三相永磁同步电机的控制

合集下载

三相永磁同步电机(PMSM)矢量控制建模与仿真

三相永磁同步电机(PMSM)矢量控制建模与仿真

目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。

永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。

本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。

此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。

基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。

关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。

磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。

永磁同步电机控制原理

永磁同步电机控制原理

iq PI
uq
r
id
id PI
ud
iq id
u
d,q
α,β u
d,q
i
i
α,β
SV PWM
驱动模块
逆变器
α,β
ia
ib
a,b,c
d / dt
控制模块
高压直流电输入输出 电机控制器外部低压输入信号 电机控制器内部输入信号 数学计算输出信号 控制程序输出信号 IGBT信号
电机控制器
PMSM
旋转变压器
永磁同步电机控制原理
控制方式
永磁同步电机 (PMSM)
矢量控制 控制方式
直接转矩控制
矢量控制(磁场定向控制)
矢量控制实现的基本原理是测量和控制电机定子电流矢量
根据磁场定向原理分别对电机的励磁电流和转矩电流进行 控制,从而达到控制电机转速和转矩的目的
对电流的空间矢量 进行坐标变换,并 进行控制,所以叫 矢量控制
数据 观测
上位机
RS232
LED 显示
外部 存储器 仿真器
DAC
键盘控制
I/O
PDPINT
SCI
CPU
PWM
产生
SPI
存储器
模块
EMIF
ADC PLL
JTAG
WD/RTI
DSP
QEP
U DC C
故障检 测电路


三相


逆变


电路


IPM
电流 检测
位置 检测
PMSM
IPM内部集成: 6个IGBT 驱动电路 保护电路
驱动电机总成
软件流程图

永磁同步电机的控制方法

永磁同步电机的控制方法

永磁同步电机的控制方法
永磁同步电机的控制方法通常有以下几种:
1. 矢量控制:通过对永磁同步电机的电流和转子位置进行精确控制,实现精准的转速和转矩控制。

控制系统中包含了速度闭环和电流闭环控制,能够实现较高的响应速度和稳定性。

2. 直接转矩控制(DTC):在矢量控制的基础上,直接对电机转矩进行控制,通过实时监测电机状态和转矩需求,调整电机相电流和振幅,从而实现转矩控制和动态响应调节,避免了传统的速度环节和PI控制器,提高了系统的动态性能。

3. 感应机同步转矩控制(ISDT):利用感应机的电流矢量和同步电机之间的转子位置误差,实现对同步电机的转矩控制。

通过对比感应机和同步电机电磁转矩的误差,并根据误差进行调节,以实现精确转矩控制。

4. 滑模控制:利用滑模控制器,通过对滑动面进行设计,将同步电机的速度和位置误差纳入控制范围,实现速度闭环控制和稳定控制。

滑模控制方法具有较强的鲁棒性和快速响应特性,适用于对永磁同步电机的高性能控制要求。

5. 直接自适应控制(Direct Adaptive Control,DAC):基于模型引导技术,根据电机特性建立适应器模型,通过实时修正控制器参数,使得控制器能够自适应地处理电机的变化和非线性特性,以实现精准控制。

