(湘教版)高中数学选修2-2(全册)课堂练习汇总

合集下载

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2 -2 (全册)同步练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度一、根底达标1.设物体的运动方程s=f(t) ,在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2 ,那么从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2 ,那么在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0答案 D解析v=错误!=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2 ,那么t=2时,此木块水平方向的瞬时速度为()A.2 B.1 C.12 D.14答案 C解析ΔsΔt=18(2+Δt)2-18×22Δt=12+18Δt→12(Δt→0).5.质点运动规律s=2t2+1 ,那么从t=1到t=1+d时间段内运动距离对时间的变化率为________.答案4+2d解析v=2(1+d)2+1-2×12-11+d-1=4+2d.6.某个物体走过的路程s(单位:m)是时间t(单位:s)的函数:s=-t2+1.(1)t=2到t=2.1;(2)t =2到t =2.01; (3)t =2到t =2.001.那么三个时间段内的平均速度分别为________ ,________ ,________ ,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时 ,需在2 s 内完成刹车 ,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20 ,求:(1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2 ,那么在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2 ,那么从t =0到t =1时间段内的平均速度为________ ,在t =1到t =1+Δt 时间段内的平均速度为________ ,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g 解析 12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时 ,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6 ,那么g =________. 答案解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时 ,2g +12g Δt →2g . ∴2g =19.6 ,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2 , ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?解(1)由题图①在(0 ,t]时间段内,甲、乙跑过的路程s甲<s乙,故有s甲t<s乙t即在任一时间段(0 ,t]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t-d,t)时间段内,路程增量Δs乙>Δs甲,所以Δs乙d>Δs甲d即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快.三、探究与创新13.质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.解s(Δt+4)-s(4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25 , 当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v2=12×10×252=3 125(J)4.问题探索- -求作抛物线的切线一、根底达标1.曲线y=2x2上一点A(1,2) ,那么A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.曲线y=12x2-2上的一点P(1 ,-32) ,那么过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,那么切点坐标为() A.(-1 ,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1 ,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.假设曲线y=x2+1在曲线上某点处的斜率为2 ,那么曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2 ,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2 ,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0 ,y0) ,f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0 ,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0 ,由于切线平行于2x-y+4=0 ,∴2x0=2 ,x0=1 , 即P点坐标为(1,1) ,切线方程为y-1=2(x-1) ,即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1 ,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1 ,-1)处的切线的斜率为1 ,切线方程为y+1=1×(x-1) ,即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7 ,当Δx→0时,Δx+7→7 ,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7 ,那么A点坐标为________.答案(2,10)解析设A点坐标为(x0 ,x20+3x0) ,那么f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3) ,当Δx→0时,Δx+(2x0+3)→2x0+3 ,∴2x0+3=7 ,∴x0=2.x20+3x0=10.A点坐标为(2,10).11.抛物线y=x2+1 ,求过点P(0,0)的曲线的切线方程.解设抛物线过点P的切线的切点为Q(x0 ,x20+1).那么(x0+Δx)2+1-(x20+1)Δx=Δx+2x0.Δx→0时,Δx+2x0→2x0.∴x20+1-0x0-0=2x0 ,∴x0=1或x0=-1.即切点为(1,2)或(-1,2).