空间几何体的表面积和体积(一轮复习)

合集下载

届数学一轮复习第八章立体几何与空间向量第2节空间几何体的表面积和体积教学案含解析

届数学一轮复习第八章立体几何与空间向量第2节空间几何体的表面积和体积教学案含解析

第2节空间几何体的表面积和体积考试要求了解球、棱柱、棱锥、台的表面积和体积的计算公式。

知识梳理1。

多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和。

2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+V=S底h(棱柱和圆柱)2S底锥体(棱锥和圆锥)S表面积=S侧+S底V=错误!S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+错误!)h球S=4πR2V=错误!πR3[常用结论与微点提醒]1。

正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=错误!a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=错误!a。

2。

长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。

3。

正四面体的外接球与内切球的半径之比为3∶1。

诊断自测1。

判断下列结论正误(在括号内打“√”或“×")(1)锥体的体积等于底面面积与高之积。

()(2)两个球的体积之比等于它们的半径比的平方。

()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=错误!a。

()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2。

(新教材必修第二册P120T5改编)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A。

33 B.错误! C.错误!D。

错误!解析由S=4πR2=4π,得R=1,故2×1=3a,得a=错误!。

高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积

高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积

第二节空间几何体的表面积与体积表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).知识点一空间几何体的表面积1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表(侧)面积名称侧面积表面积圆柱(底面半径r,母线长l)2πrl 2πr(l+r)圆锥(底面半径r,母线长l)πrl πr(l+r) 圆台(上、下底面半径r1,r2,母线长l)π(r1+r2)l π(r1+r2)l+π(r21+r22)球(半径为R)4πR2易误提醒(1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.(2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.(3)组合体的表面积应注意重合部分的处理.[自测练习]1.正六棱柱的高为6,底面边长为4,则它的表面积为()A.48(3+3)B.48(3+23)C.24(6+2) D.144解析:正六棱柱的侧面积S侧=6×6×4=144,底面面积S底=2×6×34×42=483,S表=144+483=48(3+3).答案:A2.如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .8+4 2B .10πC .11πD .12π解析:由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和,即S =4π+2π+2π×3=12π,故选D.答案:D知识点二 空间几何体的体积空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh . (2)V 锥体=13Sh .(3)V 台体=13h (S +SS ′+S ′).(4)V 球=43πR 3(球半径是R ).易误提醒 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.[自测练习]3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3D .4 cm 3解析:由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥,如图所示.由四棱锥的体积公式知所求几何体的体积V =83cm 3.答案:B4.某一容器的三视图如图所示,则该几何体的体积为________.解析:依题意,题中的几何体是从一个棱长为2的正方体中挖去一个圆锥,其中该圆锥的底面半径是1、高是2,因此题中的几何体的体积等于23-13π×12×2=8-2π3.答案:8-2π3考点一 空间几何体的表面积|1.(2015·高考福建卷)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S 表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+22,故选B.答案:B2.(2015·高考课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2.答案:B3.(2016·昆明模拟)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的表面积与球O 的表面积的比值为________.解析:设等边三角形的边长为2a ,则S 圆锥表=12·2πa ·2a +πa 2=3πa 2.又R 2=a 2+(3a -R )2(R 为球O 的半径),所以R =233a ,故S 球表=4π·⎝⎛⎭⎫233a 2=16π3a 2,故其表面积比为916. 答案:916(1)由三视图求相关几何体的表面积:,给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体(常规几何体、组合体或旋转体)的特征求表面积:①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.考点二 空间几何体的体积|(1)(2015·高考山东卷)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π(2)(2015·辽宁五校联考)某几何体的三视图如图所示,则该几何体的体积是________.[解析] (1)由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=423π.(2)由三视图知,该几何体为长方体去掉一个三棱锥,其体积V =2×2×3-13×⎝⎛⎭⎫12×2×1×3=11.[答案] (1)B (2)11空间几何体体积问题的三种类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.(2015·绵阳模拟)一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .8+π3B .8+2π3C .8+8π3D .8+16π3解析:依题意得,该机器零件的形状是在一个正方体的上表面放置了一个14的球体,其中正方体的棱长为2,相应的球半径是1,因此其体积等于23+14×43π×13=8+π3,选A.答案:A考点三 与球有关的切、接问题|与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:1.四面体的外接球. 2.四棱锥的外接球. 3.三棱柱的外接球. 4.圆锥的内切球与外接球. 5.四面体的内切球. 探究一 四面体的外接球问题1.(2016·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π解析:如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R (R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.答案:A探究二 四棱锥的外接球问题2.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面P AD ⊥底面ABCD ,△P AD 为正三角形,AB =2AD =4,则球O 的表面积为( )A.323π B .32π C .64πD.643π 解析:依题意,AB ⊥平面P AD 且△P AD 是正三角形,过P 点作AB 的平行线,交球面于点E ,连接BE ,CE ,则可得到正三棱柱APD -BEC .因为△P AD 是正三角形,且AD =2,所以△P AD 的外接圆半径是23,球O 的半径R =22+⎝⎛⎭⎫232=43,球O 的表面积S =4πR 2=64π3,故选D.答案:D探究三 三棱柱的外接球问题3.(2016·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3探究四 圆锥的内切球与外接球问题4.(2016·嘉兴模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π探究五 四面体的内切球问题5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π求解与球有关的切、接问题的关键点解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.21.补形法在空间几何体的体积、面积中的应用【典例】 已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[思维点拨] 可考虑将几何体补完整,再分析求解.[解析] 法一:由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.法二:由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用大小与形状完全相同的补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.[答案] B[方法点评] 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.[跟踪练习] (2015·沈阳模拟)已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π解析:依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π,选C.答案:CA 组 考点能力演练1.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233 D.643解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.答案:D2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .43π D .23π解析:由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.答案:A3.(2016·唐山模拟)某几何体的三视图如图所示,则该几何体的体积为( ) A .8π+16 B .8π-16 C .8π+8 D .16π-8解析:由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.答案:B4.某几何体的三视图如图所示,则该几何体的体积为( )A.2π B .22π C.π3 D.2π3解析:依题意得,该几何体是由两个相同的圆锥将其底面拼接在一起所形成的组合体,其中该圆锥的底面半径与高均为1,因此题中的几何体的体积等于2×13π×12×1=2π3,选D.答案:D5.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( )A.323π B .12π C .16π D .32π 解析:设球心为O ,球心在平面BCD 的投影为O 1,则OO 1=AB2=1,因为△BCD 为等边三角形,故DO 1=23×323=3,因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,球O 的表面积S =4πR 2=16π,故选C.答案:C6.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:437.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π8.(2016·南昌一模)已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝⎛⎭⎫BC 22+⎝⎛⎭⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π9.已知某锥体的三视图(单位:cm)如图所示,求该锥体的体积.解:由三视图知,原几何体是一个五面体,由一个三棱柱截去一个四棱锥得到,其体积为V =V 三棱柱-V 四棱锥=12×2×2×2-13×12×(2+1)×2×2=2.10.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2,S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2, 所以S 表面=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a1+π2.B 组 高考题型专练1.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:由所给三视图可知,该几何体是圆柱从底面圆直径处垂直切了一半,故该几何体的表面积为12×2π×1×2+2×12×π×12+2×2=3π+4,故选D.答案:D2.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:三棱锥V O -ABC =V C -OAB=13S △OAB×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O -ABC =V C -OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π. 答案:C3.(2015·高考课标卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.15解析:如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.答案:D4.(2015·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:该几何体的体积V =23+13×22×2=323(cm 3).答案:C5.(2015·高考四川卷)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离.根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:124。

