永磁同步电机无传感器控制技术

合集下载

系统辨识法永磁同步电机无传感器控制

系统辨识法永磁同步电机无传感器控制
பைடு நூலகம்
电流 的预 测辨识 出转 子位 置和速度 , 出一种 基 于 系统辨识 理论 的无传感 器控 制 策略 , 提 解决 了控制
过程 中转子 速度 、 置的估 计 问题 。使 用该 策略 建 立 了 P M 无传 感 器 矢量控 制 系统 。仿 真 和 实 位 MS 验 结果表 明 了无传 感 器控制 策略 的有 效性 。
m o o sn d nt c t n m e h d tru ig ie i ai t o i f o
S N H iu G O Qn —ig , G O Sn—e , Y N ii U a- n , U igdn j A o gw i A G L-a jn
( .c ol f l tc yE g er g Se yn nvri f ehooy S eyn 10 3 C i ; 1S ho e r i ni ei , hna gU i s yo T cnlg , hnag10 2 , hn o E cit n n e t a
推 测 出 电机 转 子 的位 置 和 转 速 , 代 机 械 传 感 器 , 取
维普资讯
第1 2卷
第 3期
电 机 与 控 制 学 报
ELECTRIC M ACHI NES AND CONTR0L
V0 . 2 No 3 11 . Ma 2 0 v 08
20 0 8年 5月
系统 辨 识 法 永 磁 同步 电机 无 传 感 器 控 制
孙 海 军 郭 庆 鼎 , 高 松 巍 杨 理 践 , ,
( . 阳工业大学 电气工程学院 , 宁 沈 阳 10 2 ; . 1沈 辽 10 3 2 沈阳工业大学 信息科学与工程学院 ,辽宁 沈 阳 102 ) 10 3

永磁直线同步电机全速无位置传感器控制

永磁直线同步电机全速无位置传感器控制

了高频信 号 注入 法和 增广扩展 卡 尔曼滤 波算 法复合 的估计 算法 。在起 动和低 速 时采 用 高频信 号 注
入法,在 中高速时采用增广扩展卡尔曼滤波法 ,在过渡区域采用高频信号注入 法和增广扩展卡 尔曼
滤 波算 法融合 的 方法 ,实现从 零速 到 高速 全速 范 围 内高精 确 度 无位 置 传 感 器控 制 。仿 真 和 实验 结
(College of Electrical Engineering,Anhui Polytechnic University,Wuhu 241000,China)
Abstract:In position sensorless control for permanent magnet linear synchronous motor(PMLSM),a sin·
(安徽工 程大学 电气工程学院 ,安徽 芜 湖 241000)
摘 要 :针 对 永磁 直线 同步 电机无位 置 传感 器控 制 时 ,单一 的位 置估 计 算法难 以在 宽 范 围 内精确 估
计动 子速 度和 位置信 号 的 问题 ,为 了进 一步 适应 直 线 电机往 复运 动 、速 度 变化 范 围 大的特 点 ,提 出
提 娟 (1991- ),女 ,硕 士研 究 生 ,研 究 方向 为 直线 电机 无 传 感 器 控 制 技 术 ;
高文根 (1973一 ),男 ,硕 士 ,讲 师 ,研 究方 向 为 电机 运 动 控 制 ; 陈 其 工 (1961一 ),男 ,硕 士 ,教 授 ,硕 士导 师 ,研 究方 向 为运 动 控 制 理 论 。 通讯 作者 陆华 才
第 4期
陆 华才 等 :永 磁直 线 同步 电机全 速 无位 置传 感器 控制

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》范文

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》范文

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》篇一一、引言永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种重要的电动传动系统部件,因其具有高效率、高功率密度和良好的调速性能等优点,被广泛应用于工业、汽车、航空航天等领域。