永磁同步电机控制原理

永磁同步电机控制原理

永磁同步电机控制原理在现代工业和日常生活中,电机扮演着至关重要的角色。

其中,永磁同步电机因其高效、高功率密度和良好的调速性能等优点,得到了广泛的应用。

要让永磁同步电机稳定、高效地运行,就需要对其进行精确的控制。

接下来,咱们就来详细了解一下永磁同步电机的控制原理。

永磁同步电机的结构相对简单,主要由定子和转子两部分组成。

定子上有三相绕组,通过通入三相交流电产生旋转磁场。

转子则由永磁体组成,其磁场与定子磁场相互作用,从而实现电机的转动。

要实现对永磁同步电机的控制,关键在于对定子电流的控制。

这是因为定子电流的大小、频率和相位直接决定了电机的运行状态。

在控制方法上,常见的有矢量控制和直接转矩控制两种。

矢量控制是一种较为经典且广泛应用的方法。

它的基本思想是将定子电流分解为励磁电流分量和转矩电流分量。

通过分别控制这两个分量,可以实现对电机磁通和转矩的独立控制。

就好像我们在开车时,既要控制油门来决定速度(类似于转矩),又要控制方向盘来决定方向(类似于磁通)。

具体来说,矢量控制需要先进行坐标变换。

将定子的三相电流通过克拉克变换和帕克变换,转换到旋转的dq 坐标系中。

在这个坐标系下,d 轴表示磁通方向,q 轴表示转矩方向。

然后,根据给定的转速和转矩指令,计算出 d 轴和 q 轴电流的参考值。

再通过电流调节器,控制实际的 d 轴和 q 轴电流跟随参考值。

这样就能实现对电机的精确控制。

直接转矩控制则是另一种有效的控制策略。

它直接对电机的转矩和磁通进行控制,不需要复杂的坐标变换。

通过检测电机的定子电压和电流,计算出电机的转矩和磁通,并与给定值进行比较。

然后根据比较结果,选择合适的电压矢量来控制电机的运行。

这种方法响应速度快,但控制精度相对矢量控制略低。

在实际的控制系统中,还需要考虑各种因素的影响。

例如,电机参数的变化、负载的扰动等。

为了提高系统的稳定性和鲁棒性,通常会采用一些先进的控制策略和技术。

比如,采用自适应控制算法,可以根据电机参数的变化实时调整控制参数,以保证控制性能。

永磁同步电机的控制方法

永磁同步电机的控制方法

永磁同步电机的控制方法
永磁同步电机是一种常见的电动机型号,具有高效、能耗低等优点,在不少领域广泛应用,如空调、洗衣机、汽车等。

为了使电机工作更加稳定、可靠,需要对其进行控制,本文将介绍几种常见的永磁同步电机控制方法。

一、矢量控制方法
矢量控制方法也称为矢量调速,是对永磁同步电机进行控制的一种较为复杂的方法。

通过对电机的磁场和电流进行精细控制,可以实现电机速度和转矩的精准调节。

具体实现时,需要提取电机转子位置,进行磁场定向控制。

二、直接转矩控制方法
直接转矩控制方法是对电机电流进行直接调节的方法,可以实现对电机转矩的调节。

该方法操作简单,但控制效果较为粗糙,容易造成电机振动和噪音。

三、电压向量控制方法
电压向量控制方法通过调节电机的电压和相位,控制电机的速度和转矩。

该方法比直接转矩控制方法更加精准,但控制难度较大,计算量较大。

四、滑模控制方法
滑模控制方法是近年来发展的一种新型控制方法,可以实现低成本、高效率的电机控制。

该方法借助滑模变量实现对电机转速和转矩的控制,具有控制精度高、响应速度快等优点。

五、解析控制方法
解析控制方法也是近年来发展的一种新型控制方法,该方法是通过解
析电机的动态特性,设计控制器实现对电机的精准控制。

该方法适用于大功率电机控制,但计算量较大,难度较高。

以上是几种常见的永磁同步电机控制方法,不同的方法具有不同的特点和适用范围,需要根据实际情况选择合适的控制方法。

随着科技进步和工业发展,永磁同步电机控制技术也将不断进步和发展。

三相永磁同步电动机工作原理

三相永磁同步电动机工作原理

三相永磁同步电动机工作原理三相永磁同步电动机是一种采用永磁体作为励磁源,通过三相交流电源提供电流的电机。

它具有高效率、高功率密度、高转矩和较宽的速度范围等优点,在工业和交通领域得到了广泛应用。

三相永磁同步电动机的工作原理是基于磁场的相互作用。

它由转子和定子两部分组成。

其中,转子上的永磁体产生一个固定的磁场,而定子绕组通过三相电流产生旋转磁场。

当转子磁场与定子旋转磁场同步时,电动机就能产生转矩,并将机械能转换为电能。

在三相永磁同步电动机中,磁场的产生是关键。

通过永磁体提供的磁场,可以使电动机达到更高的效率和输出功率。