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确.
索引
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径
为( B )
A.1 cm
B.2 cm
C.3 cm
3 D.2 cm
解析 设圆锥的底面圆的半径为r,母线长为l, 因为侧面展开图是一个半圆, 所以πl=2πr,即l=2r, 所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
得的截面是面积为8的正方形,则该圆柱的表面积为( B )
A.12 2π
B.12π
C.8 2π
D.10π
解析 由题意知,圆柱的轴截面是一个面积为 8 的正方形,则圆柱的高与底面 直径均为 2 2. 设圆柱的底面半径为 r,则 2r=2 2,得 r= 2. 所以圆柱的表面积 S 圆柱=2πr2+2πrh=2π( 2)2+2π× 2×2 2=4π+8π=12π.
索引
训练1 (1)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别
为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.
解析 如图,由正方体棱长为2及M,N分别为BB1,AB 的中点, 得 S△A1MN=2×2-2×12×2×1-21×1×1=32, 又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2, ∴VA1-D1MN=VD1-A1MN=13·S△A1MN·D1A1=31×32×2=1.
角度1 简单几何体的体积
例1 (1)祖暅是我国南北朝时代的伟大科学家,他提出 的“幂势既同,则积不容异”称为祖暅原理,利用
该原理可以得到柱体的体积公式V柱体=Sh,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图

2023年新高考数学大一轮复习专题28 空间几何体的结构特征、表面积与体积(原卷版)

2023年新高考数学大一轮复习专题28 空间几何体的结构特征、表面积与体积(原卷版)