然而,传统的PMSM控制系统通常需要使用位置传感器来获取电机的位置信息,这不仅增加了系统的复杂性和成本,还可能降低系统的可靠性和稳定性。

因此,无位置传感器控制技术成为了近年来研究的热点。

本文旨在研究并实现永磁同步电机全速度范围无位置传感器控制技术,以提高电机控制系统的性能和可靠性。

二、永磁同步电机基本原理永磁同步电机的基本原理是利用永磁体产生的磁场与定子电流产生的磁场相互作用,产生转矩,使电机转动。

PMSM的转子不需要外部供电,具有结构简单、运行可靠等优点。

然而,要实现电机的精确控制,必须准确获取电机的位置和速度信息。

传统的PMSM控制系统通过位置传感器来获取这些信息,但无位置传感器控制技术则通过电机内部的电气信号来估算电机的位置和速度。

三、无位置传感器控制技术无位置传感器控制技术主要通过电机内部的电气信号来估算电机的位置和速度。

常见的无位置传感器控制技术包括基于反电动势法、模型参考自适应法、滑模观测器法等。

本文采用基于反电动势法的无位置传感器控制技术,通过检测电机的反电动势来估算电机的位置和速度。

四、全速度范围无位置传感器控制策略为了实现永磁同步电机全速度范围的无位置传感器控制,需要采用合适的控制策略。

本文采用基于矢量控制的策略,通过实时调整电机的电压和电流来控制电机的位置和速度。

在低速阶段,采用初始位置估算和误差补偿技术来提高位置的估算精度;在高速阶段,则采用反电动势法来准确估算电机的位置和速度。

此外,还采用了自适应控制技术来应对电机参数变化和外部干扰的影响。

五、实验与结果分析为了验证本文所提出的无位置传感器控制技术的有效性,进行了实验验证。

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述永磁同步电机是一种应用广泛的电动机,具有体积小、重量轻、效率高等优点,因此在工业生产中被广泛应用。

传统的永磁同步电机控制技术需要使用位置传感器来获取转子位置信息,以实现精准控制。

随着传感器技术的不断发展和成本的不断下降,无位置传感器控制技术逐渐成为了研究的热点之一。

本文将对永磁同步电机无位置传感器控制技术进行综述,从原理、应用、优缺点等方面进行详细介绍和分析,以期为相关领域的研究和应用提供参考和借鉴。

一、无位置传感器控制技术的原理传统的永磁同步电机控制技术需要通过位置传感器来获取转子位置信息,以实现精准的控制。

位置传感器不仅增加了系统成本,还会增加系统的故障率和维护成本。

研究人员开始尝试利用电机本身和其他信号来实现无位置传感器控制技术。

无位置传感器控制技术的原理主要是通过计算电机的反电动势和电流信息,从而实现对电机转子位置的估计。

通常采用的方法有基于模型的方法和基于传感器融合的方法。

基于模型的方法主要是利用电机的数学模型,通过对电流、电压等信息的测量和计算,来进行转子位置的估计;而基于传感器融合的方法则是利用多种传感器的信息融合来实现位置的估计。

无位置传感器控制技术在很多领域都有着广泛的应用,特别是在一些对成本和可靠性要求较高的场合。

比如在电动汽车、风力发电、工业生产等领域,都可以看到无位置传感器控制技术的应用。

由于无位置传感器控制技术可以减少系统成本、提高系统可靠性,因此受到了广泛的关注和应用。

无位置传感器控制技术相比传统的位置传感器控制技术具有一些明显的优点,如可以降低系统成本、提高系统可靠性、减少维护成本等。

也存在一些缺点,如对控制算法和系统稳定性要求较高、对电机参数变化敏感等。

在实际应用中需要根据具体的情况进行权衡和选择。

尽管无位置传感器控制技术在现实应用中具有广阔的前景,但也面临着一些挑战,如精准的位置估计、控制算法的设计、系统稳定性等问题。

未来研究方向主要包括改进位置估计算法、优化控制策略、提高系统稳定性等方面。

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述【摘要】永磁同步电机无位置传感器控制技术是当前研究领域的热点之一。

本文通过对该技术进行综述,首先介绍了永磁同步电机控制技术的概况,然后详细分析了无位置传感器控制策略、基于模型的控制方法、基于适应性方法的控制技术以及基于滑模控制的应用。

