平稳随机过程的概念
合集下载
平稳随机过程的概念

所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)
a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.
随机过程课程第五章 平稳过程

(1)均值函数为常数: m(t) E[X (t)] m
(2)相关函数仅是时间差 t1 t2 的函数:
记
B( ) R(t1,t2 )
证 只对连续型的情况
m(t) E[ X (t)] xf (t;x)dx
xf (x)dx m
首页
R(t1,t2 ) E[ X (t1) X (t2 )]
而与时间起点无关。
证
首页
一对维任意的 ,必有 f (t;x) f (t ;x) 若令 t ,得
f (t;x) f (0;x) f (x) 即一维概率密度 f (t;x) 与 t 无关。
同理有一维分布函数也与t无关,
即 F(t;x) F(0;x)
证 二维 对于二维概率密度,有
f (t1,t2;x1, x2 ) f (t1 ,t2 ;x1, x2 )
首页
返回
第三节 平稳正态过程与正交增量过程
一、平稳正态过程
定义1 若正态随机过程{ X (t) ,t (,) },满足
E[X (t)] m
R(t1,t2 ) E[ X (t1) X (t2 )] B( )
则称 X (t)为平稳正态过程。
t1 t2
注 平稳正态过程一定是严平稳过程。
证
由于
第五章 平稳过程
第一节 基本概念 第二节 平稳过程相关函数的性质 第三节 平稳正态过程与正交增量过程 第四节 遍历性定理
第一节 基本概念
一、严平稳过程
定义1 设随机过程{ X (t) ,t T }, 若对任意n,任意 t1,t2 , , tn T t1 t2 tn 当t1 ,t2 ,…,tn T 时,有 F (t1, t2 , , tn;x1, x2 , , xn ) P{X (t1) x1, X (t2 ) x2 , , X (tn ) xn )}
Ch12-平稳随机过程

例 2 . 随机相位正弦波 X t aCos t , RV : f
1 2
, 0 2
试讨论平稳性
sol . X t 0 E X t X t E a a a
2
a R X t1 , t 2 Cos R X 2 随机相位正弦波为(宽 )平稳 sp
p p
T T
U x X t dt P X t x F1 x — — 分 布 函 数 各 态 历 经
p
(4).(1) 和 (2) — — 平 稳 过 程 各 态 历 经
例1 讨论随机相位正弦波的平稳性和各态历经性
1 随机相位正弦波 X t aCos t , RV : f , 0, 2 2 sol. 1: 平稳性
Fn x1 ,..., x n ; t1 ,..., t n Fn x1 ,..., x n ; t1 ,..., t n
2.严平稳过程的分布与数 字特征 1:一维分布 ,F1 x; t1 F1 x; t1 , f1 x; t1 f1 x;0 f1 x — —与 t 无关 则均值: EX t1 x1 f1 x1; t dx1 x1 f1 x dx1 X
( ) I e I 2 e 2 k 0关 , 故 若 τ<0 时 , 只 需 令 t ’=t+ τ,则有 E[X(t)X(t+τ)] =E[X(t`)X(t`+ τ )]= I2 e-2λ∣τ∣
图12-2
故这一过程的自相关函数为 E[X(t)X(t+τ)]= I2e-2λ∣τ∣ 它只与τ有关。因此随机电报信号X(t)是 一平稳过程。其图形如上图所示
第十二章-平稳随机过程

7
若T为离散集, 称平稳过程{X(t), t T }为 平稳序列.
广义平稳过程
严平稳过程
严平稳过程 二阶矩存在 广义平稳过程
严平稳过程 正态过程 广义平稳过程
8
例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ²] = σ², 则有
解 由假设, Θ的概率密度为
f
(
)
1
/
T, 0,
0 T,
其 它.
于是, X(t)的均值函数为
T
E[ X (t)] E[s(t )]
0
s(
t
)
1 T
d
1
t T
s( )d
Tt
10
利用s(φ)的周期性, 可知
E[X (t)] 1 T s( )d 常数. T0
而自相关函数
RX (t, t ) E[s(t )s(t )]
• 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
18
事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W (t)W (t )] E{[X (t) Y (t)][X (t ) Y (t )]} E[ X (t)X (t ) X (t)Y (t ) Y (t)X (t ) Y (t)Y (t )] E[ X (t)X (t )] E[ X (t)Y (t )] E[Y (t)X (t )] E[Y (t)Y (t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )
t1, t2,, tnT, t1+h, t2 +h,,tn+h T, 若(X(t1), X(t2),, X(tn))与
若T为离散集, 称平稳过程{X(t), t T }为 平稳序列.