专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题 【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC ==例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是( )(多选)A .①是棱台B .②是圆台C .③是棱锥D .④是棱柱例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(60C )是一种非金属单质,它是由60个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B C D .23例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12π C .16π D .18π例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )AB .C .D .例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cmB .219cmC .()29cmD .()29cm例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( ) A .13B .23C .1D .43例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2 ,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线ABAB和圆锥的轴的距离为1,则该圆锥的侧面积为___________.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2,则该几何体的体积为___________.【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2CD .【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB .该圆台轴截面面积为2C 3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D例40.(2022·云南·昆明一中高三阶段练习(文))一竖立在水平地面上的圆锥形物体,一只蚂蚁从圆锥底面圆周上一点P 出发,绕圆锥表面爬行一周后回到P 点,已知圆锥底面半径为1,母线长为3,则蚂蚁爬行的最短路径长为( )A .3B .C .πD .2π【方法技巧与总结】此类最大路径问题:大胆展开,把问题变为平面两点间线段最短问题. 【过关测试】一、单选题1.(2022·河北·高三阶段练习)已知圆锥的高为1,则过此圆锥顶点的截面面积的最大值为( )A .2B .52C D .32.(2022·全国·模拟预测(文))若过圆锥的轴SO 的截面为边长为4的等边三角形,正方体1111ABCD A B C D -的顶点A ,B ,C ,D 在圆锥底面上,1A ,1B ,1C ,1D 在圆锥侧面上,则该正方体的棱长为( )A .B .C .(2D .(23.(2022·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且面积为4,则圆锥的体积为( ) A .43 B .43πC .83D .83π4.(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为( )AB .1cmCD 5.(2022·全国·高三专题练习)已知一个直三棱柱的高为2,如图,其底面ABC 水平放置的直观图(斜二测画法)为A B C ''',其中1O A O B O C ''''''===,则此三棱柱的表面积为( )A.4+B .8+C .8+D .8+6.(2022·湖北·天门市教育科学研究院模拟预测)已知某圆锥的侧面积为的半径为( ) A .2B .3C .4D .67.(2022·山西大同·高三阶段练习)正四棱台的上、下底面的边长分别为2、4,侧棱长为2,则其体积为( )A .56B C .D .5638.(2022·江西九江·三模(理))如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为r .若是放入一个正方体,合上盒盖,可放正方体的最大棱长为a ,则ra=( )A B .34C .2D .)3129.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 10.(2022·全国·高三专题练习)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)( ) A .931.010m ⨯ B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯二、多选题11.(2022·河北·高三阶段练习)如图,正方体1111ABCD A B C D -棱长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC +C .当P 在直线1AD 上运动时,三棱锥1B ACP -的体积不变D .以点B 1AB C 12.(2022·全国·高三专题练习)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =13.(2022·江苏·常州高级中学模拟预测)棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点M ,N 分别为线段11A C ,1CC 的中点,则下列说法正确的是( ) A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值 C .[]160,120APD ∠∈︒︒D .1AP D P +的最小值为2314.(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为B .体积为3C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22三、填空题15.(2022·全国·高三专题练习)已知一三角形ABCA B C '''(如图),则三角形ABC 中边长与正三角形A B C '''的边长相等的边上的高为______.16.(2022·上海·模拟预测)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为___________;17.(2022·新疆·三模(理))已知一个棱长为a 的正方体木块可以在一个圆锥形容器内任意转动,若圆锥的底面半径为1,母线长为2,则a 的最大值为______.18.(2022·吉林长春·高三阶段练习(理))中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2).刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等,如图(3)(4).已知八分之一的正方体去掉八分之一的牟合方盖后的剩余几何体与长宽高皆为八分之一正方体棱长的倒四棱锥“等幂等积”,祖暅由此推算出牟合方盖的体积.据此可知,若正方体的棱长为1,则其牟合方盖的体积为______. 四、解答题19.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积.20.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面; (2)求图2中三棱锥C BDG -的体积.21.(2022·全国·高三专题练习)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC CE 的长.22.(2022·青海·海东市第一中学模拟预测(文))如图,在三棱柱111ABC A B C -中,112224AC AA AB AC BC =====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 上一点,且12CP PC =,求三棱锥111A PB C -体积.。

高考数学一轮复习 第7章 立体几何 7.2 空间几何体的表面积与体积课件 文

高考数学一轮复习 第7章 立体几何 7.2 空间几何体的表面积与体积课件 文

积.12/8/2021
搞清组合体构成部分,分别求其表面
第十八页,共五十五页。
解析 由三视图可得圆锥的母线长为 22+2 32=4, ∴S 圆锥侧=π×2×4=8π.又 S 圆柱侧=2π×2×4=16π,S = 圆柱底 4π,∴该几何体的表面积为 8π+16π+4π=28π.故选 C.
12/8/2021
12/8/2021
第三十页,共五十五页。
解析 由三视图知该零件是两个圆柱的组合体.一个 圆柱的底面半径为 2 cm,高为 4 cm;另一个圆柱的底面半 径为 3 cm,高为 2 cm.则零件的体积 V1=π×22×4+ π×32×2 = 34π(cm3) . 而 毛 坯 的 体 积 V = π×32×6 = 54π(cm3),因此切削掉部分的体积 V2=V-V1=54π-34π= 20π(cm3),所以VV2=5240ππ=1207.故选 C.
由圆柱两个底面的圆周在同一个球的球面上可知,
r,R 及圆柱的高的一半构成直角三角形.
∴r=
12-122=
3 2.
∴圆柱的体积为 V=πr2h=34π×1=34π.故选 B.
12/8/2021
第四十一页,共五十五页。
2.正三棱锥 A-BCD 内接于球 O,且底面边长为 3,
16π 侧棱长为 2,则球 O 的表面积为____3____.
12/8/2021
第二十六页,共五十五页。
A.110 B.116 C.118 D.120 此题应采用割补法求解.
12/8/2021
第二十七页,共五十五页。
解析 如图,过点 A 作 AP⊥CD,AM⊥EF,过点 B 作 BQ⊥CD,BN⊥EF,垂足分别为 P,M,Q,N,连接 PM, QN,将一侧的几何体补到另一侧,组成一个直三棱柱,底 面积为12×10×3=15.棱柱的高为 8,体积 V=15×8=120. 故选 D.

