直线回归法的公式推导
回归直线法中a和b的公式巧妙记忆

回归直线法中a和b的公式巧妙记忆,保你6年不忘
1、先记住b
n∑XY 一∑X∑Y
b =
n∑XX 一∑X∑X
分子:我们就把X看作男人,Y看作女人,大家看“∑”像不像一个小房子?
一男一女在新房里面结婚就是∑XY,结婚当然有亲朋好友来祝贺,所以房子前面聚集了n多的人n∑XY 随着时间的推移,这两口子感情不和,闹离婚了,离婚当然就分开住了∑X∑Y,注意,离婚不是值得高兴的事,前面没有n个人了.分子大家记住了吧,就是结婚——离婚,
分母呢,就是把分子里面的Y换成X,这样b的方程就记住了。
2、再记住a
∑XX∑Y 一∑X∑XY
a =
n∑XX 一∑X∑X
分子:有两个男人在屋子里面搞同性恋,就是∑XX 隔壁呢住着一个单身女人∑Y 随着时间的推移,一个男人和隔壁那个女人搞上了,另一个男人独守空闺,就
变成了∑X∑XY,OK,这个过程就是同性恋——异性恋的过程.
至于分母,是和b分母一样的。
OVER,闭上眼睛回想一下,结婚——离婚,同性恋——异性恋,公式就这样记住了~。
回归直线方程公式详解及例题

回归直线方程公式详解及例题回归直线方程,听起来是不是有点严肃?这玩意儿就像是数学里的“小白兔”,看起来很复杂,但其实乍一看也不过是个简单的小家伙。
让咱们聊聊这个直线方程的由来,还有怎么用它解决问题。
说白了,就是用一条直线把一堆数据给“牵”起来,让我们看清楚它们之间的关系。
就像在赶集一样,把各种水果摆成一排,想要了解哪个最受欢迎。
这里,最常见的回归直线方程是y = mx + b。
听起来不算复杂吧?不过咱们慢慢来,不急。
y代表咱们要预测的东西,比如说,你想知道你的成绩和学习时间的关系,那y就可以是你的成绩;x就是你花在学习上的时间。
m,这个家伙叫做斜率,表示的是y和x之间的关系,简单来说就是学习时间每增加一个小时,成绩大概能提高多少分。
b则是当你啥都不做时,你的成绩是多少,这个也很重要,没错,人生不就是这么回事吗?想象一下,拿出一根铅笔和一张纸,把这些点点画出来。
每个点就代表了一次测量,比如说你在不同时间学习的成绩。
画得可真像一幅抽象画,虽然一开始没法看出什么,但如果仔细一看,就能发现某种趋势。
这就是回归分析的魔力,它能帮你找到这些点之间的规律。
慢慢地,这些点就会聚成一条线,给你展示出学习时间和成绩之间的关系。
再来聊聊如何计算这些参数。
有很多软件和工具可以帮你做这些。
但如果你想亲自尝试,手动计算也是个不错的选择。
先得算出这些数据的平均值,接着用这些平均值来计算m和b。
想象一下,m的计算就像是在算你朋友圈里哪个小伙伴总是抢着买单。
搞定这些,y = mx + b就能顺利出炉了。
说到这里,有些小伙伴可能会想,回归直线到底有什么用呢?这玩意儿其实是个超有用的工具。
比如说,商家可以用它预测销量,学校可以分析成绩趋势,甚至天气预报也会用到。
想想看,如果你知道晴天和下雨天的概率,你是不是就能提前决定穿哪双鞋?这不就是让生活更简单吗?回归直线也有它的局限性。
毕竟,生活可不是总那么简单。
数据点就像是小孩子一样顽皮,根本不愿意听话,完全不按常理出牌。
洋葱数学线性回归方程公式

洋葱数学线性回归方程公式1.线性回归方程公式线性回归方程公式:b=(x1y1+x2y2+。
xnyn-nXY)/(x1+x2+。
xn-nX)。
线性回归方程公式求法:第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+。
+xn)/ny_=(y1+y2+y3+。
+yn)/n第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+。
+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+。
+xn^2)-n*x_^2第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。
其中,且为观测值的样本方差。
线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线。
顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+。
xnyn-nXY)/(x1+x2+。
xn-nX)后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)2.线性回归方程的应用线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。
这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。
分为以下两大类:如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。
当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,。
,Xp,这些变量有可能与y 相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
回归直线方程

x
3
4
y
2.5
3
5
6
4
4.5
回归直线方程
【变形训练】
解:(1)散点图如图.