在展示了这些控制技术的优势和特点的也指出了在实际应用中面临的挑战和需改进的地方。

我们对研究进行了总结,展望了未来的发展趋势,并提出了应对挑战的策略。

通过本文的研究,希望能够为永磁同步电机无位置传感器控制技术的进一步发展提供参考和指导。

【关键词】永磁同步电机,无位置传感器,控制技术,模型控制,适应性方法,滑模控制,研究总结,发展趋势,挑战与应对策略1. 引言1.1 研究背景永磁同步电机是一种具有高效率、高性能和广泛应用的电机类型,其在许多领域中得到了广泛的应用。

传统的永磁同步电机控制方法需要利用位置传感器来获取电机转子的位置信息,这增加了系统的成本和复杂性。

为了克服这一问题,无位置传感器控制技术应运而生。

无位置传感器控制技术通过利用电流和电压的反馈信息,结合适当的控制策略,实现对永磁同步电机的精准控制。

这种技术不仅可以降低系统成本,还可以提高系统的鲁棒性和稳定性。

研究永磁同步电机无位置传感器控制技术具有重要的理论和实际意义。

本文旨在对永磁同步电机无位置传感器控制技术进行综述和总结,系统地介绍这一领域的研究现状和发展趋势,为相关领域的研究人员提供参考和借鉴。

通过对相关文献和案例的分析和总结,为进一步推动永磁同步电机无位置传感器控制技术的发展提供理论支持和实践指导。

1.2 研究目的永磁同步电机无位置传感器控制技术的研究目的是为了探索在没有位置传感器的情况下,如何实现对永磁同步电机的精准控制。

通过研究不依赖位置传感器的控制策略和技术,可以降低系统的成本和复杂度,提高系统的稳定性和可靠性。

研究无位置传感器控制技术还可以拓展永磁同步电机在各种应用中的适用范围,推动新能源车辆、工业制造等领域的发展。

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》一、引言随着科技的不断进步,永磁同步电机(PMSM)在工业、汽车、家电等领域的应用越来越广泛。