高三数学一轮复习 8.2 空间几何体的表面积与体积

高三数学一轮复习 8.2 空间几何体的表面积与体积

考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,

高三 一轮复习 空间几何体的表面积及体积 教案

高三 一轮复习 空间几何体的表面积及体积 教案

空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.求组合体的表面积时:组合体的衔接部分的面积问题易出错. 2.易混侧面积与表面积的概念. [试一试]1.(2012·江苏高考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.2.(2013·苏州暑假调查)设P ,A ,B ,C 是球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A =PB =1,PC =2,则球O 的表面积是________.1.求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①正方体的外接球,则2R=3a;②正方体的内切球,则2R=a;③球与正方体的各棱相切,则2R=2a.(2)长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.3.旋转体侧面积问题中的转化思想计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.[练一练]1.(2014·南通一调)已知正四棱锥的底面边长是6,高为7,则这个正四棱锥的侧面积是________.2.在三棱柱ABC-A′B′C′中,已知AA′⊥平面ABC,AA′=2,BC=23,∠BAC=π2,且此三棱柱的各个顶点都在一个球面上,则球的体积为________.考点一几何体的表面积1.(2013·南通三模)底面边长为2 m,高为1 m的正三棱锥的全面积为________ m2.2.(2013·苏州暑期调查)若正四面体的棱长为a,则其外接球的表面积为________.[类题通法]几何体的表面积问题的求法(1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.考点二几何体的体积[典例](1)如图所示,已知三棱柱ABC -A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1 -ABC1的体积为________.(2)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则三棱锥A-B1D1D的体积为________ cm3.[类题通法]求解几何体体积的策略及注意问题(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(2)注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(3)注意组合体的组成形式及各部分几何体的特征.[针对训练](2013·苏北四市二模)如图,已知正方体ABCD-A1B1C1D1的棱长为2,O为底面正方形ABCD的中心,则三棱锥B1-BCO的体积为________.与球有关的切、接问题考点三与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变,归纳起来常见的命题角度有: (1)直三棱柱的外接球; (2)正(长)方体的外接球; (3)正四面体的内切球; (4)四面体的外接球; (5)正三棱柱的内切球.角度一 直三棱柱的外接球1.(2013·辽宁高考改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.角度二 正(长)方体的外接球2.一个正方体的棱长为2,则该几何体外接球的体积为________.角度三 正四面体的内切球3.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.角度四 四面体的外接球4.(2014·南通期末)正方体ABCD -A 1B 1C 1D 1的棱长为23,则四面体A -B 1CD 1的外接球的体积为________.角度五 正三棱柱的内切球5.点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM ·PN 的取值范围是________.[类题通法]解决与球有关的切、接问题的方法(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各元素之间的关系.(2)若球面上四点P,A,B,C中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[课堂练通考点]1.(2013·南京三模)已知圆锥的母线长为2,高为3,则该圆锥的侧面积是________.2.(2014·苏北三市统考)若一个长方体的长、宽、高分别为3,2,1,则它的外接球的表面积是________.3.(2014·苏北四市质检)已知棱长为3的正方体ABCD-A1B1C1D1中,P,M分别为线段BD1,B1C1上的点,若BPPD1=12,则三棱锥M-PBC的体积为________.4.已知三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=7,BC=11,O,A,B,C四点均在球S的表面上,则球S的表面积为________.5.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为________.[课下提升考能]第Ⅰ组:全员必做题1.正六棱柱的高为6,底面边长为4,则它的全面积为________.2.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为________.3.(2013·南京、淮安二模)已知圆锥的侧面展开图是一个半径为3 cm ,圆心角为2π3的扇形,则此圆锥的高为________ cm.4.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为________.5.设M 、N 是球O 半径OP 上的两点,且NP =MN =OM ,分别过N ,M ,O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为________.6.(2013·苏北四市三调)在矩形ABCD 中,已知AB =2,BC =3,以边BC 所在的直线为轴旋转一周,则形成的几何体的侧面积为________.7.(2014·苏北四市摸底)已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为________.8.(创新题)如图,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,则三棱锥D -ABC 的体积的最大值是________.9.如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形, 其中BD 是圆的直径,∠ABD =60°,∠BDC =45°,△ADP ∽△BAD .(1)求线段PD的长;(2)若PC=11R,求三棱锥P-ABC的体积.10.(2014·徐州质检)如图,在直三棱柱ABC -A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.(1)求证:DE∥平面ABC;(2)求三棱锥E -BCD的体积.第Ⅱ组:重点选做题1.(2014·苏中三市、宿迁调研(一))若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________ cm.2.已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个正四面体的体积为。

空间几何的体积与表面积 高考数学一轮复习(提升版)(新高考地区专用)

空间几何的体积与表面积 高考数学一轮复习(提升版)(新高考地区专用)

