空间几何体的体积及球的面积和体积ppt

合集下载

高二数学必修2课件-空间几何体的表面积和体积

高二数学必修2课件-空间几何体的表面积和体积

步骤三
如果计算正确,则可以庆祝问题 的解决,并享受数学带来的成就 感。
其他的空间几何体常识
名称
圆锥体 圆柱体 球 正方体
特点
底面为圆形,侧面为三角形 底面为圆形,侧面为矩形 表面积为4πr²,体积为(4πr³)/3 6个面组成,每个面积为a²
小结
知识点
• 空间几何体的表面积 • 空间几何体的体积 • 解题方法和步骤
高二数学必修2课件-空间 几何体的表面积和体积 ppt
本课程将带领大家深入理解空间几何体的表面积和体积,掌握重要的公式和 概念,并提供多个实例进行演示。
为什么要学习空间几何体的表面积和 体积?
1 实际应用广泛
几何体是我们日常生活中常见的物体,如箱子、瓶子、汽车等,熟练掌握空间几何体的 表面积和体积可以应用于各种实际计算中。
技能
• 应用公式解决实际问题 • 掌握计算技巧和策略 • 提高自我学习和思考能力
效果
• 成为数学大师 • 提高应对数学竞赛能力 • 在各种实际计算和操作
中表现更加出色
矩形的体积
面积×高:bh
三角形的体积
底面积之和×高的一半:(ah)/2
立体几何体的体积
1
圆柱体的体积
2
பைடு நூலகம்
πr²h
3
球的体积
(4πr³)/3
圆锥体的体积
(πr²h)/3
解题示例:如何计算球的体积?
步骤一
根据题目提供的半径长度,计算 球的表面积公式:4πr³/3
步骤二
把计算结果与题目所需体积相比 较,如相等则问题解决;如不相 等需检查计算过程是否正确。
2 提高数学水平
对于数学专业的学生,掌握空间几何体的表面积和体积是必不可少的,是数学基础中不 可或缺的一部分。

高一数学课件:球的体积和表面积

高一数学课件:球的体积和表面积

□ 1.球的体积
如果球的半径为 R,那么它的体积 V=
1 43πR3 .
2.球的表面积
□ 如果球的半径为 R,那么它的表面积 S= 2 4πR2 .
4
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
1.判一判(正确的打“√”,错误的打“×”) (1)决定球的大小的因素是球的半径.( √ ) (2)球面被经过球心的平面截得的圆的半径等于球的半 径.( √ ) (3)球的体积 V 与球的表面积 S 的关系为 V=R3S.( √ )
S=12×4π×12+6×22-π×12=24+π. 该几何体的体积为 V=23+12×43π×13=8+23π.
15
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
拓展提升
(1)由三视图求球与其他几何体的简单组合体的表面积 和体积,关键要弄清组合体的结构特征和三视图中数据的含 义.
6
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
3.(教材改编,P27,例 4)若球的过球心的圆面圆周长是 c,
则这个球的表面积是( )
c2 A.4π
c2 B.2π
c2 C. π
D.2πc2
7
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
课堂互动探究
13
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
探究 2 球的三视图 例 2 某个几何体的三视图如图所示,求该几何体的表 面积和体积.