广义平稳过程
严平稳过程
严平稳过程 二阶矩存在 广义平稳过程
严平稳过程 正态过程 广义平稳过程
8
例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ²] = σ², 则有
解 由假设, Θ的概率密度为
f
(
)
1
/
T, 0,
0 T,
其 它.
于是, X(t)的均值函数为
T
E[ X (t)] E[s(t )]
0
s(
t
)
1 T
d
1
t T
s( )d
Tt
10
利用s(φ)的周期性, 可知
E[X (t)] 1 T s( )d 常数. T0
而自相关函数
RX (t, t ) E[s(t )s(t )]
• 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
18
事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W (t)W (t )] E{[X (t) Y (t)][X (t ) Y (t )]} E[ X (t)X (t ) X (t)Y (t ) Y (t)X (t ) Y (t)Y (t )] E[ X (t)X (t )] E[ X (t)Y (t )] E[Y (t)X (t )] E[Y (t)Y (t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )
t1, t2,, tnT, t1+h, t2 +h,,tn+h T, 若(X(t1), X(t2),, X(tn))与
平稳随机过程及其遍历性

从概率密度函数的角度讲,高阶平稳一定低阶平稳
6
f X (x1, x2 , t1, t2 ) f X (x1, x2 , )
随机过程X(t)的自相关函数,自协方差函数都是 平稳的。
都与时间无关
RX (t1, t2 ) x1x2 f X (x1, x2;t2 t1)dx1dx2
x1x2
➢ 二阶平稳(n=2) 严平稳随机过程的二维概率密度只与 t1, t2的 时间间隔有关,而与时间起点无关。 n 2, t t1, t2 t1时,二维概率密度:
fX (x1, x2 ,t1,t2 ) f X (x1, x2,t1 t,t2 t)
fX (x1, x2 , 0,t2 t1) f X (x1, x2, )
平稳随机过程及其遍历性
随机过程可分为平稳与非平稳两大类, 严格地说, 所 有信号都就是非平稳得, 但就是, 平稳信号得分析要容 易得多, 而且在电子系统中, 如果产生一个随机过程得 主要物理条件在时间得进程中不改变, 或变化极小, 可 以忽略, 则此信号可以认为就是平稳得、 如接收机得 噪声电压信号, 刚开机时由于元器件上温度得变化, 使 得噪声电压在开始时有一段暂态过程, 经过一段时间 后, 温度变化趋于稳定, 这时得噪声电压信号可以认为 就是平稳得。
或
X (很t) 小m,X 即使X (两t 者 )的 m相X 关程度较强,则 也不会
太大,所以K并X 不( )能准确表示关联程度的大小。为了消除
实际应用中,通过上式来判定过程得平稳性就是很不容易得,因此 在实际中往往不需要所有时间都平稳,只要观测得有限时间平稳 就行了。
3
f X (x1,, xn ,t1 t,,tn t) f X (x1,, xn ,t1,,tn )
(2) 特性 ➢ 一阶平稳(n=1) 严平稳随机过程得一维概率密度函数与时间无关 n 1, t t1 时,对于一维概率密度有: fX (x1, t1 t) f X (x1, t1) f X (x1, 0) f X (x1)
6
f X (x1, x2 , t1, t2 ) f X (x1, x2 , )
随机过程X(t)的自相关函数,自协方差函数都是 平稳的。
都与时间无关
RX (t1, t2 ) x1x2 f X (x1, x2;t2 t1)dx1dx2
x1x2
➢ 二阶平稳(n=2) 严平稳随机过程的二维概率密度只与 t1, t2的 时间间隔有关,而与时间起点无关。 n 2, t t1, t2 t1时,二维概率密度:
fX (x1, x2 ,t1,t2 ) f X (x1, x2,t1 t,t2 t)
fX (x1, x2 , 0,t2 t1) f X (x1, x2, )
平稳随机过程及其遍历性
随机过程可分为平稳与非平稳两大类, 严格地说, 所 有信号都就是非平稳得, 但就是, 平稳信号得分析要容 易得多, 而且在电子系统中, 如果产生一个随机过程得 主要物理条件在时间得进程中不改变, 或变化极小, 可 以忽略, 则此信号可以认为就是平稳得、 如接收机得 噪声电压信号, 刚开机时由于元器件上温度得变化, 使 得噪声电压在开始时有一段暂态过程, 经过一段时间 后, 温度变化趋于稳定, 这时得噪声电压信号可以认为 就是平稳得。