(2) x 4.5, y 3.5,
b
xi yi 4x y
xi 2
2
4x
66.5 63 86 81
0.7
∴a回归3直.5线 0方.7程为4.5y=00.3.75x,+0.35.
8
70
68.3
4900
4664.89
4781
9
72
70.1
5184
4914.01
5047.2
10
74
70
5476
4900
5180
668
670.1
44794
44941.93
44842.4
回归直线方程
【典型例题】
上表可计算 x
10
668 10
10
66.8,
y
670.1 10
67.01,
10 i 1
i 1
i 1
第三步:代入公式计算b,a的值;
第四步:写出直线方程,求解并预测实际 生活
问题.
回归直线方程
【典型例题】
1、测得某地10对父子身高(单位:英寸)如下: 父亲身高(x) 60 62 64 65 66 67 68 70 72 74 儿子身高(y) 63.6 65.2 66 65.5 66.9 67.1 67.4 68.3 70.1 70 如果x与y之间具有线性相关关系,求回归直线方程; 如果父亲的身高为78英寸,试估计儿子的身高.
回归直线方程的三种推导方法

回归直线方程的三种推导方法下面将介绍回归直线方程的三种推导方法。
方法一:最小二乘法最小二乘法是最常用的回归直线方程推导方法。
它的基本思想是寻找一条直线,使得所有数据点到该直线的距离之和最小。
具体推导过程如下:1. 假设有 n 个数据点,表示为 (x1, y1), (x2, y2), ..., (xn, yn)。
2. 代入直线方程 y = ax + b,得到每个数据点的预测值 y_hat =ax + b。
3. 定义误差函数E = Σ(yi - y_hat)²,即每个数据点的实际值与预测值之差的平方之和。
4.求E的最小值,即求使误差函数最小化的a和b的值。
5.对E分别对a和b偏导,并令偏导数为零,得到两个方程:∂E/∂b = -2Σ(yi - axi - b) = 0∂E/∂a = -2Σ(xi(yi - axi - b)) = 06.解这两个方程,即可得到回归直线方程的斜率a和截距b。
方法二:几何推导法几何推导法是利用几何方法推导回归直线方程的方法。
具体推导过程如下:1. 假设有 n 个数据点,表示为 (x1, y1), (x2, y2), ..., (xn, yn)。
2.在坐标系中绘制这n个数据点。
3.寻找一条直线,使得所有数据点到该直线的距离之和最小。
4.使用垂直距离作为距离的度量,即对于每个数据点,找到它到直线的垂直距离d。
这可以通过计算直线的斜率a和截距b,然后使用点到直线的距离公式来求解。
5.定义误差函数E=Σd²,即每个数据点到直线的垂直距离之和。
6.求E的最小值,即求使误差函数最小化的a和b的值。
7.求解斜率a和截距b。
方法三:代数推导法代数推导法是另一种推导回归直线方程的方法。
具体推导过程如下:1. 假设有 n 个数据点,表示为 (x1, y1), (x2, y2), ..., (xn, yn)。
2. 定义误差函数E = Σ(yi - axi - b)²,即每个数据点的实际值与预测值之差的平方之和。
第22讲 回归直线方程(解析版)

第22讲 回归直线方程一、必备秘籍 1.两个变量线性相关(1)散点图:将样本中n 个数据点(,)i i x y (i =1,2,…,n )描在平面直角坐标系中得到的图形. (2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据11(,)x y ,22(,)x y ,33(,)x y (,)n n x y .②设所求回归方程为y bx a =+,其中,a b 是待定参数. ③由最小二乘法得1122211()(),()nnii i ii i nniii i xx y y x ynx yb a y bx xx xnx ====---===---∑∑∑∑其中,b 是回归方程的斜率,a 是截距. 二、例题讲解1.(2021·哈尔滨市呼兰区第一中学校高三模拟预测(文))十三届全国人大三次会议表决通过了《中华人民共和国民法典》这部法律自2021年1月1日起施行,某市相关部门进行法律宣传,某宣传小分队记录了前5周每周普及宣传的人数与时间的数据,得到下表:(2)利用(1)的回归方程,预测该宣传小分队第7周普及宣传(民法典)的人数.参考公式及数据:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆa y bx=-,()()51430i ii x x y y =--=∑.