球的体积和表面积 课件

球的体积和表面积   课件

【解析】 ①当截面在球心的同侧时, 如图所示为球的轴截面,由球的截面性质 知,AO1∥BO2,且 O1、O2 分别为两截面圆的圆 心,则 OO1⊥AO1, OO2⊥BO2,设球的半径为 R. ∵π· O2B2=49π,∴O2B=7. ∵π·O1A2=400π,∴O1A=20. 设 OO1=x,则 OO2=x+9.
6 12 a.
【答案】
6 12 a
探究 4 (1)正多面体存在内切球且正多面体的中心为内切球 的球心.
(2)求多面体内切球半径,往往可用“等体积法”. V 多=S 表·R 内切·13.
(3)正四面体内切球半径是高的14,外接球半径是高的34. (4)并非所有多面体都有内切球(或外接球).
思考题 4 半径为 R 的球的外切圆柱(球与圆柱的侧面、两
【答案】 27π
(2)求棱长为 1 的正四面体外接球的体积.
【解析】 设 SO1 是正四面体 S-ABC 的高,外接球的球心 O 在 SO1 上,设外接球半径为 R,AO1=r,
则在△ABC 中,用解直角三角形知识得 r= 33,
从而 SO1= SA2-AO12=
1-13=
2 3.
在 Rt△AOO1 中,由勾股定理,得
【答案】 C
题型四 几何体的内切球 例 4 正四面体的棱长为 a,则其内切球的半径为________.
【解析】 如图正四面体 A-BCD 的中心为 O,即内切球球
心,内切球半径 R 即为 O 到正四面体各面的距离.
∵AB=a,
∴正四面体的高
h=
6 3 a.
又 VA-BCD=4VO-BCD,
∴R=14h=
在 Rt△OO1A 中,R2=x2+202, 在 Rt△OO2B 中,R2=(x+9)2+72, ∴x2+202=72+(x+9)2, 解得 x=15,∴R2=x2+202=252. ∴R=25,∴V 球=43πR3=62 3500π(cm3). ② 当 截 面 在 球 心 异 侧 时 , OO1 + OO2 = 9 = R2-72 + R2-202,无解.

新教材高中数学第6章立体几何初步6简单几何体的再认识 球的表面积和体积课件北师大版必修第二册

新教材高中数学第6章立体几何初步6简单几何体的再认识 球的表面积和体积课件北师大版必修第二册

关键能力•攻重难
题型探究
题型一
球的表面积
例 1 一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,试求球的表面积.
[分析] 求球的表面积或体积只需要求出球的半径,要求球的半径只 需解球的半径、截面圆半径和球心到截面的距离组成的直角三角形.
[解析] (1)当球心在两个截面同侧时,如右图,设OD=x,由题意知 π·CA2=49π,
(B)
4.把3个半径为R的铁球熔成一个底面半径为R的圆柱,则圆柱的高为
A.R
B.2R
(D)
C.3R
D.4R
[解析] 设圆柱的高为h,则πR2h=3·43πR3,∴h=4R.
4π 5.球的表面积为4πcm2,则其体积为______3_cm3.
[解析] 设球的半径为r,则4πr2=4π,∴r=1(cm). ∴V=43πr3=43π(cm3).
知识点2 球的表面积和体积公式 S球面=__4_π_R__2 __,V球=_____43_π_R_3.其中R为球的半径.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)球心和球的小圆圆心的连线和球的小圆垂直.
(2)球的表面积S和体积V的大小是关于半径R的函数.
2.球的体积是323π,则此球的表面积是
知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为 4
3 ,底面周长
为3,那么这个球的体积为___3_π__.
[分析] 要求球的体积,关键是求出其半径R,而正六棱柱外接球的 直径恰好是正六棱柱的体对角线长.
[解析] ∵底面是正六边形, ∴边长为12.∴AD=1. AD1为球直径,其长度为 3+1=2,∴R=1. ∴V=43πR3=43π.

棱柱棱锥棱台和球的表面积和体积精选ppt

棱柱棱锥棱台和球的表面积和体积精选ppt
O`
注意:表面积=全面积= 侧面积+底面积.
O
.
圆锥的表面积
圆锥的侧面展开图是扇形
2r
l rO
S圆锥侧rl
S 圆锥 表 r2 面 . r 积 lr(r l)
例5:
已知圆锥的底面半径为2cm,母线长为3cm。
它的侧面展开图的形状为__扇__形____。该图形
的弧长为_4_π___cm,半径为___3___cm,所以圆 锥的侧面积为_6_π__cm2。表面积为_1_0_π__cm2,
S2r(rl)
S侧
1 2
2r
l
rl
Sr(rl)
S侧
1 2
(2
r
'
2
r)
l
S(r'2r2r'lr)l
(r ' r) l
.
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有什么关 系?
rO
r 'O’
r′=r
l 上底扩大
O
rO
l r′=0
上底缩小
l rO
S柱2r(rl) S 台 (r2r2rlr)lS锥r(rl)
(5)扇形面积公式:___S___12_rl__。
(6)梯形面积公式: __S__12_(_a__b)_h。
.
把长方体展成平 面图形,利用平 面图形求面积的 方法,求长方体
的表面积
正方体、长方体的表面积.就是各个面的面积之和。
二、棱柱、棱台、棱锥的表面积
用空间几何体的展开图来求它的表面积
几何体的侧面展开图
D A
D A11
C B
O C1
B1
D A
D A11