而传统控制技术常常需要安装位置传感器来提供电机的实时位置信息,这既增加了系统的复杂性又增加了成本。

因此,无位置传感器控制技术逐渐成为研究热点。

本文将探讨全速度范围无位置传感器的控制技术及其在永磁同步电机中的应用与实现。

二、无位置传感器控制技术的理论基础1. 基本原理无位置传感器控制技术主要通过检测电机电压、电流等电气量,结合电机模型和算法来估计电机转子的位置和速度。

它避免了使用传统的位置传感器,简化了系统结构,降低了成本。

2. 控制算法常见的无位置传感器控制算法包括反电动势法、模型参考自适应法、滑模观测器法等。

这些算法在电机运行的不同阶段有不同的适用性,可以根据电机的实际运行情况选择合适的算法。

三、全速度范围无位置传感器控制技术的实现1. 启动阶段在电机启动阶段,由于没有转子位置信息,需要采用特定的启动策略。

常见的启动策略包括预定位法、转矩辅助启动法等。

这些方法可以在电机启动阶段提供足够的转矩,使电机顺利启动并进入正常运行状态。

2. 运行阶段在电机运行阶段,根据电机的实际运行情况选择合适的无位置传感器控制算法。

例如,在低速阶段可以采用反电动势法来估算转子位置;在高速阶段则可以采用模型参考自适应法或滑模观测器法等更精确的算法。

同时,为了保证系统的稳定性,还需要对控制算法进行优化和调整。

四、实验与结果分析为了验证全速度范围无位置传感器控制技术的有效性,我们进行了大量的实验。

实验结果表明,该技术能够在全速度范围内实现电机的稳定运行,且具有较高的控制精度和动态性能。

与传统的有位置传感器控制系统相比,无位置传感器控制系统具有更高的可靠性、更低的成本和更简单的结构。

五、结论与展望本文对永磁同步电机全速度范围无位置传感器控制技术进行了深入研究与实现。

实验结果表明,该技术能够在全速度范围内实现电机的稳定运行,具有较高的控制精度和动态性能。

无传感器永磁同步电机控制系统设计

无传感器永磁同步电机控制系统设计
f c i n t a r u o i u u o t o ,s h tt s il to f s s e wa a e e fe tv l ,t yse s r t r mp o e un to o c r y o t c ntn o s c n r l o t a he o c la i n o y t m s we k n d e c i e y he s t m tuc u e i r v d. Th M O ga n tt e p r m e e a i to n h nc ra n i si fg od r b s n s . eS a i s h a a t rv r a i n a d t e u e t i te so o o u t e s
wa ein dt si t moo oo o io n p e . h MO a o tdaj sal aa tr o g i u cina h wi h sd sg e et e trrtr s ina dsed T eS d pe du tbep rmees f imodfn t stes t o ma p t s o c
上不 安装 电磁 或光 电传感 器 的情 况下 ,利 பைடு நூலகம்检测 到
用 参 数 可 调 的 曲线 函数 作 为 滑 模 观 测 器 中 的 开 关
函 数 , 实现 了连 续 控 制 。并 同时 有 效地 削弱 了系 统的 “ 抖动 ”, 同 时去 除 了L F P 与截 止 频率 整 定环
节 。在不 失鲁棒 性 的前提下 , 改善 了系 统结 构 ,减
电工 电气 (0 No5 2 1 .) 1
无传感器永磁 同步 电机控韵系统设计
无传感器永磁 同步 电机控 制系统设计

永磁同步电机无传感器控制研究

永磁同步电机无传感器控制研究
取 。传 统的获取 方法 是在 转轴上 安装 光 电编码式 或 其他 形 式 的位 置传感 器 , 不仅增 加 了成 本 . 而且 影响
i  ̄+
U* d
U d
u l








_ _


s M
系统 的可 靠性 。为此许 多估 算转 子位 置角 的无传 感
Ab t a t T i a e e in l e mo e o s r e t an s i h c n r l rr ls h tb l y o y tm n lz s b sr c : h s p p r d s s a s d — d b e v rwi g i w t o t l u e . e sa i t fs se a ay e y g i h c oe T i
F u d t n P oetS potd b c n e a d T cnlg lnig F n fH nn Poic N .0 0 J 19 ; o n ai rjc :u pr y Si c n eh o y Pann u d o u a rv e( o2 1F 3 1 ) o e e o n
m ge n hoo s trP M)bsdo MS 2 L 20 sea peteep r e t eut poeta t bevr ant y crnu o(MS s mo ae nT 3 0 F 8 8a xm l, x e m na rsl rv th osre h i l re s Co r lM e ho fPe m a ntM a n tS nc o usM o o s a c n e o ls nt o t d o r ne g e y hr no tr
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨工业大学,电气工程系Department of Electrical EngineeringHarbin Institute of Technology电力电子与电力传动专题课报告报告题目:永磁同步电机无传感器控制技术哈尔滨工业大学电气工程系姓名:沈召源学号:14S0060402016年1月目录1.1 研究背景 (1)1.2 国内外研究现状 (1)1.3 系统模型 (2)1.4 控制方法设计 (4)1.5 系统仿真 (7)1.6 结论 (8)参考文献 (8)1.1 研究背景永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。