【答案】(1)4341y x =+;(2)预测该宣传小分队第7周普及宣传《民法典》的人数为342. 【分析】(1)求出x 、y 的值,将表格中的数据代入最小二乘法公式,求出b 、a 的值,可得出y 关于x 的线性回归方程;(2)将7x =代入回归直线方程,可得出结果. 【详解】(1)由题意得()11234535x =++++=,()1901201702102601705y =++++=, ()()()()()()52222221132333435310ii x x =-=-+-+-+-+-=∑,所以()()()51521430ˆ4310iii ii x x y y bx x ==--===-∑∑,所以ˆ17043341a y bx=-=-⨯=, 所以线性回归方程为4341y x =+;(2)由(1)知4341y x =+,令7x =,解得43741342y =⨯+=, 故预测该宣传小分队第7周普及宣传《民法典》的人数为342.2.(2021·合肥市第六中学高三模拟预测(文))树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某块山地上种植了A 树木,某农科所为了研究A 树木的根部半径与树木的高度之间的关系,从这些地块中用简单随机抽样的方法抽取6棵A 树木,调查得到A 树木根部半径x (单位:米)与A 树木高度y (单位:米)的相关数据如表所示:(2)对(1)中得到的回归方程进行残差分析,若某A 树木的残差为零则认为该树木“长势标准”,在此片树木中随机抽取1棵A 树木,估计这棵树木“长势标准”的概率.参考公式:回归直线方程为y bx a =+,其中()()()1122211n ni iiii i b nnixii i x y nxy x x y y xnx x ==-==---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ 20.9y x =+;(2)12【分析】(1)由最小二乘法先求样本点中心(),x y ,再代入公式求ˆ2b=,即可得到答案;(2)先计算6棵A 树木中残差为零的有3棵,占比为3162=,即可得到答案; 【详解】(1)由1(0.10.20.30.40.50.6)0.356x =⨯+++++=,1(1.1 1.3 1.6 1.5 2.0 2.1) 1.66y =⨯+++++=,610.1 1.10.2 1.30.3 1.60.4 1.50.5 2.00.6 2.1 3.71i ii x y==⨯+⨯+⨯+⨯+⨯+⨯=∑,6222222210.10.20.30.40.50.60.91ii x==+++++=∑,有62261216 3.7160.35 1.6ˆ20.9160.356i ii ii x yxybxx ==--⨯⨯===-⨯-∑∑,ˆˆ 1.6020.350.9ay bx =-=-⨯=, 故y 关于x 的回归方程为:ˆ 20.9yx =+. (2)当0.1x =时,ˆ20.10.9 1.1y=⨯+=,残差为1.1 1.10-=, 当0.2x =时,ˆ20.20.9 1.3y=⨯+=,残差为1.3 1.30-=, 当0.3x =时,ˆ20.30.9 1.5y=⨯+=,残差为1.6 1.50.1-=, 当0.4x =时,ˆ20.40.9 1.7y=⨯+=,残差为1.5 1.70.2-=-, 当0.5x =时,ˆ20.50.9 1.9y=⨯+=,残差为2.0 1.90.1-=, 当0.6x =时,ˆ20.60.9 2.1y=⨯+=,残差为2.1 2.10-=, 由这6棵A 树木中残差为零的有3棵,占比为3162=,∴这棵树木“长势标准”的概率为12.1.(2021·湖南师大附中高三月考)今年五月,某医院健康管理中心为了调查成年人体内某种自身免疫力指标,从在本院体检的人群中随机抽取了100人,按其免疫力指标分成如下五组:(10,20],(20,30],(30,40],(40,50],(50,60],其频率分布直方图如图1所示.今年六月,某医药研究所研发了一种疫苗,对提高该免疫力有显著效果.经临床检测,将自身免疫力指标比较低的成年人分为五组,各组分别按不同剂量注射疫苗后,其免疫力指标y 与疫苗注射量x 个单位具有相关关系,样本数据的散点图如图2所示.(1)健管中心从自身免疫力指标在(40,60]内的样本中随机抽取3人调查其饮食习惯,记X 表示这3人中免疫力指标在(40,50]内的人数,求X 的分布列和数学期望;(2)由于大剂量注射疫苗会对身体产生一定的副作用,医学部门设定:自身免疫力指标较低的成年人注射疫苗后,其免疫力指标不应超过普通成年人群自身免疫力指标平均值的3倍.