球的体积和表面积57张.ppt

球的体积和表面积57张.ppt

(2)设木星和地球的半径分别为r、R. 依题意,有4πr2=120×4πR2,解得r=2 30R. 所以VV木地=4343ππRr33=43π243πR303 R3=240 30. 故木星的体积约是地球体积是240 30倍.
[点评] 求解球的体积的大小问题,实际是转化为求类问题的实质就是根据几何体的相关数据求球 的直径或半径,关键是根据“切点”和“接点”,作出轴截 面图,把空间问题转化为平面问题来计算.
(3)此类问题的具体解题流程:
[例3] (2010·全国高考)设长方体的长、宽、高分别为
2a、a、a,其顶点都在一个球面上,则该球的表面积为( )
A.3πa2
第一章
空间几何体
第一章
1.3 空间几何体的表面积与体积
第一章
1.3.2 球的体积和表面积
课前自主预习 思路方法技巧 探索延拓创新
课堂基础巩固 课后强化作业
课前自主预习
温故知新 在初中,我们已经学习了圆的概念和周长、面积公式, 即圆是“在平面内到定点的距离等于定长的点的集合”,周 长c=2πr ,面积S= πr2 ,其中r是圆的半径,而球面是“在空 间中到定点的距离等于定长的点的集合”.以半圆的直径所 在直线为旋转轴,半圆旋转一周,形成的旋转体叫做 球 ,半 圆的圆心叫 球心 ,半圆的 半径 叫球的半径.
43πr2 43πR3

8 27
,所
以Rr =23,则这两个球的表面积之比为44ππRr22=(Rr )2=49.
6.将一钢球放入底面半径为3cm的圆柱形玻璃容器中, 水面升高4cm,则钢球的半径是________.
[答案] 3cm
[解析] 圆柱形玻璃容器中水面升高4cm,则知钢球的体 积为V=π·32·4=36π,即有43πR3=36π,∴R=3.

高考数学空间几何体及其表面积、体积ppt课件

高考数学空间几何体及其表面积、体积ppt课件

21
2.(多选)下列命题,正确的有( )
A.棱柱的侧棱都相等,侧面都是全等的平行四边形
√B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直 √C.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直
四棱柱
√D.存在每个面都是直角三角形的四面体
上一页
返回导航
下一页
第八章 立体几何与空间向量
22
解析:A 不正确,根据棱柱的定义,棱柱的各个侧面都是平行 四边形,但不一定全等;B 正确,若三棱锥的三条侧棱两两垂 直,则三个侧面构成的三个平面的二面角都是直二面角;C 正 确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;D 正确, 如图,正方体 ABCD-A1B1C1D1 中的三棱锥 C1­ABC,四个面都是直角三角形.
上一页
返回导航
下一页
第八章 立体几何与空间向量
32
平面图形与其直观图的关系
(1)在斜二测画法中,要确定关键点及关键线段.平行于 x 轴的线段平行性不
变,长度不变;平行于 y 轴的线段平行性不变,长度减半.
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关
系:S
= 直观图
2 4S
原图形.
第八章 立体几何与空间向量
11
3.正方体与球的切、接常用结论 正方体的棱长为 a,球的半径为 R, (1)若球为正方体的外接球,则 2R= 3a; (2)若球为正方体的内切球,则 2R=a; (3)若球与正方体的各棱相切,则 2R= 2a.
上一页
返回导航
下一页
第八章 立体几何与空间向量
12
常见误区 1.求组合体的表面积时,组合体的衔接部分的面积问题易出错. 2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析 图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的 截面图.