与传统的感应电动机相比,永磁体的磁场更加稳定,不需要外部励磁源,因此具有更高的转矩密度和功率密度。

在电动机运行过程中,控制转子磁场与定子旋转磁场的同步是关键。

通常采用位置传感器或传感器无反馈控制系统来实现同步控制。

通过监测转子位置或磁场位置,可以调整定子电流的相位和幅值,从而实现最佳的同步运行。

三相永磁同步电动机的调速性能也非常优秀。

通过改变定子电流的相位和幅值,可以实现电机的调速。

同时,由于永磁体提供的磁场稳定,使得电机在高速运行时也能保持良好的调速性能。

除了以上的工作原理,还有一些其他的特点值得关注。

首先,由于永磁体的存在,电机的起动转矩较大,能够满足各种工况下的要求。

其次,由于永磁体的磁场稳定性,电机的转矩波动较小,运行平稳。

此外,由于永磁体不需要外部励磁源,电机结构简单,维护成本低。

三相永磁同步电动机以永磁体作为励磁源,通过控制转子磁场与定子旋转磁场的同步,实现了高效率、高功率密度和宽速度范围的工作。

它在工业和交通领域具有广泛的应用前景,是一种非常重要的电动机类型。

三相交流永磁同步电机工作原理

三相交流永磁同步电机工作原理

一、概述三相交流永磁同步电机是一种广泛应用于工业和家用领域的电动机,其具有高效率、高可靠性和良好的动态特性等优点。

了解其工作原理对于工程师和技术人员来说十分重要。

本文将介绍三相交流永磁同步电机的工作原理及其相关知识。

二、三相交流永磁同步电机的结构1. 三相交流永磁同步电机由定子和转子两部分组成。

2. 定子上布置有三组对称的绕组,相位角相互相差120度,通过三个外接电源输入相位相同但是相位差120°的交流电,产生一个与该交流电相位速度同步的旋转磁场。

3. 转子上有一组永磁体,产生一个恒定的磁场。

三、三相交流永磁同步电机的工作原理1. 三相交流电源提供了旋转磁场,使得转子上的永磁体受到作用力。

2. 转子上的永磁体受到旋转磁场的作用力,产生转矩,驱动机械装置工作。

3. 根据洛伦兹力的作用原理,当转子转动时,永磁体受到旋转磁场的作用力,产生转矩,这就是永磁同步电机产生动力的原理。

四、三相交流永磁同步电机的控制方法1. 空载时,调节供电频率和电压等参数,使得永磁同步电机的转速等于旋转磁场的转速。

2. 负载时,通过改变电源提供的电压和频率,调节永磁同步电机的转速。

五、三相交流永磁同步电机的应用领域1. 工业生产线上的传动设备,如风机、泵、压缩机等。

2. 家用电器,如洗衣机、空调、电动车等。

六、结语通过本文的介绍,我们可以了解到三相交流永磁同步电机的结构、工作原理和控制方法等方面的知识。

掌握这些知识可以帮助工程师和技术人员更好地设计、应用和维护三相交流永磁同步电机,促进其在工业和家用领域的广泛应用。

七、三相交流永磁同步电机的优势1. 高效性能:三相交流永磁同步电机的永磁体产生恒定磁场,与旋转磁场同步工作,因此具有高效率和较低的能耗。

2. 高动态响应:由于永磁同步电机的磁场是固定且稳定的,因此可以实现快速响应和高动态性能,适用于需要频繁启动和变速的场合。

3. 高可靠性:永磁同步电机不需要外部激励,减少了绕组的损耗,使得其具有较高的可靠性和长寿命。

永磁同步电动机控制策略

永磁同步电动机控制策略

永磁同步电动机控制策略综述1 引言近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。

永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。

因此,这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。

2 永磁同步电动机的数学模型当永磁同步电动机的定子通入三相交流电时, 三相电流在定子绕组的电阻上产生电压降。

由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势; 另一方面以电磁力拖动转子以同步转速旋转。

电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通, 并在定子绕组中产生感应漏电动势。

此外,转子永磁体产生的磁场也以同步转速切割定子绕组,从而产生空载电动势。

为了便于分析,在建立数学模型时,假设以下参数[2-3]:② 忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。