以健管中心抽取的100人作为普通人群的样本,据此估计疫苗注射量不应超过多少个单位.附:对于一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅,其回归直线ˆybx a =+的斜率和截距的最小二乘估计值分别为()()()1122211,nniii ii i nniii i x x yy x ynxyb a y bx x xxnx ====---===---∑∑∑∑. 【答案】(1)分布列见解析,125;(2)疫苗注射量不应超过80个单位. 【分析】(1)根据频率分布直方图分别求出自身免疫力指标在(40,50]内和在(50,60]内的人数,写出X 的可能取值,求出对应概率,即可写出分布列,再根据期望公式即可求得数学期望;(2)根据最小二乘法求得回归方程,然后求出免疫力指标的平均值,根据题意列出不等式,从而可得答案. 【详解】解:(1)由直方图知,自身免疫力指标在(40,50]内的人数为0.008101008⨯⨯=,在(50,60]内的人数为0.002101002⨯⨯=,则X 的可能取值为1,2,3.其中122130828282233101010177(1),(2),(3)151515C C C C C C P X P X P X C C C =========.所以X 的分布列为()7121231515155E X =⨯+⨯+⨯=. (2)由散点图知,5组样本数据(,)x y 分别为(10,30),(30,50),(50,60),(70,70),(90,90),且x 与y 具有线性相关关系. 因为50,60x y ==,则22222210303050506070709090550607103050709055010b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,760502510a =-⨯=,所以回归直线方程为ˆ0.725yx =+. 由直方图知,免疫力指标的平均值为26402482152535455527100100100100100⨯+⨯+⨯+⨯+⨯=. 由27381ˆy≤⨯=,得0.72581x +≤,解得80x ≤. 据此估计,疫苗注射量不应超过80个单位.2.(2021·安徽师范大学附属中学(理))根据国际疫情形势以及传染病防控的经验,加快新冠病毒疫苗接种是当前有力的防控手段,我国正在安全、有序加快推进疫苗接种工作,某乡村采取通知公告、微信推送、广播播放、条幅宣传等形式,积极开展疫苗接种社会宣传工作,消除群众疑虑,提高新冠疫苗接种率,让群众充分地认识到了疫苗接种的重要作用,自宣传开始后村干部统计了本村200名居民(未接种)的一个样本,5天内每天新接种疫苗的情况,如下统计表:(2)假设全村共计2000名居民(均未接种过疫苗),用样本估计总体来预测该村80%居民接种新冠疫苗需要几天?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1221ˆi ii nii x ynxybxnx π==-=-∑∑,ˆˆay bx =-. 【答案】(1)222955y x =+;(2)7. 【分析】(1)根据公式求线性回归方程即可; (2)根据线性回归方程可设222955n a n ,求出67,S S ,与200080%1600⨯=比较即可求解. 【详解】 (1)1234535x ++++==,1015192328195y ++++==,则51522222222110305792140531922ˆ12345535i ii ii x y nxybxnx ==-++++-⨯⨯===++++-⨯-∑∑,222919355ˆa =-⨯=, 故y 关于x 的线性回归方程222955y x =+. (2)设222955na n ,数列{}n a 的前n 项和为n S ,易知数列{}n a 是等差数列, 则()12222922291155558225n n n a a S n n n n⎛⎫+++ ⎪+⎝⎭=⋅=⋅=+, 因为6127.2S ,7163.8S , 所以6101272S =,7101638S =200080%1600⨯=(人),所以预测该村80%居民接种新冠疫苗需要7天.3.