北师大版必修二 球的表面积和体积PPT课件

北师大版必修二   球的表面积和体积PPT课件

高为2R.
V球
4R3
3
V圆柱 R 2 2R 2 R 3
RO
2
V球
V 圆柱 3
(2)
S球4R2
S 圆 柱 2 R 侧 2 R 4 R 2
S球S圆柱侧
最新课件
13
讨论
长方体的一个顶点上三条棱长分别为3、4、5,若 它的八个顶点都在同一球面上,则这个球的表面积 是——
分析:长方体内接于球,则由球和长 方体都是中心对称图形可知,它们中 心重合,则长方体对角线与球的直径 相等。
2、在球心同侧有相距9cm的两个平行截面,它们的面积分别
为49 c m 2 和400 c m 2,求球的表面积。
答案:2500 c m 2
最新课件
26
3、若球的表面积变为原来的2倍,则半径变为原来的 __2_ 倍.
4、若球半径变为原来的2倍,则表面积变为原来 的__4_倍. 5、若两球表面积之比为1:2,则其体积之比是_1_:_2__2_
4 .长方体的共顶点的三个 侧面面积分别为 3,
5, 15,求它的外接球表面积 .
长方体对角线
最新课件
l 2 a2 b2 c229
半径为3的球的体积是(
A.9π
B.81π
) C.27π
D.36π
[答案] D
[解析] V=43π×33=36π.
最新课件
30
半径为 2的球的表面积等于________. [答案] 8π [解析] S=4π×( 2)2=8π.
3
32 6
最新课件
7
例题讲解
(变式1)把钢球(直径是5cm)放入一个正方体 的有盖纸盒中,至少要用多少纸?
用料最省时,球与正方体有什么位置关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2R)2 a2 ( 2a)2,得:R 3 a 2
S 4R2 3a2
变题1.如果球O和这个正方体的六个面都相切,则有S=——a。2
变题2.如果球O和这个正方体的各条棱都相切,则有S=2— —a2 。
关键:找正方体的棱长a与球半径R之间的关系
例4、有三个球,一球切于正方体的各面,一 球切于正方体的各侧棱,一球过正方体的 各顶点,求这三个球的体积之比. 1 : 2 2 : 3 3
V V1 V2 V3 ... Vn
第二步:求近似和
Si
hi
O
O
Vi
Vi
1 3
Si
hi
由第一步得: V V1 V2 V3 ... Vn
V
1 3
S1h1
1 3
S2h2
1 3
S3h3
...
1 3
Sn
hn
第三步:转化为球的表面积
Si
hi
如果网格分的越细,则: “小锥体”就越接近小棱锥。 hi 的值就趋向于球的半径R
V台体=
1 h(s + 3
ss' + s')
x
s/
s/
h
s
s
推论:如果圆台的上,下底面半径是r1.r2,高是
h,那么它的体积是:
1
V圆台= 3
πh
(r12
r1r2
r22 )
五.柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
S S V 1 (S
3
SS S)h
S 0
P
Q
祖暅原理
二:柱体的体积
定理1: 柱体(棱柱、圆柱)的体积等于它
的底面积 s 和高 h 的积。
V柱体= sh
推论 : 底面半径为r,高为h圆柱的体积是
V圆柱= r2h
三:锥体体积
例2 如图:三棱柱AD1C1-BDC,底面积为S,高为h.
问(1)从A点出发能将棱柱分割成几个三棱锥?
D1
C1
D1
3.几何体的表面积应注意重合部分的处理.
一、体积的概念与公理:
几何体占有空间部分的大小叫做它的体积
公理1、长方体的体积等于它的长、宽、高的积 。
V长方体= abc 推论1 、长方体的体积等于它的底面积s和高h的积

V长方体= sh
推论2 、正方体的体积等于它的棱长a 的立方。
V正方体= a3
公理2、夹在两个平行平面间的两个几何体,被平行 于这两个平面的任意平面所截,如果截得的两个截 面的面积总相等,那么这两个几何体的体积相等。
Vi
Si
R
O Vi
V
1 3
Vi
Si
R
1 3
S2
1
3 R
Si R
1 3
S3
R...1 3来自SnR1 3
R(Si
S2
S3
...
Sn
)
1 3
RS