或
X (很t) 小m,X 即使X (两t 者 )的 m相X 关程度较强,则 也不会
太大,所以K并X 不( )能准确表示关联程度的大小。为了消除
实际应用中,通过上式来判定过程得平稳性就是很不容易得,因此 在实际中往往不需要所有时间都平稳,只要观测得有限时间平稳 就行了。
3
f X (x1,, xn ,t1 t,,tn t) f X (x1,, xn ,t1,,tn )
(2) 特性 ➢ 一阶平稳(n=1) 严平稳随机过程得一维概率密度函数与时间无关 n 1, t t1 时,对于一维概率密度有: fX (x1, t1 t) f X (x1, t1) f X (x1, 0) f X (x1)
平稳随机过程

相关时间:
0 rX ( )d
0
rX ( )
1
rX ( 0 ) 0.05
0
0
相关时间示意图
2.3 平稳随机过程
4 2 0 -2 -4
10 5 0 -5 -10
0
50
100
0
50数
0 100
相关时间越长,反映随机过程前后取值之间的依 赖性越强,变化越缓慢,相关时间越小,反映随 机过程前后取值之间的依赖性越弱,变化越缓慢
2 mX RX 2 () 100 2
2 2 X RX (0) mX 200
E[ X 2 (t )] RX (0) 300
2.3 平稳随机过程
3 相关系数及相关时间 也称为归一化协 方差函数或标准 协方差函数。
相关系数:
rX ( )
K X ( )
2 X
2 RX ( ) mX 2 X
for Nk k=2 称为二阶严平稳,如果对N=k成立,那么对N<k也成立. (2) 渐近严平稳 当c时,X(t+c)的任意n维分布与c无关,即
lim f X ( x1 , x2 , , xN , t1 c, t2 c, , t N c)
c
存在,且与c无关.
(3) 循环平稳 如果X(t)的分布函数满足如下关系
2.3 平稳随机过程
1 平稳随机过程的定义 严格 平稳 随机 过程 如果随机过程的任意n维分布不随时间起 点变化,即当时间平移时,其任意的n维 概率密度不变,则称是严格平稳的随机过 程或称为狭义平稳随机过程。
f X ( x1 ,, xn , t1 t ,, t n t ) f X ( x1 ,, xn , t1 ,, t n )
随机过程平稳过程第六

• 宽平稳过程 • 严平稳过程 二阶矩存在 • 严平稳过程
正态过程
严平稳过程 宽平稳过程 宽平稳过程
4.严平稳与宽平稳的关系 严平稳过程不一定是宽 平稳的,因为严平稳 定义只涉及有限维分布 ,而并不要求一、二阶 矩 存在,但对二阶矩过程 ,严平稳必是宽平稳。 反过来,宽平稳也不一 定是严平稳,因为宽 平稳只要求均值函数与 t无关,导不出一维分布 与 t无关,又相关函数 Rt , t 与t无关,导不出二维 分布F x1 , x2 ; t , t 与t无关。 但对于正态平稳过程是 个例外,由于正态过程 的概率密度是由均值和 相关函数完全确定,另 外正 态过程的二阶矩总是存 在的。
x(t) 1 o -1
t
9
平稳过程的概念与例
且V与X(t)独立,令Y(t)=VX(t),试讨论随机过程Y(t)的 平稳性. 解: (1) 由于随机点N(t)是具有参数λ的泊松过程,故在 [0,t]内随机点出现k次的概率 k ( t ) P (t)=e-λt ,k=0,10(t)+P2(t)+P4(t)+…
6.1
平稳随机过程的概念
• 例6.1 设X(t)=Ycos(t)+Zsin(t), t>0,且 Y, Z相互独立,EY=EZ=0,DY=DZ=2, 试讨论随机过程{X(t), t>0}的平稳性。
解 m X (t ) EX (t ) E[Y cos(t ) Z sin(t )] cos(t ) EY sin(t ) EZ 0 RX ( s, t ) E[ X ( s) X (t )]
所以{X(t),t T }为宽平稳过程。
6.1
平稳随机过程的概念
• 例6.2 设{Xn,n=0, 1, 2,}是实的互不 相关随机变量序列,且E[Xn]=0,D[Xn] =2 ,试讨论随机序列的平稳性。
概率论第三章 平稳随机过程

则称X(t)为宽平稳过程(或称广义平稳过程)
严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