所以,过P(0,0)的切线方程为y=2x或y=-2x.即2x-y=0或2x+y=0.三、探究与创新12.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.解设切点A(x0 ,y0) ,(x0+d)3-(x0+d)2+1-(x30-x20+1)d=3x20d+3x0d2+d3-2x0d-d2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0 ,∴3x 20-2x 0=1 ,∴x 0=1或x 0=-13 ,代入C的方程得 ⎩⎪⎨⎪⎧x 0=1 y 0=1或⎩⎪⎨⎪⎧x 0=-13 y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1y 0=1时 ,a =0(舍去) ,当⎩⎪⎨⎪⎧x 0=-13 y 0=2327时 ,a =3227 ,即切点坐标为(-13 ,2327) ,a =3227.4. 导数的概念和几何意义一、根底达标1.设f ′(x 0)=0 ,那么曲线y =f (x )在点(x 0 ,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B2.函数y =f (x )的图象如图 ,那么f ′(x A )与f ′(x B )的大小关系是( )A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A ,即f′(x B)>f′(x A).3.曲线y=2x2上一点A(2,8) ,那么在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x ,∴f′(2)=8.答案 C4.函数f(x)在x=1处的导数为3 ,那么f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________ ,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2 ,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1) ,即3x-y+1=0.6.假设曲线y=x2-1的一条切线平行于直线y=4x-3 ,那么这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0) ,那么由题意知f′(x0)=4 ,即2x0=4 ,∴x0=2 ,代入曲线方程得y0y-3=4(x-2) ,即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27 ,∴曲线在点(3,27)处的切线方程为y-27=27(x-3) , 即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0) ,(0 ,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1) ,即y=3x-1.9.函数y=f(x)图象在M(1 ,f(1))处的切线方程为y=12x+2 ,那么f(1)+f′(1)=________. 答案 3解析 由切点在切线上. ∴f (1)=12×1+2=52.切线的斜率f ′(1)=12.∴f (1)+f ′(1)=3.10.假设曲线y =x 2+ax +b 在点(0 ,b )处的切线方程为x -y +1=0 ,那么a ,b 的值分别为________ ,________. 答案 1 1解析 ∵点(0 ,b )在切线x -y +1=0上 , ∴-b +1=0 ,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.曲线y =x 3+1 ,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0 ,y 0) ,那么y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20 ,切线的斜率为k =3x 20.点(1,2)在切线上 ,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时 ,切线方程为3x -y -1=0 , 当x 0=-12时 ,切线方程为3x -4y +5=0.所以 ,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52 ,6)的切线方程. 解 由得 ,Δyd =2x +d , ∴当d →0时 ,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0 ,x 20) , 又因为此切线过点(52 ,6)和点(x 0 ,x 20) ,其斜率应满足x20-6x0-52=2x0 ,由此x0应满足x20-5x0+6=0.解得x0=2或3.即切线过抛物线y=x2上的点(2,4) ,(3,9).所以切线方程分别为y-4=4(x-2) ,y-9=6(x-3).化简得4x-y-4=0,6x-y-9=0 ,此即是所求的切线方程.三、探究与创新13.求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.解设切点为P(a ,b) ,函数y=x3+3x2-5的导数为y′=3x2+6x.故切线的斜率k=y′|x=a=3a2+6a=-3 ,得a=-1 ,代入y=x3+3x2-5得,b=-3 ,即P(-1 ,-3).故所求直线方程为y+3=-3(x+1) ,即3x+y+6=0.4.导数的运算法那么一、根底达标1.设y=-2e x sin x ,那么y′等于() A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案 D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=() A.a B.±a C.-a D.a2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2 ,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直 ,那么a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2 ,即a =-2.4.曲线y =x 3在点P 处的切线斜率为k ,那么当k =3时的P 点坐标为( )A .(-2 ,-8)B .(-1 ,-1)或(1,1)C .(2,8)D.⎝ ⎛⎭⎪⎪⎫-12 -18 答案 B解析 y ′=3x 2 ,∵k =3 ,∴3x 2=3 ,∴x =±1 , 那么P 点坐标为(-1 ,-1)或(1,1).5.设函数f (x )=g (x )+x 2 ,曲线y =g (x )在点(1 ,g (1))处的切线方程为y =2x +1 ,那么曲线y =f (x )在点(1 ,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.f (x )=13x 3+3xf ′(0) ,那么f ′(1)=________. 