(2021·九龙坡·重庆市育才中学高三月考)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:其中,时间变量i 对应的机动车纯增数据为i ,且通过数据分析得到时间变量与对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量y (单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n ni iiii i nniii i x y nx y x x y y b xnxx x ====-⋅--==--∑∑∑∑;a y bx =-.(2)该市交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了200名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1) 5.7 5.1y x =-,2025~2030年间,机动车纯增数量的值约为34.8万辆;(2)没有95%的把握认为“对限行的意见与是否拥有私家车有关”. 【分析】(1)根据最小二乘法求得线性回归方程,再求估计值即可; (2)根据列联表求得卡方观测值,再对照表即可得解. 【详解】 (1)由 51132639415527237i ii x y=⨯+⨯+⨯+=⨯+⨯=∑.()12222222212375312575.755451234553ni ii ni i x y nx yb x nx==-⋅-⨯⨯====-++++-⨯-∑∑. 因为y bx a =+过点(),x y ,所以 5.7y x a =+,5.1a =-,所以 5.7 5.1y x =-.2025~2030年时,7x =,所以 5.77 5.134.8y =⨯-=, 所以2025~2030年间,机动车纯增数量的值约为34.8万辆.(2)根据列联表,由()()()()()22n ad bc K a b c d a c b d -=++++得观测值为()2220025 3.12510085251575100160084K ⨯⨯-⨯⨯=⨯⨯==,3.125 3.841<,所以没有95%的把握认为“对限行的意见与是否拥有私家车有关”.4.(2021·贵州贵阳·高三月考(理))据贵州省气候中心报,2021年6月上旬,我省降水量在15.2-170.3mm 之间,毕节市局地、遵义市北部、铜仁市局地和黔东南州东南部不足50mm ,其余均在50mmm 以上,局地超过100mm.若我省某地区2021年端午节前后3天,每一天下雨的概率均为50%.通过模拟实验的方法来估计该地区这3天中恰好有2天下雨的概率,利用计算机或计算器可以产生0到9之间取整数值的随机数x (x ∈N ,且09x ≤≤)表示是否下雨:当[]()0,x k k Z ∈∈时表示该地区下雨,当[]1,9x k ∈+时,表示该地区不下雨.因为是3天,所以每三个随机数作为一组,从随机数表中随机取得20组数如下: 332 714 740 945 593 468 491 272 073 445 992 772 951 431 169 332 435 027 898 719(1)求出k 的值,使得该地区每一天下雨的概率均为50%;并根据上述20组随机数估计该地区这3天中恰好有2天下雨的概率;(2)2016年到2020年该地区端午节当天降雨量(单位:mm )如表:回归直线方程y bt a =+.并预测该地区2022年端午节有降雨的话,降雨量约为多少?参考公式:()()()1122211nniii ii i nniii i tty y t y nt yb tttnt====---==--∑∑∑∑,a y bt =-.【答案】(1)4, 25;(2)814955y t =-+,935mm .【分析】(1)由于该地区每一天下雨的概率均为50%,所以150%10k +=,从而可求出k 的值,在所给的20组数据中找出有两天小于等于k 的数,从而利用古典概型的概率公式可求出概率,(2)直接利用所给的数据和公式求出回归直线方程。
回归直线法a,b的计算公式

回归直线法a,b的计算公式
公式是b=(n∑xiyi-∑xi·∑yi)÷[n∑xi2-(∑xi)^2],a=[(∑xi^2)∑yi-∑xi·∑xiyi]÷[n∑xi^2-(∑xi)^2],其中xi、yi代表已知的观测点。
另有一种求a和b的“简捷”,其公式是:b=(n∑xy-∑x·∑y),回归直线法是根据若干期业务量和资金占用的历史资料,运用最小平方法原理计算不变资金a 和单位产销量所需变动资金b。
相关信息:
回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。
离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。
数学表达:Yi-y^=Yi-a-bXi.
