、 圆柱、圆锥、圆台表面积
与多面体一样,圆柱、圆锥、圆台的表面积也是围成它
们的各个面的面积和.不同之处在于,围成圆柱、圆锥、圆
台的面中有曲面,利用的展开图,可以得到它们的表面积公
式.
(1)圆柱的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
O′
l
r O
S上底 S下底 =πr
S圆柱侧 =2πrl
S圆柱 =πr +πr +2πrl 2πr (r l )
3
思考:结合棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积公
式,你将它们统一成柱体、锥体、台体的体积公式吗?
思考:结合棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积公
式,你将它们统一成柱体、锥体、台体的体积公式吗?
V柱体 =Sh (S为底面积,h为柱体高)
1
V锥体 = Sh (S为底面积,h为锥体高)
3
1
V台体 = ( S S S S )h
l
r r'
(3)圆台的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
2
2

S上底 =πr ,S下底 =πr .
2πr

圆柱圆锥圆台体积和表面积.ppt

圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)
其余两边旋转而成的曲面所围成的几何体叫做圆锥。 S
母线
(1)旋转轴叫做圆锥的轴。
侧面
(2) 垂直于轴的边旋转而成的曲面叫做圆锥
的底面。
直角三角形
O
A
(3)不垂直于轴的边旋转而成的曲面叫做圆锥
的侧面。
底面
(4)无论旋转到什么位置不垂直于轴的边都叫

做圆锥的母线。
5
2.圆锥的表示:用表示它的轴的字母表示,如圆锥SO。
扇环
延长线交于一点

不可 展开

平行于底面 与两底面是平行且 平行于底面且半
的截面 半径相等的圆
径不相等的圆
轴截面
矩形
等腰三角形
与两底面是平行但 全体截
半径不相等的圆 面都是
等腰梯形
圆圆
29
达 1.(2014•福建)以边长为1的正方形的一边所在所在直线为旋转轴,将该正
标 方形旋转一周所得圆柱的侧面积等于( A )
25
课堂小结
以上我们学习了柱、锥、台、球等简单几何体的结构特征.
26
简单几何体的结构特征
柱体
锥体
台体

棱柱 圆柱 棱锥 圆锥
棱台 圆台
27
棱柱、棱锥、棱台的结构特征比较
结构特征
棱柱
棱锥
棱台
定义
底面
侧面
侧棱
平行于底面 的截面
过不相邻两 侧棱的截面
两底面是全等 的多边形 平行四边形
平行且相等
与两底面是全等 的多边形
平行四边形
多边形 三角形
两底面是相似的 多边形
梯形
相交于顶点 延长线交于一点
与底面是相似 的多边形

几何图形(PPT)全面版

几何图形(PPT)全面版
4.1几何图形
创设情境,引入新知
北京
金字塔—埃及
生活中各种不同的图形
自主预习
我们周围的物体,如果只注意它们的形状、 大小和位置,而不考虑它们的其它性质,就得 到各种几何图形。这就是几何研究的对象。
我们之前已经学习过哪些常见基本几何图形?
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的.
从实物中抽象出的各种图形统称为几何图形.
自主预习 从刚才多姿多彩的图形世界中, 我 们抽象出来的几何图形有:
三角形
长方形
正方体
圆柱
长方体

五边形
圆锥
圆形
正方形
四棱锥
圆台 棱台
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平内,这样的几何图形叫做立体图形.
长方体
正方体
圆柱