7.2 空间几何的体积与表面积(提升版)思维导图考点一柱锥台表面积【例1-1】(2022·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周,所得圆柱的侧面积为()A.32πB.16πC.32D.16【答案】A【解析】以边长为4的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱,其底面半径4r=,高4h=,故其侧面积224432S r hπππ=⋅=⨯⨯=.故选:A【例1-2】(2022·天津·南开中学模拟预测)已知圆锥PO的母线长与底面直径都等于2,一个圆柱内接于这个圆锥,即圆柱的上底面是圆锥的一个截面,下底面在圆锥的底面内,则圆柱侧面积的最大值为()A.3π2B.3πC.()633π-D.3【答案】A【解析】如图,1AB=,2BE=,3AE=,则30AEB∠=,设DC r=,01r<<,则2EC r=,3DE r=,则33AD AE DE r=-=-,考点呈现例题剖析∴圆柱侧面积为:)()221132π2π3323π23π22S r AD r r r r ⎡⎤⎛⎫=⋅=⋅=-+≤-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当12r =时取等号.故选:A . 【一隅三反】1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比( ) A .24B 22C 2D .24π【答案】A【解析】设直角圆锥底面半径为r 2r , ()222rr r -=,所以底面圆的圆心即为外接球的球心,所以外接球半径为r , 所以22224S rl r S r πππ==圆锥侧球故选:A. 2.(2022·福建三明·模拟预测)如图所示的建筑物是号称“神州第一圆楼”的福建土楼——二宜楼,其外形是圆柱形,圆楼直径为73.4m ,忽略二宜楼顶部的屋檐,若二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23,则二宜楼外层圆柱墙面的高度可能为( )A .16mB .17mC .18mD .19m【答案】A【解析】底面直径为40m ,高为77m ()2210772090m +=,所以该圆锥的侧面积为220901800cm ππ⋅⋅=,设二宜楼外层圆柱墙面的高度为h ,则由36.72h π⨯1200π=,解得16.3h ≈因为二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23, 所以二宜楼外层圆柱墙面的高度可能为16m , 故选:A3.(2022·江苏·阜宁县东沟中学模拟预测)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知.底面圆的直径16cm AB =,圆柱体部分的高8cm BC =,圆锥体部分的高6cm CD =,则这个陀螺的表面积是( )A .2192m c πB .2252m c πC .2272m c πD .2336m c π【答案】C【解析】由题意可得圆锥体的母线长为226810l =+=, 所以圆锥体的侧面积为10880ππ⨯=,圆柱体的侧面积为168128ππ⨯=,圆柱的底面面积为2864ππ⨯=, 所以此陀螺的表面积为8012864272ππππ++=(2cm ),故选:C考点二 柱锥台的体积【例2-1】(2022·全国·高三专题练习)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为2的正三角形,SC 为球O 的直径,且4SC =,则此棱锥的体积为( )A 42B 43C 82D .42【答案】A【解析】解:因为ABC 是边长为2的正三角形,所以ABC 外接圆的半径12232sin 60r =⋅=︒所以点O 到平面ABC 的距离2226d R r -SC 为球O 的直径,点S 到平面ABC 的距离为462d =此棱锥的体积为2111464222sin 60332ABCV S d =⨯=⨯⨯,故选:A .【例2-2】(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图, 因为3,120CH BH CHB ==∠=,所以3332CM BM HM ==, 因为重叠后的底面为正方形,所以33AB BC ==, 在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥, 由AB BC B ⋂=可得HM ⊥平面ADCB , 设重叠后的EG 与FH 交点为,I则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D. 【例2-3】(2022·湖北·高三阶段练习)已知四面体D ABC -中,1AC BC AD BD ====,则D ABC -体积的最大值为( ) A 42B 32C 23D 3【答案】C【解析】设M 为CD 的中点,连接AM,BM , 设四面体A -BCD 的高为h ,则h AM ≤,由于1AC BC AD BD ====,故ACD BCD ≌ , 则ACD BCD ∠=∠,设π,(0,)2BCD ACD αα∈∠=∠=,则sin sin ,22cos 2cos AM BM BC CD CM BC αααα======, 所以1136D ABC A DBC BCDV V Sh CD BM AM --==⋅≤⋅⋅222222231112cos sin sin cos sin 2cos sin sin ()333232αααααααα++==⋅⋅23, 当且仅当平面ACD 与平面BCD 垂直且sin 2αα=即arctan 2α=时取等号,故选:C 【一隅三反】1.(2022·江苏)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5B .22C 10D 510【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l +=,所以1221,33r l r l ==,所以甲圆锥的高221459h l l =-=,乙圆锥的高2221229h l l =-=,所以221122221453931011223r h l V V r h l l ππ==⨯甲乙故选:C. 2.(2022·广西桂林)一个三棱锥S -ABC 的侧棱上各有一个小洞D ,E ,F ,且SD :DA =SE :EB =CF :FS =3:1,则这个容器最多可盛放原来容器的( ) A .89B .49C .5564D .23【答案】C【解析】由题意,这个容器最多可盛放原来容器的比例为DEF ABC S ABC S DEFS ABC S ABC V V V V V ------=,设C 到平面SAB 的距离为h ,则13S ABC C ABS SAB V V Sh --==.又91991646464S DEF F SDE SABSAB C ABS V V S h S h V ---==⨯=⨯=,故915564164DEF ABC S ABC S DEFS ABC S ABCV V V V V -------=== 故选:C3.(2023·全国·高三专题练习)足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,如图所示.