答案 1解析 由于f ′(0)是一常数 ,所以f ′(x )=x 2+3f ′(0) , 令x =0 ,那么f ′(0)=0 , ∴f ′(1)=12+3f ′(0)=1. 7.求以下函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3 , ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12 ,∴曲线在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为12. 9.点P 在曲线y =4e x +1上 ,α为曲线在点P 处的切线的倾斜角 ,那么α的取值范围是( )A .[0 ,π4) B .[π4 ,π2) C .(π2 ,3π4] D .[3π4 ,π)答案 D解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1 ,设t =e x ∈(0 ,+∞) ,那么y ′ =-4tt 2+2t +1=-4t +1t +2,∵t +1t ≥2 ,∴y ′∈[-1,0) ,α∈[3π4 ,π). 10.(2021·江西)设函数f (x )在(0 ,+∞)内可导 ,且f (e x )=x +e x ,那么f ′(1)=________. 答案 2解析 令t =e x ,那么x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1 ,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上 ,可令切点坐标为(x 0 ,x 30).由题意 ,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20 ,即x 30x 0-2=3x 20 ,解得x 0=0或x 0=3.当x 0=0时 ,得切点坐标是(0,0) ,斜率k =0 ,那么所求直线方程是y =0; 当x 0=3时 ,得切点坐标是(3,27) ,斜率k =27 , 那么所求直线方程是y -27=27(x -3) , 即27x -y -54=0.综上 ,所求的直线方程为y =0或27x -y -54=0.12.曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线 ,求曲线的切线方程. 解 设切点为(x 0 ,y 0) ,那么由导数定义得切线的斜率k =f ′(x 0)=3x 20-3 ,∴切线方程为y =(3x 20-3)x +16 , 又切点(x 0 ,y 0)在切线上 , ∴y 0=3(x 20-1)x 0+16 ,即x 30-3x 0=3(x 20-1)x 0+16 ,解得x 0=-2 ,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2 ,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值 ,并求此定值. (1)解 由7x -4y -12=0得y =74x -3.当x =2时 ,y =12 ,∴f (2)=12 ,①又f ′(x )=a +bx 2 , ∴f ′(2)=74 ,②由① ,②得⎩⎪⎨⎪⎧2a -b 2=12 a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0 ,y 0)为曲线上任一点 ,由y ′=1+3x 2知 曲线在点P (x 0 ,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0) ,即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎪⎫0 -6x 0. 令y =x 得y =x =2x 0 ,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0 ,y 0)处的切线与直线x =0 ,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0 ,y =x 所围成的三角形的面积为定值 ,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、根底达标1.以下结论中正确的个数为( )①y =ln 2 ,那么y ′=12;②y =1x 2 ,那么y ′|x =3=-227;③y =2x ,那么y ′=2x ln 2;④y =log 2x ,那么y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数 ,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4 ,那么点P 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫12 2B.⎝ ⎛⎭⎪⎪⎫12 2或⎝ ⎛⎭⎪⎪⎫-12 -2C.⎝ ⎛⎭⎪⎪⎫-12 -2D.⎝ ⎛⎭⎪⎪⎫12 -2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4 ,x =±12 ,应选B. 3.f (x )=x a ,假设f ′(-1)=-4 ,那么a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1 ,f ′(-1)=a (-1)a -1=-4 ,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析∵f ′(x )=3x 2 ,设切点为(x 0 ,y 0) ,那么3x 20=1 ,得x 0=±33 ,即在点⎝ ⎛⎭⎪⎪⎫33 39和点⎝ ⎛⎭⎪⎪⎫-33 -39处有斜率为1的切线. 5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2 ,∴y ′|x =3=-1 , ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.假设曲线在点处的切线与两个坐标轴围成的三角形的面积为18 ,那么a =________. 答案 64 解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18 ,∴a =64.7.求以下函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.直线y =kx 是曲线y =e x 的切线 ,那么实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0 ,y 0) ,那么⎩⎪⎨⎪⎧y 0=kx 0 y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0 ,∴x 0=1 ,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4 ,那么a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1 ,∴a =1.10.