RX Y (t1, t2 ) E[ X (t1 )Y (t2 )] RXY ( ), t2 t1,
则称X(t)和Y(t)宽平稳相依,或称这两个随机过程 是联合宽平稳的。
例3.1 设随机过程 X (t) a cos(0 t )
式中a,ω0为常数,Φ是在区间(0,2π)上均匀分 布的随机变量, 这种信号通常称为随相正弦波。求 证X(t)是宽平稳的。
二、各态历经(遍历)随机过程
在上面的讨论中,每当谈到随机过程时,就意味 着所涉及的是大量的样本函数的集合。要得到随机过 程的统计特性,就需要观察大量的样本函数。
ln
p( X
/
mX
)
K
N 1
exp
i0
(xi
mX
2
2 X
)2
均值估计
让对数似然函数取最大值
ln p( X / mX ) 0 m X
得到均值的最大似然估值
mˆ X
1 N
N 1
xi
i0
此式说明,可用N个观测值的算术平均作为均值mX的估值。
估计量的性质(工程)
1.有偏估计与无偏估计
由于估计量依赖于观测结果,因此估计量本身是 随机变量,于是它也存在其均值和方差。
定义1:取对应于ρX(τ)=0.05的那个时间为相关 时间τ
0
定义2:用图3.6中的矩形(高为ρX(0)=1,底为τ0的
矩形)面积等于阴影面(ρX(τ)积分的一半)来定义
τ0,即
严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
RX Y (t1, t2 ) E[ X (t1 )Y (t2 )] RXY ( ), t2 t1,
则称X(t)和Y(t)宽平稳相依,或称这两个随机过程 是联合宽平稳的。
例3.1 设随机过程 X (t) a cos(0 t )
式中a,ω0为常数,Φ是在区间(0,2π)上均匀分 布的随机变量, 这种信号通常称为随相正弦波。求 证X(t)是宽平稳的。
二、各态历经(遍历)随机过程
在上面的讨论中,每当谈到随机过程时,就意味 着所涉及的是大量的样本函数的集合。要得到随机过 程的统计特性,就需要观察大量的样本函数。
ln
p( X
/
mX
)
K
N 1
exp
i0
(xi
mX
2
2 X
)2
均值估计
让对数似然函数取最大值
ln p( X / mX ) 0 m X
得到均值的最大似然估值
mˆ X
1 N
N 1
xi
i0
此式说明,可用N个观测值的算术平均作为均值mX的估值。
估计量的性质(工程)
1.有偏估计与无偏估计
由于估计量依赖于观测结果,因此估计量本身是 随机变量,于是它也存在其均值和方差。
定义1:取对应于ρX(τ)=0.05的那个时间为相关 时间τ
0
定义2:用图3.6中的矩形(高为ρX(0)=1,底为τ0的
矩形)面积等于阴影面(ρX(τ)积分的一半)来定义
τ0,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
严平稳的.
例2 设s(t)是一周期为T的函数,是在(0,t)上服 从均匀分布的随机变量,称X (t) s(t )为随机
相位周期过程. 试讨论它的平稳性.
解 的概率密度为
f
(
)
1/T , 0
0, 其他.
T,
X(t) 的均值函数为
E[X (t)] E[s(t )]
T
s( t
) 1 d
定义1 给定二阶矩过程{ X (t), t T },如果对任意
t,t T : E[ X (t)] X (常数)
E[ X (t)X (t )] RX ( )
则称{ X (t), t T }为宽平稳过程,或广义平稳过程. 说明
(1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立.ຫໍສະໝຸດ 2aea2 2 2
da
2
2
0
故 E[Acos(t )] EA E[cos(t )]
所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3 考虑随机电报信号 x(t) I
o
信号X (t )由只 取 I或 I
t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2 而正负号在区间(t,t )内变化的次数N (t,t ) 是随机的, 假设N (t,t )服从泊松分布.
结果与t 无关
k0
I 2e
( )k
k0
I 2e2
.
k0 k!
而 0时,令t t , 则自相关函数: E[ X (t )X (t )] I 2e2 只与有关
所以随机电报信号 X (t) 是一平稳过程.
其图形为:
RX ( )
I2
o
例4 设随机过程X (t) Acos(t ), t ,
1
iT
s( )d .