在分析同步电动机的数学模型时,常采用两相同步旋转(d ,q )坐标系和两相静止(α,β)坐标系。

图1 给出永磁同步电动机在(d ,q )旋转坐标系下的数学模型[4]。

(1) 定子电压方程为:d d d q f u p ri ψψω=+- (1) q q q d f u p ri ψψω=++ (2)式中:r 为定子绕组电阻;p 为微分算子,p=d/dt ;d i ,q i 为定子电流;d u ,q u 为定子电压;d ψ,q ψ分别为磁链在d ,q 轴上的分量;f ω为转子角速度(ω=f ω p n );p n 为电动机极对数。

(2)定子磁链方程为:d d d f L i ψψ=+ (3)q q q L i ψ= (4)式中:f ψ为转子磁链。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本电压矢量
• 根据公式(1)可得到该状态下相绕组的电压分别为:
• 对三相绕组上的电压进行矢量合成:
图7 绕组电压关系
基本电压矢量
图8 基本电压矢量
SVPWM基本原理
• 空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)
• 当三相永磁同步电机以三相对称正弦电压供电时 ,会在气隙中产生以相同角速度旋转的磁链,旋 转轨迹为圆形,称为基准磁链圆。 • SVPWM将电机和逆变器看成一个整体,通过控制 逆变器开关的通断产生不同的基本电压矢量,进 而合成指令电压矢量,电压矢量产生磁链,用实 际产生的磁链去逼近理想的基准磁链圆。
iq(A)-4 -8 流极限圆-12 -16 -20 -22-18 -14-10 -6 -2 2 6 10 14 18 22 id(A)
定子电流最优控制 ——最大功率输出控制
• 为扩展PMSM 的速度范围可以采取弱磁控制,在 弱磁运行区,电动机通常做恒功率输出,也可以 要求其输出功率最大。
• 对功率表达式(略)求极大值,并考虑电压约束 ,可推导出在电压极限下,满足这一最优控制的 定子电流矢量。
100
电压
50 0 0 0.2 0.4 时间 Vdc
电压
0.6
0.8
1
0
0
0.2
0.4 时间
0.6
0.8
1
图3 正弦波形电压等效
基本电压矢量
图4 逆变器的简化电路
图5 某相逆变桥上下桥臂开关状态信号
基本电压矢量
图6 开关状态为(1,0,0)时的等效电路图
(三相对称绕组的中性点为N,流过中性点的电流为0)
1.静止ABC 轴系到静止DQ 轴系的坐标变换
坐标变换和矢量变换
1.静止ABC 轴系到静止DQ 轴系的坐标变换
坐标变换和矢量变换
1.静止ABC 轴系到静止DQ 轴系的坐标变换
坐标变换和矢量变换
2.静止DQ 轴系到任意同步旋转MT 轴系的变换
坐标变换和矢量变换
2.静止DQ 轴系到任意同步旋转MT 轴系的变换
定子电流最优控制 ——最大功率输出控制
a) 面装式 图3-28 弱磁控制与定子电流最优控制
b) 内装式
定子电流最优控制 ——最大功率输出控制
弱磁控制
弱磁控制
弱磁控制
弱磁控制
三相永磁同步电机的控制
• 基础知识 • 矢量控制
• 弱磁 • SVPWM
PWM控制理论基础
• 面积等效原理是PWM控制技术的理论基础。
• 弱磁 • SVPWM
转子结构及物理模型
转子结构及物理模型