总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。
(完整版)回归直线方程的三种推导方法

回归直线方程的三种推导方法 巴州二中母润萍回归直线方程是新课改新增内容之一,在必修数学3中对两个具有线性相关关系的变量利用回归分析的方法进行了研究,书中直接给出了回归直线方程系数的公式,在选修2-3中给出了回归直线方程的截距和斜率的最小二乘法估计公式的另一种形式的推导方法,根据所学知识,我总结了3种推导回归直线方程的方法:设x 与y 是具有线性相关关系的两个变量,且相应于样本的一组观测值的n 个点的坐标分别是:112233()()()()n n x y x y x y x y ,,,,,,,,,设所求的回归方程为i i y bx a =+,(123)i n =,,,,.显然,上面的各个偏差的符号有正、有负,如果将他们相加会相互抵消一部分,因此他们的和不能代表n 个点与回归直线的整体上的接近程度,因而采用n 个偏差的平方和Q 来表示n 个点与相应直线(回归直线)在整体上的接近程度,即Q =∑(y i −y i ̂)2ni=1=∑(y i −bx i −a )2ni=1求出当Q 取最小值时的a b ,的值,就求出了回归方程. 下面给出回归方程的推导方法一:一、先证明两个在变形中用到的公式公式(一)22211()nni ii i x x x nx ==-=-∑∑,其中12nx x x x n +++=证明:2222121()()()()ni n i x x x x x x x x =-=-+-++-∑∵22221212()2n n x x x x x x nxnxn+++=+++-+222222222212121()2()nnni i x x x nx nx x x x x nx==+++-+=+++=-∑22211()nni i i i x x x nx==-=-∑∑∴.公式(二)11()()nnii i i i i xx y y x y nx y==--=-∑∑证明:11221()()()()()()()()ni i n n i x x y y x x y y x x y y x x y y =--=--+--++--∑∵11221122()()n n n n x y x y x y x y y x x y y x x y y x nx y=+++-+++++++12121[()()]ni i n n i x y x x x y y y y x nx y==-++++++++∑12121()()n n n i i i x x x y y y x y n y x nx y n n=++++++⎡⎤=-++⎢⎥⎣⎦∑112nni i i i i i x y nxy nxy x y nxy===-+=-∑∑,11()()nni i i i i i x x y y x y nx y==--=-∑∑∴.二、推导:将Q 的表达式的各项先展开,再合并、变形 2222112233()()()()n n Q y bx a y bx a y bx a y bx a =--+--+--++--2222121122()[2()2()]n y y y y bx a y bx a =+++-+++展开222211111222n n nnni i i i ii i i i i i y b x y a y bxab x na ======--+++∑∑∑∑∑合并同类项22221111122nnii n n ni i i i i i i i i y x na na b b x b x y y nn =====⎛⎫ ⎪ ⎪=--+-+ ⎪ ⎪⎝⎭∑∑∑∑∑以a b ,的次数为标准整理22221112()2nn nii i i i i i na na y bx bxb x y y ====--+-+∑∑∑转化为平均数x y,22222111[()]()2nnnii i i i i i n a y bx n y bx bxb x y y ====----+-+∑∑∑配方法2222222111[()]22nnnii i i i i i n a y bx ny nbxy nb x bxb x y y ====---+-+-+∑∑∑展开222222111[()]()2()()nnni i i i i i i n a y bx b x nx b x y nxy y ny ====--+---++∑∑∑整理2222111[()]()2()()()nnnii i i i i i n a y bx bxx b x x y y y y ====--+----+-∑∑∑用公式(一)、(二)变形22212111()()[()]()()()ni i n ni i