目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。

永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。

由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。

1.2 国内外研究现状无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。

最早出现的无机械传感器控制方法可统称为波形检测法。

由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。

目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种(1)利用定子端电压和电流直接计算出θ和ω。

该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。

该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。

(2)模型参考自适应(MRAS)方法。

该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。

当该值减小为零时,则可认为此时假设位置为真实位置。

采用这种方法,位置精度与模型的选取有关。

该方法应用于PMSM时有一些新的需要解决的问题。

(3)观测器基础上的估计方法。

观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。

目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。

其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。

扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分计算。

该方法的特点是转速估算值与实际值非常接近,由估算值构成的闭环系统在宽调速范围内具有良好的特性,但算法比较复杂。

(4)高频注入方法基于电机的凸极效应(固有的或人为的)和高频数学模型,不依赖于电机的基波方程和参数,因此可以实现对PMSM 转子初始位置的有效估算。

该方法不依赖于任何电机的参数和运行工况,因而可能工作在极低速,并且系统的计算工作量不大,是比较理想的方法之一。

其最大的缺点就是要改造电机来形成明显的凸极效应。

(5)基于人工智能估计方法由于转速可以看成是定子电压和电流的函数,加之具有逼近任意非线性函数的能力、自学习和自适应的能力以及抗干扰性较强的人工神经网络纷纷应用于电机控制方案,基于人工智能估计方法的应用日趋成熟,将为交流传动领域带来革命性的变化。

由于目前神经元网络的方法还处于理论研究阶段,离实用化还有一段距离1.3 系统模型为简化分析,做如下假设:(1)忽略定、转子铁心磁阻,不计涡流以及磁滞损耗;(2)永磁材料的电导率为零,永磁体内部的磁导率与空气相同;(3)转子上没有阻尼绕组;(4)永磁体产生的励磁磁场和三相绕组产生的电枢反应磁场在气隙中均为正弦分布;在ABC 坐标系中,同步电机转子在电、磁结构上不对称,电机方程是一组与转子瞬间位置有关的非线性时变方程,同步电机的动态特性分析十分困难。

在α-β-0坐标系中,尽管经过线性变换使电机方程得到一定简化,但电机磁链、电压方程仍然是一组非线性方程,故在分析与控制时,一般也不用该坐标系下电机数学模型。

d-q-0坐标系下矢量控制技术很好地解决了这个问题,它利用坐标变换,将电机的变系数微分方程变换成常系数方程,消除时变系数,从而简化运算和分析。

永磁同步电机等效模型见图1所示,d-q-0坐标系是随定子磁场同步旋转的坐标系,将d 轴固定在转子励磁磁通的方向上,q 轴为逆时针旋转方向超前d 轴90°电角度。

取逆时针方向为转速的正方向。

f ψu v 为每极下永磁励磁磁链空间矢量,方向与磁极磁场轴线一致,d 、q 轴随同转子以电角速度(电角频率)一起旋转,它的空间坐标以d 轴与参考坐标轴s α间的电角度r θ来确定,β为定子三相基波合成旋转磁场轴线与永磁体基波励磁磁场轴线间的空间电角度,称为转矩角。

f ψsψ 图 1 永磁同步电机d-q-0坐标系图三相永磁同步电机在dq 轴转子坐标系的定子电压方程,定子磁链方程和电磁转矩的方程分别为ψωψψωψ⎧=+-⎪⎪⎨⎪=++⎪⎩d d s d r q q q s q r d d u R i dt d u R i dt d d d f q q q L i L i ψψψ=+⎧⎪⎨=⎪⎩33()[()]22e d q q d f q d q d q T p i i p i L L i i ψψψ=-=+- 上式中括号中第一项是由定子电流与永磁体励磁磁场相互作用产生的电磁转矩,称为主电磁转矩;第二项是由转子凸极效应引起的,称为磁阻转矩。

对于转子为表面式的永磁同步电机,由于q d L L =,电磁转矩可写为32e f q T p i ψ=。

机械运动方程为m e L m d J T T B dtωω=-- 综上,可得永磁同步电机的状态方程为00s d d m d d d q f q s m q q q q m m f L R u di p L L dt i di p u R p i dt L L L d p T B dt J J J ωψωωωψ⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦上述电压方程、转矩方程、运动方程和状态方程构成了PMSM 的数学模型。

从中可以看出,永磁同步机的模型是一个多变量非线性的状态方程。

1.4 控制方法设计矢量控制的基本原理为:电磁转矩的生成可看成是两个磁场相互作用的结果,可认为是由转子磁场与电枢磁场相互作用生成的。

电磁转矩可以表达为转子磁链与定子电流矢量乘积:s f i ψ⨯==p Sin i p T S f e βψ 转子磁链矢量f ψ的幅值不变 ,通过控制定子电流矢量的幅值及与转子磁链矢量的夹角,就可以控制电磁转矩的大小,这就是永磁同步电动机以转子磁场定向的矢量控制的原理。