0
T
Ti
利用s( )的周期性
知 E[ X (t)] 1 T s( )d 常数. T0 而自相关函数
RX (t,t ) E[s(t )s(t )]
仅与有关
T s(t )s(t ) 1 d
0
具有周T 期性
1 T
iT i
s( )s( )d RX ( )
二、应用举例
例1 设{Xk ,k 1,2, }是互不相关的随机变量
序列,且
E[
Xk
]
0,
E[
X
2 k
]
2
,则有
Rx (k, l)
E[ Xk
Xl
]
2 ,
0, k
k l, l,
即相关函数只与 k l 有关,
所以它是宽平稳的随机序列.
如果 X1, X2, , Xk , 是独立同分布的,则序列是
变函数. (即不随时间的推移而变化).
协方差函数可以表示为
CX ( ) E{[ X (t) X ][ X (t ) X ]}
RX
(
)
2 X
.
若令 0 ,
则
2 X
CX (0)
RX
(0)
2 X
.
说明 要确定一个随机过程的分布函数, 并进而判定
其平稳性在实际中不易办到.
2. 广义平稳过程
其中A是服从瑞利分布的随机变量,其概率密度为
f
(a)
a
2
e
a2 2 2
,
a0
0,
a0
是在(0,2π )上服从均匀分布且与 A 相互独立的
随机变量, 是一常数,问Xn(t)是不是平稳过程?
解
因
E( A)
a2
0 2
e
a2 2 2
da
π 2
E( A2 )
a3
0 2
e
a2 2 2
da
第一节 平稳随机过程的概念
一、平稳随机过程的概念 二、应用举例 三、小结
一、平稳随机过程的概念
在实际中, 有相当多的随机过程, 不仅它现 在的状态, 而且它过去的状态, 都对未来状态的 发生有着很强的影响.
如果过程的统计特性不随时间的推移而变 化, 则称之为平稳随机过程.
1. 定义
如果对于任意的n( 1,2, ), t1, t2 , , tn T和 任意实数h,当t1 h, t2 h, , tn h T时, n维随机 变量 ( X (t1 ), X (t2 ), , X (tn )) 和 ( X (t1 h), X (t2 h), , X (tn h))
平稳过程数字特征的特点: (设平稳过程X (t)的均值函数E[ X (t)]存在) (1) 平稳过程的所有样本曲线都在水平直线
x(t) X 上下波动,平均偏离度为X .
(2) 设平稳过程X (t)的自相关函数 Rx (t1, t2 ) E[ X (t1 ) X (t2 )]存在.
那么平稳过程的自相关函数仅是t2 t1 的单
(2) 宽平稳的正态过程必定也是严平稳的.
定义2 同时考虑两个平稳过程: X (t) 和 Y (t)
如果它们的互相关函数也只是时间差的单 变量函数, 即
RXY (t,t ) E[ X (t)Y (t )] RXY ( ),
那么,称X (t) 和 Y (t)是平稳相关的,或两过程是 联合宽平稳的.
如果电流在[t,t )内变号奇数次 X (t)和X (t )乘积为 I 2,
事件 {X (t)X (t ) I 2}的概率为
P( A0 ) P( A2 ) P( A4 ) ...
事件 {X (t)X (t ) I 2}的概率为
P( A1 ) P( A3 )
E[ X (t)X (t )] I 2 P( A2k ) I 2 P( A2k1)
即事件
Ak {N (t, t ) k}
的概率为
P(
Ak
)
( )k
k!
e
,
k 0,1,2,
其中 0是单位时间内变号次数的数学期望.
试讨论 X (t) 的平稳性.
解 E[X (t)] 0
下面计算 E[ X (t)X (t )] 如果电流在[t,t )内变号偶数次
X (t)和X (t )必同号且乘积为I 2,
具有相同的分布函数, 则称随机过程{ X (t), t T} 具有平稳性, 并同时称此过程为平稳随机过程, 或简称平稳过程 (严平稳过程或狭义平稳过程).
平稳过程的参数集T, 一般为: (,), [0,), {0,1,2, } 或 {0,1,2, }.
当T为离散情况, 称平稳过程X n 为平稳随
机序列, 或平稳时间序列. 说明 (1) 将随机过程划分为平稳过程和非平稳过程有重 要的实际意义. 过程若是平稳的可使问题的分析尤 为简化. (2) 平稳过程的数字特征有很好的性质.