i nii i i x x y y n a y bx x x b y y x x ====⎡⎤--⎢⎥⎢⎥=--+--+-⎢⎥-⎢⎥⎣⎦∑∑∑∑配方22212212211111()()()()()()()()()nni i i i n n i i i i n ni i i i i x x y y x x y y n a y bx x x b y y x x x x ======⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥=--+---+-⎣⎦⎢⎥--⎢⎥⎣⎦∑∑∑∑∑∑配方法在上式中,共有四项,后两项与a b ,无关,为常数;前两项是两个非负数的和,因此要使得Q 取得最小值,当且仅当前两项的值都为0.所以b =∑(x i −x̅)(y i −y ̅)n i=1∑(x i−x̅)2n i=1 a =y ̅−bx̅ 或1221ni ii n i i x ynxyb x nx==-=-∑∑用公式(一)、(二)变形得上述推导过程是围绕着待定参数a b ,进行的,只含有i i x y ,的部分是常数或系数,用到的方法有: ① 配方法,有两次配方,分别是a 的二次三项式和b 的二次三项式; ② 形时,用到公式(一)、(二)和整体思想; ③ 用平方的非负性求最小值.④ 实际计算时,通常是分步计算:先求出x y,,再分别计算1()()nii i xx y y =--∑,21()nii xx =-∑或1ni ii x ynx y=-∑,221nii xnx=-∑的值,最后就可以计算出a b ,的值.推导方法二:Q =∑(y i −y i ̂)2ni=1=∑(y i −bx i −a )2ni=1=∑[y i −bx i −(y ̅−bx̅)+(y ̅−bx̅)−a ]2ni=1=∑{[y i −bx i −(y ̅−bx̅)]2+2[y i −bx i −(y ̅−bx̅)]∗[(y ̅−bx̅)−a ]+[(y ̅−bx̅)−a ]2}ni=1=∑[y i −bx i −(y ̅−bx̅)]2+2∑[y i −bx i −(y ̅−bx̅)]∗[(y ̅−bx̅)−a ]ni=1+n (y ̅−bx̅−a )2ni=1注意到∑[y i −bx i −(y ̅−bx̅)]∗[(y ̅−bx̅)−a ]=(y ̅−bx̅−a )∑[y i −bx i −(y ̅−bx̅)]ni=1ni=1=(y ̅−bx̅−a )[∑y i −b ∑x i −n (y ̅−bx̅)ni=1n i=1]=(y ̅−bx̅−a )[ny ̅−nbx̅−n (y ̅−bx̅)]=0因此,Q =∑[y i −bx i −(y̅−bx̅)]2+n (y ̅−bx̅−a )2n i=1 =b 2∑(x i −x̅)2ni=1−2b ∑(x i −x̅)(y i −y ̅)+∑(y i −y ̅)2ni=1ni=1+n (y ̅−bx̅−a )2=n (y ̅−bx̅−a )2+∑(x i −x̅)2[b −∑(x i −x̅)(y i −y ̅)n i=1∑(x i −x̅)2n i=1]2ni=1−[∑(x i −x̅)(y i −y ̅)n i=1]2∑(x i −x̅)2n i=1+∑(y i −y ̅)2ni=1在上式中,后面两项和a,b 无关,前两项为非负数,因此,要使Q 达到最小值,当且仅当前两项均为0,即有b =∑(x i −x̅)(y i −y ̅)n i=1∑(x i −x̅)2n i=1a =y ̅−bx̅ 总结:这种方法难想到为什么要这样处理,并且计算量很大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.按公式法推导a,b计算公式的过程 Σe2=Σ[y –(a+bx)] 2 = Σ[y 2–2 y (a+bx)+ (a+bx) 2 ] = Σ[y 2–2ay –2bxy+a2 +2abx+ b2x2 ] =Σy2–2aΣy–2bΣxy+na2+2abΣx+b2Σx2 令: Σy 2–2aΣy –2 bΣxy+na2 +2abΣx+ b2 Σx2=0 对上式求a的偏导数,得: –2Σy +2na +2bΣx=0 整理得 Σy =na +bΣx (1)式
可以同时计 算出a和b
∵Σy = na+bΣx ∴a = Σy-bΣx n
必须先计 算出b, 然后才能 计算 a
3.用简捷法来建立方程 上述联立方程也可以不用求偏导数的方 法来建立,可利用一种所谓简捷法来实现。 ∵ y=a+bx
∴ Σy = Σ(a+bx)=na+bΣx 又∵ xy=x(a+bx)=ax+b x2 ∴ Σxy= Σ(ax+b x2 )=aΣx+bΣx2 (2)式 (1)式
谢谢!