点P 是曲线y =e x 上任意一点 ,那么点P 到直线y =x 的最|小距离为________. 答案 22解析 根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0 ,y 0) ,该切点即为与y =x 距离最|近的点 ,如图.那么在点(x 0 ,y 0)处的切线斜率为1 ,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1 ,得x 0=0 ,代入y =e x ,得y 0=1 ,即P (0,1).利用点到直线的距离公式得距离为22.11.f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1 , 由f ′(x )+g ′(x )≤0 ,得-sin x +1≤0 , 即sin x ≥1 ,但sin x ∈[-1,1] , ∴sin x =1 ,∴x =2k π+π2 ,k ∈Z .12.抛物线y =x 2 ,直线x -y -2=0 ,求抛物线上的点到直线的最|短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线 ,对应的切点到直线x-y-2=0的距离最|短,设切点坐标为(x0 ,x20) ,那么y′|x=x=2x0=1 ,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎪⎫1214,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最|短距离为728.三、探究与创新13.设f0(x)=sin x ,f1(x)=f′0(x) ,f2(x)=f′1(x) ,… ,f n+1(x)=f′n(x) ,n∈N ,试求f2 014(x).解f1(x)=(sin x)′=cos x ,f2(x)=(cos x)′=-sin x ,f3(x)=(-sin x)′=-cos x ,f4(x)=(-cos x)′=sin x ,f5(x)=(sin x)′=f1(x) ,f6(x)=f2(x) ,… ,f n+4(x)=f n(x) ,可知周期为4 ,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、根底达标1.命题甲:对任意x∈(a ,b) ,有f′(x)>0;命题乙:f(x)在(a ,b)内是单调递增的,那么甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1) ,故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞ ,-1) C.(-∞ ,1) D.(-∞ ,+∞)答案 A解析∵y=12x2-ln x的定义域为(0 ,+∞) ,∴y′=x-1x,令y′<0 ,即x-1x<0 ,解得:0<x<1或x<-1.又∵x>0 ,∴0<x<1 ,应选A.3.函数f(x)=x3+ax2+bx+c ,其中a ,b ,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D.既不是增函数也不是减函数答案 A解析求函数的导函数f′(x)=3x2+2ax+b ,导函数对应方程f′(x)=0的Δ=4(a2-3b)<0 ,所以f′(x)>0恒成立,故f(x)是增函数.4.以下函数中,在(0 ,+∞)内为增函数的是() A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x答案 B解析 显然y =sin x 在(0 ,+∞)上既有增又有减 ,故排除A ;对于函数y =x e 2 ,因e 2为大于零的常数 ,不用求导就知y =x e 2在(0 ,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33 ,故函数在⎝ ⎛⎭⎪⎫-∞ -33 ,⎝ ⎛⎭⎪⎫33 +∞上为增函数 , 在⎝ ⎛⎭⎪⎪⎫-33 33上为减函数;对于D ,y ′=1x -1 (x >0). 故函数在(1 ,+∞)上为减函数 , 在(0,1)上为增函数.应选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎪⎫-32 3内可导 ,其图象如下图 ,记y =f (x )的导函数为y=f ′(x ) ,那么不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤-13 1∪[2,3)6.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞ ,-1) 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2 ,注意到函数定义域为(-∞ ,-1)∪(2 ,+∞) ,故递减区间为(-∞ ,-1).7.函数f (x )=x 3+ax +8的单调递减区间为(-5,5) ,求函数y =f (x )的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间 ,那么-5,5是方程3x 2+a =0的根 ,∴af′(x)=3x2-75 ,令f′(x)>0 ,那么3x2-75>0 ,解得x>5或x<-5 ,∴函数y=f(x)的单调递增区间为(-∞ ,-5)和(5 ,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析由f(x)与f′(x)关系可选A.9.设f(x) ,g(x)在[a ,b]上可导,且f′(x)>g′(x) ,那么当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0 ,∴(f(x)-g(x))′>0 ,∴f (x )-g (x )在[a ,b ]上是增函数 , ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ) , ∴f (x )+g (a )>g (x )+f (a ).10.(2021·大纲版)假设函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞是增函数 ,那么a 的取值范围是________. 答案 [3 ,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞上是增函数 ,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立 , 即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立. 令h (x )=1x 2-2x ,那么h ′(x )=-2x 3-2 , 当x ∈⎝ ⎛⎭⎪⎪⎫12 +∞时 ,h ′(x )<0 ,那么h (x )为减函数 , 所以h (x )<h ⎝ ⎛⎭⎪⎫12=3 ,所以a ≥3.11.