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机矢量方程
面装式三相永磁同步电机 电磁转矩矢量方程
坐标变换和矢量变换
SVPWM基本原理
• 电压磁链之间的关系为:
• 如果忽略定子绕组的电阻,磁链和电压之间的关系可以近 似表示为: • 当磁链矢量在空间旋转一周时,电压矢量也连续地按磁链 圆的切线方向运动2弧度,其轨迹与磁链圆重合。这样, 电动机旋转磁场的轨迹问题就可转化为电压空间矢量的运 动轨迹问题。 • 磁链矢量可以近似表示为电压矢量的积分,在一段足够短 的时间内,控制逆变器开关,得到不同基本电压矢量的组 合,从效果上看,可以得到旋转的磁链矢量和电流矢量。
机电能量转换
机电能量转换
机电能量转换
三相同步电机电磁转矩
三相同步电机电磁转矩
(1-75) (1-76)
空间矢量
定子磁动势矢量
定子磁动势矢量
定子磁动势矢量
定子磁动势矢量
定子电流矢量
定子电流矢量
定子电流矢量
定子电压矢量
定子磁链矢量
三相永磁同步电机的控制
• 基础知识
• 矢量控制
(a) (b) (c) (d)
δ(t)
f(t) f(t) f(t) f(t)
0
t
0
t
0
t
0
t
图1 冲量相同而形状不同的窄脉冲信号
120 a b c d
90
输出
60
30
0
0
0.012
0.024 时间
0.036
0.048
0.06
图2 不同脉冲信号的响应曲线
PWM控制理论基础
• 根据面积等效原理,可以用一系列的脉冲来代替三相永磁 同步电机所需要的正弦电压。可以证明,图3中两种波形 作用在惯性环节上的效果基本相同,可以进行等效代替。
凸极式三相永磁同步电机 定子磁链和电压方程
将(3-29)、(3-30)代入为
凸极式三相永磁同步电机 定子磁链和电压方程
凸极式三相永磁同步电机 电磁转矩方程
三相永磁同步电机的控制
• 基础知识 • 矢量控制
• 弱磁
• SVPWM
电压极限椭圆和电流极限椭圆
电压极限椭圆和电流极限椭圆
电压极限椭圆和电流极限椭圆
定子电流最优控制
定子电流最优控制 ——最大转矩/电流比控制
• 距离原点O越远的等转矩曲线对应的转矩值越大;
• 在每条等转矩曲线上总存在距离原点最近的点,将这些点 连成线记为曲线AO。
• 由于工作点到原点的距离表示电机在该点工作时定子电流 的幅值,因此输出相同转矩条件下,电机工作在曲线AO上 20 Te=12 需要的定子电流幅值最小。 16 A Te=6 12 • 电机在恒转矩区工作时,若控制 8 电机工作在曲线AO上,则称为最大 4 0 转矩电流比控制。 O
坐标变换和矢量变换
2.静止DQ 轴系到任意同步旋转MT 轴系的变换
面装式三相永磁同步电机——基于转子磁场的转矩控制
面装式三相永磁同步电机——矢量控制系统
面装式三相永磁同步电机——矢量控制系统
面装式三相永磁同步电机——矢量控制系统
凸极式三相永磁同步电机 定子磁链和电压方程
凸极式三相永磁同步电机 定子磁链和电压方程
SVPWM基本原理
SVPWM基本原理
三相永磁同步电机的控制
王伟华
三相永磁同步电机的控制
• 基础知识
• 矢量控制 • 弱磁 • SVPWM
磁动势
磁路欧姆定律
励磁磁链与励磁电感
漏磁链、漏电感、总磁链
自感
电压方程
磁能与磁共能
磁能与磁共能
互感
全磁链
磁能
磁能
机电能量转换
机电能量转换
机电能量转换
机电能量转换
机电能量转换
相关文档
最新文档