2.用行列式求二元一次方程组中a和b的解
因为下列联立方程中,未知数为a和b, Σy,Σxy 为已知常数, n,Σx和Σx2分别为a 和b的系数,则有
常数列 Σy = na Σxy = aΣx + bΣx + bΣx2
用行列式的方法解法如下:
2.用行列式求二元一次方程组中a和b的解
Δ=
Δa=
n
Σx Σx2
Σx
= n Σx2-(Σx) 2
Σy Σx Σxy Σx2 n Σy = ΣyΣx2-Σx Σxy
Δb=
Σx Σxy
Hale Waihona Puke = nΣxy-Σx Σy2.用行列式求二元一次方程组中a和b的解
Δa a= Δ Δb b= Δ
ΣyΣx2-Σx Σxy = n Σx2-(Σx) 2 = nΣxy-Σx Σy n Σx2-(Σx) 2
直线回归法的原理 及推导公式
主要内容
一
回归直线法的原理
二
回归直线的公式推导
一、直线回归法的原理
直线回归发的原理——微积分极值原理
y 成本(元)
y=a+bx
0
x
业务量(件)
二、直线回归法公式推导
从散布图法可以看出,我们总能设法 找到一条尽可能通过所有坐标点,也就是 所有误差最小的惟一直线y=a+bx 。 设ei为当业务量为xi时,实际值(又 称观测值)yi与计算值(a+bxi)的误差, 即 ei = yi – (a+bxi)
1.按公式法推导a,b计算公式的过程 对Σy2–2aΣy–2bΣxy+na2+2abΣx+b2 Σx2=0 求b的偏导数,得: –2Σxy +2aΣx+ 2bΣx2 =0 整理得 Σxy = aΣx+ bΣx2 (2)式 解联立方程,即可求出a,b的值。 Σy =na +bΣx Σxy = aΣx+ bΣx2
所有误差的代数和是否最小示意图?
y 成本(元)
满足Σei =0的条件 满足Σei =0的条件
0
x 业务量(件)
二、直线回归法公式推导
第二,判断所有误差绝对值的合计是 否最小。即:Σ│ei │ =0 但上式展开后,涉及到绝对数运算, 非常麻烦: Σ│ei │ = ± e1±e2 ± e3 ±…± en-1 ± en 因而也无法据此作出判断。
二、直线回归法公式推导
第三,判断所有误差平方和是否最小。 即:Σei2 =0 这种方法既排除了正负误差的符号问 题,又避免了绝对值运算的麻烦。 因此,可以根据误差的平方和是否达 到最小,来判断直线方程y=a+bx的总误差 是否达到最小。 此法又称最小二乘法或最小平方法。
二、直线回归法公式推导
根据上述道理,回归直线法就是求能 使Σei2 =0成立的回归系数a和b的值。 因为 ei = yi –(a+bxi) 所以 Σei2 = Σ[yi –(a+bxi)] 2 按照微分极值原理,令上式=0,并分 别对a和b求偏导数,就可以求出能满足 Σei2 达到极小值的a和b。 按照此法推导的a,b计算公式,称为 公式法。
二、直线回归法公式推导
怎样判断一条直线方程就是我们所要 找的所有误差最小的那条直线y=a+bx 呢? 可以考虑的办法有三: 第一,判断所有误差的代数和是否最 小。即: Σei =0 但由于误差有正有负,可能相互抵消, 会存在无数满足上述条件的直线,因而无 法据此作出最终判断。
二、直线回归法公式推导