已知某“鞠”的表面上有四个点,,,P A B C,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为( )A .256π B .9πC .92πD .98π【答案】C【解析】取AB 中点为D ,过D 作//OD PA ,且11==22OD PA ,因为PA ⊥平面ABC,所以OD ⊥平面ABC .由于AC BC ⊥,故DA DB DC ==,进而可知OA OB OC OP ===,所以O 是球心,OA 为球的半径.由112==4323P ABC V AC CB PA AC CB -=⨯⋅⋅⇒⋅,又2222=8AB AC BC AC BC =+≥⋅,当且仅当2AC BC ==,等号成立,故此时22AB =所以球半径()2222113+2222R OA OD AB ⎛⎫⎛⎫==+≥ ⎪ ⎪⎝⎭⎝⎭,故min 3=2R ,体积最小值为334439πππ3322R ⎛⎫== ⎪⎝⎭故选:C4.(2023·全国·高三专题练习)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C【解析】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当326l ≤≤0V '>,当2633l ≤0V '<, 所以当26l =时,正四棱锥的体积V 取最大值,最大值为643, 又3l =时,274V =,33l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.考点三 球的体积与表面积【例3】(2022·甘肃省武威第一中学)如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的表面积之差为( )A .64πB .48πC .32πD .16π【答案】D 【解析】如图.设圆柱底面半径为r ,球的半径与圆柱底面夹角为OMN α∠=,则cos 4cos MN r R αα==⋅=,sin 4sin ON R αα=⋅=,∴圆柱的高8sin h α=,∴圆柱的侧面积为232sin2S r h ππα=⋅⋅=⋅,当且仅当4πα=时,sin21α=,圆柱的侧面积最大,为32π, 球的表面积与圆柱的表面积之差为22422(22)64321616R rh πππππππ--⨯=--=.故选:D . 【一隅三反】1.(2022·全国·赣州市第三中学)已知某正三棱锥S ABC -的内切球与外接球的球心恰好重合,如果其内切球的半径为1,其外接球的体积为36π,那么这个三棱锥的表面积为( ) A .24 B .243C .48D .483【答案】B【解析】由题意可知,点S 在底面ABC 内的射影点D 为等边ABC 的中心,取线段BC 的中点E ,连接AE ,则2AD DE =,易知三棱锥S ABC -的外接球球心O 在线段SD 上,设正三棱锥S ABC -的外接球半径为R ,则34363R ππ=,解得3R =,设正三棱锥S ABC -的内切球的半径为r ,则1r =,故314SD R r =+=+=,SD ⊥平面ABC ,AD ⊂平面ABC ,SD AD ∴⊥,易知3OA R ==,则222222AD OA OD R r --=所以,122DE AD ==32AE =26sin 3AEAB π== 由勾股定理可得2226SA SD AD =+=所以,正三棱锥S ABC -是边长为6 因此,正三棱锥S ABC -的表面积为(23426=243故选:B.2.(2022·天津·耀华中学二模)一个圆锥的侧面展开图是一个半圆,则该圆锥的内切球的表面积和圆锥的侧面积的比为( ) A .2:3 B .3:2 C .1:2 D .3:4【答案】A【解析】设圆锥的底面半径为r ,母线长为l ,圆锥的高为h ,内切球的半径为R ,其轴截面如图所示,设O 为内切球球心,因为圆锥的侧面展开图是一个半圆, 所以2l r ππ=,得2l r =,即2PA PB r ==, 所以222243PD PB BD r r r =--, 所以3PO PD OD r R =-=-, 因为POE △∴PBD △,所以PO OEPB BD=, 3r R Rr -=,得3R =, 所以圆锥的内切球的表面积和圆锥的侧面积的比为 22214:4:22:33R rl r r ππππ=⋅=,故选:A3.(2022·山东青岛·二模)《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,EF ∥平面ABCD ,2EF =,其余棱长都为1,则这个几何体的外接球的体积为( )A 2B .4π3C 82D .4π【答案】B【解析】连接AC ,BD 交于点M ,取EF 的中点O ,则OM ⊥平面ABCD ,,取BC 的中点G ,连接FG ,作GH EF ⊥,垂足为H ,如图所示由题意可知,13,2HF FG ==222HG FG HF =- 所以2OM HG ==2AM =所以221OA OM AM +=,又1OE =, 所以1OA OB OC OD OE OF ======,即这个几何体的外接球的球心为O ,半径为1, 所以这个几何体的外接球的体积为33444ππ1π333V R ==⨯⨯=.故选:B.考点四 空间几何的截面【例4-1】(2022·全国·高三专题练习)已知圆锥的母线长为2,侧面积为23π,则过顶点的截面面积的最大值等于( ) A 3B 2C .3 D .2【答案】D【解析】由圆锥的母线长为2,侧面积为3π,假设底面圆周长为l ,因此12232l π⨯⨯=,故底面圆周长为23π3由于轴截面为腰长为2,底边长为底面圆直径32π3.故当截面为顶角是π2的等腰三角形时面积最大,此时1π22sin 222S =⋅⋅⋅=.故选:D【例4-2】.(2022·湖南·长沙一中模拟预测)(多选)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为22543⎡+⎣,【答案】BCD【解析】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积 为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得125225OG ==设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S=⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确;由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ',则2222222,2,2,16PP PE P E PF P F P E P F '''''==+++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,222216PE PF t t +++-所以()222222216241680PE PF t tt t +=++-=+-++()224281442485,48t ⎡⎤=+--++⎣⎦,所以225,43PE PF ⎡+∈+⎣,故D 正确.故选:BCD.【一隅三反】1.(2022·江西鹰潭·二模)《算数术》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也,叉以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.