按转子磁场定向的矢量控制框图如图2所示。

图2 按转子磁场定向的矢量控制结构框图矢量控制所需的转子位置信号可以由高频注入法得到。

该方法是向永磁同步电机两相静止坐标系中注入高频旋转电压矢量信号,在电机三相定子绕组内产生高频旋转磁场,由于转子结构的凸极特性,在定子绕组中产生包含转子位置信息的高频电流响应。

通过对高频电流解调后,通过外差法得到转子估算值与实际值的误差信号,将误差信号输入到状态观测器,通过闭环控制,使得转子位置估算值逐渐逼近实际值;或者根据数学模型通过数学计算,直接得到转子位置值。

其原理框图如图3所示。

电流调节器PWM 电压源逆变器BPF *i αβi αβi i αβi αβ*u αβu αβω图 3 高频电压注入法原理图假设注入的高频电压信号为i u αβ,频率为i ω,幅值为i V ;电机基波电压信号为u αβ,频率为f ω,幅值为f V ,其中i f ωω>>,则注入的高频电压信号的矢量表达式为:cos()sin()i i j t ii i i t u V V e t αβωωω⎡⎤==⎢⎥-⎣⎦ 零速时,在高频电压信号注入下,由于电机转子处于零速状态,电流响应中 只有高频电流响应分量,PMSM 的数学模型为:=i di u L dt αβαβαβ高频电压信号产生的电流响应为:(/2)(2/2)cos(/2)cos(2/2)sin(/2)sin(2/2)r r i f i i f a r b r a r b r j j a b i i i I I I I I e I e ααββθπθθπθπθθπθπθθπ--+⎡⎤=⎢⎥⎢⎥⎣⎦-+-+⎡⎤=⎢⎥-+-+⎣⎦=+ 由上式可知,经转子凸极调制后的高频电压信号产生的高频电流响应包括两部分:式中前半部分为高频电流的正相序分量,它与注入的高频电压矢量旋转方向相同;后半部分为高频电流的负相序分量,它与注入的高频电压矢量旋转方向相反。

其中,只有负相序高频电流中含有转子信息,为了提取高频电流中包含的转子位置信息,需对负相序电流进行一系列的信号处理工作。

电机低速运行时,在两相静止坐标系内,电流响应中会含有矢量控制产生的基波电流分量,因此在电机低速运行时,两相静止坐标系下的定子电压方程中既含有高频注入电压信号,又含有矢量控制产生的基波电压信号:*cos()cos()sin()sin()f i f j t i j t if i f i f i t t u u u V V V e V e t t αβαβωωαβωωωω⎡⎤⎡⎤=+=+=+⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦ 定子磁链方程为u sin()sin()cos()cos()f i f i f i f i t t V V t t u ααββωψωψωωωω⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰低速时两相静止坐标系下的电流响应为022*********0sin()sin(2)cos sin cos()cos(2)()sin()sin(2)cos()cos(2)()f e f e f q f e f e f f i e i i i e i i L t L t i L V i L t L t L LL L L t L t V L t L t L L αβωθωθψθωθωωωθωωθωω+∆-⎡⎤-⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥--∆--∆-∆⎢⎥⎣⎦⎣⎦⎣⎦+∆-⎡⎤+⎢⎥--∆--∆⎣⎦式中第一项和第二项均为和基频相关的低频分量,第三项为高频分量,采用外差法,并通过低通滤波器后得到:1ˆ()sin[2()]e r eLPF I I L θθ=∆- 在低速运行时,静止坐标系注入电压包括低频电压分量和高频电压分量,但是经过外差法处理以及低通滤波后,可以提取出与位置观测误差相关的量,在位置误差较小时,与转子位置估计误差成正比,与基波电压幅值、频率、相位都无关,因此通过外差法与滤波器处理后,基波电流对于转子位置估计的影响是可以忽略的。

相关文档
最新文档