球的体积: V 4 R3 ②
由①② 得:
3
S 4πR2
设球的半径为R,则球的体积公式为 V球= 4∕3π.R3
例1.(2009年高考上海卷)若球O1、O2表 面积之比=4,则它们的半径之比=______.
几何体的表面积问题小结
1.高考中对几何体的表面积的考查一般在客观题中, 借以考查空间想象能力和运算能力,只要正确把握几何体 的结构,准确应用面积公式,就可以顺利解决.
2.多面体的表面积是各个面的面积之和.圆柱、 圆锥、圆台的侧面是曲面,计算侧面积时需要将这个 曲面展为平面图形计算,而表面积是侧面积与底面圆 的面积之和.
R
R O
R
R O
1 2
V球
=
πR2 R - 1 πR2 R 3
= 2 πR3 3
V球
=
4 3
πR3
R
R O
R
R O
知识点三、球的表面积和体积

第一步:分割
球面被分割成n个网格, 表面积分别为:
S1,S2,S3...Sn
O
则球的表面积:
S S1 S2 S3 ... Sn
Si
O
Vi
设“小锥体”的体积为:Vi 则球的体积为:
D1
C1
A
A A
D
CD
B
答:可分成棱锥A-D1DC, 棱锥A-D1C1C, 棱锥A-BCD.
A C
C
D
C
B
定理︰如果一个锥体(棱锥、圆锥)的底面
积是S,高是h,那么它的体积是:
推论:V如果锥圆体=锥的13S底面h半径是r,高是h,
那么它的体积是:
V圆锥=
1 3
πr2h
h
h
S
S
S
四.台体的体积
上下底面积分别是s/,s,高是h,则
解析:S 球=4πR2,故RR12=
SS12= 4=2.
答案:2
例2:
(1)若球的表面积变为原来的2倍,则半径变为原来的—2倍。
(2)若球半径变为原来的2倍,则表面积变为原来的—4倍。
(3)若两球表面积之比为1:2,则其体积之比是—1—: 2—2。
(4)若两球体积之比是1:2,则其表面积之比是—1—: 3—4。
V 1 Sh 3
S为底面面积, S分别为上、下底面 h为锥体高 面积,h 为台体高
S为底面面积, h为柱体高
题型二 组合体的体积
例1 从一个正方体中,如图那样截去4个三棱 锥后,得到一个正三棱锥A-BCD,求它的体积 是正方体体积的几分之几?
探究 球的体积:
一个半径和高都等于R的圆柱,挖去一个 以上底面为底面,下底面圆心为顶点的圆锥 后,所得的几何体的体积与一个半径为R的 半球的体积相等。
例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各 个顶点都在球O的球面上,问球O的表面积。
分析:正方体内接于球,则由球和正方体都是中心对称图形可
知,它们中心重合,则正方体对角线与球的直径相等。
D A
D A11
C B
O C1
B1
D A
D A11
C B
O C1
B1
略解:
RtB1D1D中: B1D 2R,B1D 2a
作轴截面
例5已知过球面上三点A、B、C的截面到球心O的距离 等于球半径的一半,且AB=BC=CA=2cm,求球的体 积,表面积.
解:如图,设球O半径为R, 截面⊙O′的半径为r,
O
OO R , ABC是正三角形,
2
C
A
O
OA 2 3 AB 2 3 r
32
3
B
几何体的体积小结
1.求空间几何体的体积除利用公式法外,还 常用分割法、补体法、转化法等,它们是解决一 些不规则几何体体积计算问题的常用方法.
解 如图所示,
过C作CO1⊥AB于O1,在半圆中可得
∠BCA=90°,∠BAC=30°,AB=2R,
∴AC= 3R ,BC=R,CO1
2.计算柱体、锥体、台体的体积关键是根据 条件找出相应的底面面积和高,要充分利用多面体 的截面及旋转体的轴截面,将空间问题转化为平面 问题.
【例2】
如图所示,半径为R的半圆内的 阴影部分以直径AB所在直线为轴,旋 转一周得到一几何体,求该几何体的 表面积(其中∠BAC=30°)及其体积.
思维启迪
先分析阴影部分旋转后形成几何体的形状,再 求表面积.
相关文档
最新文档