现有一圆锥底面周长为563,侧面面积为1123,其体积的近似公式为23112V L h ≈,用此π的近似取值(用分数表示)计算过该圆锥顶点的截面面积的最大值为( ) A .15 B .37C .8821D .8【答案】D【解析】若圆锥母线长为l ,底面半径为r ,则156112233l ⨯=,故4l,又5623r π=,故283r π=, 而22133112V r h L h π=≈,则2228356()()31123ππ⨯≈⨯,可得289π=, 所以3r =,若截面顶角θ,当截面为轴截面时2221cos 108r l θ=-=-<,此时2πθπ<<,又截面面积为21sin 8sin 2l θθ=,故当2πθ=时截面面积的最大值为8.故选:D2.(2022·河南·方城第一高级中学)某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.3则切割面的面积为______3______. 【答案】 2 33【解析】解法一:如图,将圆台1O O 补成圆锥PO ,设圆台1O O 的上、下底面半径分别为r ,R ,高和母线长分别为h ,l ,则()222l h R r =+-.因为等腰梯形ABCD 为过两条母线的截面,设PC x =.APB θ∠=,则r x R x l=+,得rl x R r=-,则()()2221sin sin 22PAB PCD ABCD R r S S S x l x l R r θθ+⎡⎤=-=+-=⎣⎦-△△梯形.∴若33h ,则23l =,0120θ︒<≤︒,当90θ=︒时,切割面的面积最大,最大面积2S =;∴若3h =2l =,060θ︒<︒≤,当60θ=︒时,切割面的面积最大,最大面积33S =解法二:如图,设圆台上底面圆心为1O ,下底面圆心为O ,过两条母线的截面为四边形11ABB A ,可得四边形11ABB A 为等腰梯形.设111AO B AOB θ∠=∠=,圆台的高1O O h =,取11A B ,AB 的中点分别为1C ,D ,连接11O C ,1C D ,OD ,则四边形11O C DO 为直角梯形,过1C 作11C C O O ∥交OD 于点C.因为111O B =,2OB =,所以11cos2O C θ=,111122sin2A B B C θ==,2cos2OD θ=,24sin 2AB BD θ==,所以11cos 2CD OD O C θ=-=,所以221cos 2DC h θ=+则()11221111cos 222ABB A S S AB A B DC h θθ==+⋅=+梯形令sin 2t θ=,因为(]0,θπ∈,所以(]0,1t ∈,则2231S t h =-+(]0,1t ∈.∴当3h 时,2222244333232t t S t t ⎛⎫+- ⎪⎛⎫=-≤= ⎪ ⎪⎝⎭ ⎪⎝⎭,当且仅当2243t t =-,即6t =max 2S =.∴当3h =()22423434S t t t t =--+令2t x =,则(]0,1x ∈,()24224424t t x x x -+=-+=--+,当1x =时,取最大值3.此时max 33S =故答案为:2;333.(2022·青海·海东市第一中学)已知圆锥的底面直径为2323则该圆锥的体积为________. 5π【解析】由题意知:圆锥的底面半径3r =设圆锥的母线长为l ,则2213sin 2323l π⋅==22l =∴圆锥的高22835h l r =--=∴圆锥的体积2153V r h ππ=⋅=.5π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何
空间几何体的表面积和体积
即时练习 1 若一个底面是正三角形的三棱柱的主视图如图所示,则其 侧面积等于( )
A. 3
B.2
C.2 3
D.6
解析:由主视图还原实物图知,该几何体为高是 1,底面 边长是 2 的正三棱柱,S 侧=2×1×3=6.
答案:D
立体几何
空间几何体的表面积和体积 题型二 旋转体的表面积与体积的计算 例2 在△ABC中,AB=2,BC=3, ∠ABC=90°,若使△ABC绕直线BC旋转一周所形 成的几何体的体积为________.
解析:设圆台较小底面半径为 r,则另一底面半径为 3r. 由 S=π(r+3r)·3=84π,解得 r=7. 答案:A
立体几何
空间几何体的表面积和体积
4.用与球心距离为 1 的平面去截球,所得的截面面积为 π,
则球的体积为( )
8π A. 3
8 2π B. 3
C.8 2π
D.332π
解析:S 圆=πr2=π⇒r=1,而截面圆圆心与球心的距离 d
2 6.
答案:1+
2 6
立体几何
空间几何体的表面积和体积
归纳总结 •方法与技巧 1.对于基本概念和能用公式直接求出棱柱、棱锥、棱台 与球的表面积的问题,要结合它们的结构特点与平面几何知识 来解决. 2.要注意将空间问题转化为平面问题. 3.求几何体的体积,要注意分割与补形.将不规则的几 何体通过分割或补形将其转化为规则的几何体求解.
立体几何
空间几何体的表面积和体积
点评:①由三视图画几何体的直观图,掌握“长对正、宽 相等,高平齐”的规则,是确定几何体特征的关键.②把不规 则几何体分割成几个规则几何体或者是补上一部分使之成为 规则几何体,是求不规则几何体的表面积和体积常用方法.
以三视图为载体考查几何体的表面积,关键是 能够对给出的三视图进行恰当的分析,从三视 图中发现几何体中各元素间的位置关系及数量 关系.
立体几何
空间几何体的表面积和体积
即时练习4
已知一个凸多面体共有 9 个面,所有棱长均为 1,其平 面展开图如下图所示,则该凸多面体的体积 V=__________.
立体几何
空间几何体的表面积和体积
解析:该几何体形状是一个正方体与正四棱锥的组合体,
正方体的体积是
1,正四棱锥的体积是
62,故应填
1+
答案: 3π
立体几何
空间几何体的表面积和体积
球的组合体问题
例题 一个正方体的体积是8,求 (1)这个正方体的内切球的表面积. (2)这个正方体的外接球的表面积.
立体几何
空间几何体的表面积和体积
即时练习3
设三棱柱的侧棱垂直于底面,所有棱的长都为 a,顶点都 在一个球面上,则该球的表面积为( )
A.πa2 B.37πa2 C.131πa2 D.5πa2
AC= AB2+BC2=5π cm,故铁丝的最短长度为 5π cm.
立体几何
空间几何体的表面积和体积
点评:①研究几何体表面上两点的最短距离问题,常选择 恰当的母线或棱展开,转化为平面上两点间的最短距离问 题.②有关折叠问题,一定要分清折叠前后两图形(折前的平 面图形和折叠后的空间图形)各元素间的位置和数量关系,哪 些变,哪些不变.
题型四 几何体的展开与折叠 例 4 有一根长为 3π cm,底面半径为 1 cm 的圆柱形铁管, 用一段铁丝在铁管上缠绕 2 圈,并使铁丝的两个端点落在圆柱 的同一母线的两端,则铁丝的最短长度为多少?
立体几何
空间几何体的表面积和体积
解析:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到 矩形 ABCD(如图),由题意知 BC=3π cm,AB=4π cm,点 A 与点 C 分别是铁丝的起、止位置,故线段 AC 的长度即为铁丝 的最短长度.
空间几何体的表面积和体积