圆锥
圆台
常见的平面图形
有些几何图形(如线段、角、三角形、长方形、圆等) 的各部分都在同一平内,这样的几何图形叫做平面图形.
三角形
长方形
五边形
圆形
正方形
课本练习,寻找熟悉的平面图形?
六边形
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体 球
六棱柱
圆锥 长方体
四棱锥
自主探究
思考:
这些常见的几何体又是由最基本 的元素构成的,那么究竟是哪些基本的元 素呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)新课引入 师:请同学们打开课本P.74看图2-29,这三个物体的形状分别是:圆柱形、 圆锥形和圆台形.今天我们将研究这三种形状的几何体.首先我们探讨这三种 几何体的形成,请同学ቤተ መጻሕፍቲ ባይዱ看小黑板)
.
3
师:这三个平面图形是大家熟悉的矩形、直角三角形和直角梯 形.下面我们将这些图形绕着AB所在的直线旋转一周得到什么形状 的图形?(让学生思考一会儿,教师画出旋转所形成的图形.)
它们分别就是圆柱形、圆锥形、圆台形.
.
4
(二)圆柱、圆锥、圆台的概念
师:根据刚才的讨论,通过平面图形的旋转可以得到圆柱形、圆锥 形、圆台形的图形,因此我们可以利用旋转这一事实来给圆柱、圆锥、 圆台下定义.
请同学们认真阅读课本P.74第5行到P.75第2行止.
师:这一段内容介绍了圆柱、圆锥、圆台的定义、基本元素以及表 示方法.大家要注意以下几点问题:
径).既然圆的直观图是椭圆,为方便起见,今后我们可以直接用椭圆模板或
椭圆的近似画法来画.
.
8
例3 一个圆锥的底面半径是1.6cm,在它的内部有一个底面半径为0.7cm, 高为1.5cm的内接圆柱,画出它们的直观图.
分析:虽然圆锥的高不知道,但我们可先画出下底、上底半径分别为 1.6cm和0.7cm,高为1.5cm的圆台,然后利用圆台与圆锥的关系来画圆 锥.
请同学们根据课本提供的画法自己画出图形.
师总结:整个作图过程分为四步,1°先画底面;2°画圆台的高;3°画 内接圆柱的上底面,4°画圆锥.大家注意到若不考虑坐标系选取的不同, 以及不区别底面多边形和圆时,棱柱、棱锥、棱台的直观图画法与圆柱、 圆锥、圆台的直观图的画法是一致的.(把新知识纳入学生原有知识结构 中.)
.
6
例1 把一个圆锥截成圆台,已知圆台的上、下底面半径是1∶4,母线长 是10cm,求圆锥的母线长.
分析:如图2-28,△O'OA是圆锥轴截面的一半,则直角梯形COAB是圆台 轴截面的一半,由BC∥AO易得O'B∶O'A=BC∶AO=1∶4
(具体解答请同学们阅读课本)
师:(小结).注意“还台于锥”以及利用平行式相似来解决问题.
§2.4 圆柱、圆锥、圆台
一、素质教育目标
(一)知识教学点
1.圆柱、圆锥、圆台的概念和性质。
2.圆柱、圆锥、圆台的直观图的画法。
3.圆柱、圆锥、圆台的侧面积。
(二)能力训练点
1.理解圆柱、圆锥、圆台的概念,掌握它们的性质,能利用它们之间的内在 联系进行转化,不断提高学生分析问题的能力。
2.通过它们直观图画法的教学,使学生掌握正等测法的作图,进一步提高学 生作图及识图能力。
二、教学重点、难点、疑点及解决办法
1.教学重点:圆柱、圆锥、圆台的概念、性质及侧面积公式.
2.教学难点:圆柱、圆锥、圆台的直观图的画法.
3.教学疑点:直观图为什么用正等测法,而不用斜二测法,通过比较让学 生明白用正等测法的便利.
三、课时安排
2课时.
.
2
四、教与学的过程设计
第一课时 圆柱、圆锥、圆台的概念、性质及直观图的画法
3.掌握它们侧面积的计算公式,能综合应用这些公式计算有关图形的面积, 提高学生综合应用知识的能力。
.
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
1°圆柱、圆锥、圆台是旋转后形成曲面所围成的几何体,即包括曲 面内部的所有点.
2°一定要绕着指定的直线旋转才行,如直角梯形绕下底边所在直线 旋转就不行.
3°轴是一条直线而不是线段.
4°母线与轴线一定共面,注意圆柱、圆台上、下底面周长上任意各 取一点的连线未必是母线.
5°用轴线来表示它们时前面一定要冠以圆柱或圆锥或圆台.
.
5
(三)圆柱、圆锥、圆台的性质
思考题1:如果用一个平行于底的平面去截圆柱、圆锥和圆台,所得的 截面会是什么图形?
生:圆.
思考题2:我们把过轴的截面,叫做轴截面.那么圆柱、圆锥、圆台的 轴截面分别是什么图形?(引导学生从形成图形的过程去思考.)
生:矩形、等腰三角形、等腰梯形.
师:大家想一想圆柱的轴截面有多少个?(生:无数多个),那么刚才同 学对思考题2的回答有没有需要改进的地方?
生:有,应该加上全等两个字.
(教师肯定学生的答案后,板书出两条性质.)
师:性质2.给出了圆柱、圆锥、圆台的本质特征.今后有关三个几何 体的计算问题只要在它们轴截面上作文章,甚至今后分析有关问题可直 接在其轴截面上进行而不必画出它们的实际图形.另外有了性质1.我们 可以认为圆台是一个圆锥截掉一个小圆锥后余下的部分,所以有关圆台 的问题就可以转化为圆锥的问题来解决.
(五)练习
课本P.76中练习2、3;课本P.79中练习.
(六)总结
本节课我们学习了圆柱、圆锥、圆台的概念和性质.大家知道旋转是它 们的共性,而轴截面则是它们的本质特征.所以大家要善于抓住它们的 轴截面来分析、解决有关的问题.
五、作业
.
9
课本P.83中习题十1到6题.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
.
7
(四)直观图的画法
请同学们阅读课本P.76面的黑体字部分.
师:请同学们比较正等测法作图与斜二测法作图有哪些不同点?
(通过类比使学生掌握正等测法)
生甲:坐标系的画法不同.正等测法的坐标系要求<x'o'y'=60°(或120°), 而斜二测法中则要求<x'o'y'=45°(或135°).
生乙:直观图中线段长短的取法不同.正等测法中平行于y轴的线段保持不变, 而斜二测法中只能取一半.
师:它们有什么共同点?
生丙:平行于x轴、y轴的线段仍然平行于x'轴和y'轴,平行于x的线段在直观 图中长度保持不变.
例2 画水平放置的圆的直观图.
请同学们阅读课本P.76至P.77面的解答.
师:大家看到圆的水平放置的直观图是一个椭圆,圆心变为椭圆的中心,圆
的任意一对相垂直的直径变为椭圆的一对直径(它们称为椭圆的共扼直
相关文档
最新文档