七 章
空 间





几 何
的 表 面
积和
体积
抓基础 明考向 提能力
立体几何
空间几何体的表面积和体积
[备考方向要明了]
考什么
会计算球、柱、锥台的表面积和体积 (不要求记忆公式)
立体几何
空间几何体的表面积和体积
怎么考
1.空间几何体的表面积、体积是高考的热点,多 与三视图相结合命题. 2.主要考查由三视图还原几何体并求表面积或体 积,同时考查空间想象能力及运算能力.题型 多为选择、填空题.

立体几何
空间几何体的表面积和体积 即时练习 2
在△ABC中,AB=2,BC=3, ∠ABC=120°,若使△ABC绕直线BC旋转一周所形 成的几何体的体积为________.
解析:形成的几何体为圆锥中挖去一小圆锥后剩余部分,作AD⊥BC, ∴AD= 3.∴V=13πAD2×(BC+BD)-13πAD2×BD=3π.
解析:依题意有,三棱锥 P-ABC 的体积 V=13S△ABC·|PA|=13 × 43×22×3= 3.
答案: 3
立体几何
空间几何体的表面积和体积
题型探究
题型一 多面体的表面积与体积的计算 例 1 如图,已知几何体的三视图(单位:cm). (1)画出这个几何体的直观图(不 要求写画法); (2)求这个几何体的表面积及体 积.
C.245πR3
D. 85πR3
解析:圆锥的母线长为 R,底面半径为R2,高为 23R,则 V
=13Sh= 243πR3. 答案:A
立体几何
空间几何体的表面积和体积
3.圆台的一个底面周长是另一个底面周长的 3 倍,母线 长为 3,圆台的侧面积为 84π,则圆台较小底面的半径为( )
A.7 B.6 C.5 D.3
立体几何
空间几何体的表面积和体积
解析:三棱柱如图所示,由题意可知: 球心在三棱柱上、下底面的中心 O1、O2 的 连线的中点 O 处,连接 O1B、O1O、OB,其 中 OB 即为球的半径 R,由题意知:O1B=23 × 23a= 33a,所以半径 R2=(a2)2+( 33a)2= 71a22,所以球的表面积是 S=4πR2=7π3a2,故选 B.
A.48(3+ 3) C.24( 6+ 2)
B.48(3+2 3) D.144
()
解析:其侧面面积为6×6×4=144,底面积为2× 43×42×6=48 3, ∴S全=48(3+ 3).
立体几何
空间几何体的表面积和体积
2.半径为 R 的半圆卷成一个圆锥,则它的体积为( )
A. 243πR3
B. 83πR3
=1,∴球的半径为 R= r2+d2= 2,∴V=43πR3=8 32π,故 选 B.
答案:B
立体几何
空间几何体的表面积和体积
5.三棱锥 P-ABC 中,PA⊥底面 ABC,PA=3,底面 ABC 是 边 长 为 2 的 正 三 角 形 , 则 三 棱 锥 P-ABC 的 体 积 等 于 __________.
立体几何
立体几何
空间几何体的表面积和体积
•失误与防范 1.将几何体展开为平面图形时,要注意在何处剪开,多 面体要选择一条棱剪开,旋转体要沿一条母线剪开. 2.与球有关的组合体问题,一种是内切,一种是外接.解 题时要认真分析图形,明确切点和接点的位置,确定有关元素 间的数量关系,并作出合适的截面图,如球内切于正方体,切 点为正方体各个面的中心,正方体的棱长等于球的直径;球外 接于正方体,正方体的顶点均在球面上,正方体的体对角线长 等于球的直径.球与旋转体的组合,通常作它们的轴截面进行 解题,球与多面体的组合,通过多面体的一条侧棱和球心,或 “切点”、“接点”作出截面图.
)h立体Leabharlann 何空间几何体的表面积和体积
面积
体积
直棱柱 S侧= Ch
V= Sh
正棱锥 S侧= 12Ch′
V=
1 3Sh
正棱台 S侧= 12(C+C′)h′ V= 13(S上+S下+ S上·S下)h
球 S球面= 4 π R2
V= 43πR3
立体几何
空间几何体的表面积和体积
1.正六棱柱的高为 6,底面边长为 4,则它的全面积为
立体几何
空间几何体的表面积和体积
知识梳理
柱、锥、台和球的侧面积和体积
面积
体积
圆柱 S侧=2πrl
V= Sh =π r2h
圆锥 S侧=π rl
V=
1 3Sh
= 13πr2h
=13πr2
l2-r2
圆台 S侧=π(r1+r2)l
V= 1 (S上+S下+ =13π(r321+r22+r1r2)h
S上·S下
立体几何
空间几何体的表面积和体积
解析: (1)这个几何体的直观图如图所示.
立体几何
空间几何体的表面积和体积
(2)这个几何体可看成是正方体 ABCD-A1B1C1D1 及直三 棱柱 B1C1Q-A1D1P 的组合体.
由 PA1=PD1= 2,A1D1=AD=2,可得 PA1⊥PD1. 故所求几何体的表面积 S=5×22+2×2× 2+2×12×( 2)2=22+4 2(cm2),所求 几何体的体积 V=23+12×( 2)2×2=10(cm3).
答案:B
立体几何
空间几何体的表面积和体积
点评:解决球与其他几何体的切、接问题,关键在于仔细 观察、分析,弄清相关元素的关系和数量关系,选准最佳角度 作出截面(要使这个截面尽可能多地包含球、几何体的各种元 素以及体现这些元素之间的关系),达到空间问题平面化的目 的.
立体几何
空间几何体的表面积和体积
相关文档
最新文档