求以下函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0 ,+∞) ,y ′=1-1x , 由y ′>0 ,得x >1;由y ′<0 ,得0<x <1.∴函数y =x -ln x 的单调增区间为(1 ,+∞) ,单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎪⎫-32 +∞.∵y =ln(2x +3)+x 2 ,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0 ,即-32<x <-1或x >-12时 , 函数y =ln(2x +3)+x 2单调递增; 当y ′<0 ,即-1<x <-12时 , 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎪⎫-32 -1 ,⎝ ⎛⎭⎪⎪⎫-12 +∞ ,单调递减区间为⎝ ⎛⎭⎪⎪⎫-1 -12. 12.函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2) ,且在点M (-1 ,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2) ,知d =2 , ∴f (x )=x 3+bx 2+cx +2 ,f ′(x )=3x 2+2bx +c . 由在点M (-1 ,f (-1))处的切线方程为6x -y +7=0 , 知-6-f (-1)+7=0 ,即f (-1)=1 ,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6 -1+b -c +2=1 即⎩⎪⎨⎪⎧2b -c =-3 b -c =0 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6xf ′(x )>0 , 得x <1-2或x >1+2; 令f ′(x )<0 ,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞ ,1-2)和(1+ 2 ,+∞) ,单调递减区间为(1- 2 ,1+2). 三、探究与创新13.函数f(x)=mx3+nx2(m、n∈R ,m≠0) ,函数y=f(x)的图象在点(2 ,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解(1)由条件得f′(x)=3mx2+2nx ,又f′(2)=0 ,∴3m+n=0 ,故n=-3m.(2)∵n=-3m ,∴f(x)=mx3-3mx2 ,∴f′(x)=3mx2-6mx.令f′(x)>0 ,即3mx2-6mx>0 ,当m>0时,解得x<0或x>2 ,那么函数f(x)的单调增区间是(-∞,0)和(2 ,+∞);当m<0时,解得0<x<2 ,那么函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞ ,0)和(2 ,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、根底达标y=f(x)的定义域为(a,b) ,y=f′(x)的图象如图,那么函数y=f(x)在开区间(a ,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0 ,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2. "函数y=f(x)在一点的导数值为0”是 "函数y=f(x)在这点取得极值〞的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3 ,f′(x)=3x2 ,f′(0)=0 ,不能推出f(x)在x=0处取极值,反之成立.应选B.3.假设a>0 ,b>0 ,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,那么ab的最|大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b ,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0 ,∴a+b=6.又a>0 ,b>0 ,∴a+b≥2ab,∴2ab≤6 ,∴ab≤9 ,当且仅当a=b=3时等号成立,∴ab的最|大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5 ,极小值-27B.极大值5 ,极小值-11C.极大值5 ,无极小值D.极小值-27 ,无极大值答案 C解析由y′=3x2-6x-9=0 ,得x=-1或x=3 ,当x<-1或x>3时,y′>0 ,当-1<x<3时,y′x=-1时,函数有极大值5;x取不到3 ,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,那么实数a的取值范围是________.答案(-∞ ,-1)∪(2 ,+∞)解析∵f′(x)=3x2+6ax+3(a+2) ,令3x2+6ax+3(a+2)=0 ,即x2+2ax+a +2=0 ,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根 ,即Δ=4a 2-4a -8>0 ,解得a >2或a <-1.6.假设函数y =x 3-3ax +a 在(1,2)内有极小值 ,那么实数a 的取值范围是________. 答案 (1,4)解析 y ′=3x 2-3a ,当a ≤0时 ,y ′≥0 ,函数y =x 3-3ax +a 为单调函数 ,不合题意 ,舍去;当a >0时 ,y ′=3x 2-3a =0⇒x =±a ,不难分析 ,当 1<a <2 ,即1<a <4时 ,函数y =x 3-3ax +a 在(1,2)内有极小值. 7.求函数f (x )=x 2e -x 的极值. 解 函数的定义域为R , f ′(x )=2x e -x+x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0 ,得x =0或x =2.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表: x (-∞ ,0) 0 (0,2) 2 (2 ,+∞) f ′(x ) -0 +0 -f (x )4e -2当x =2时 ,函数有极大值 ,且为f (2)=4e -2. 二、能力提升8.函数f (x ) ,x ∈R ,且在x =1处 ,f (x )存在极小值 ,那么( )A .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )<0B .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )>0C .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )>0D .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值 , ∴x <1时 ,f ′(x )<0 ,x >1时 ,f ′(x )>0.9.(2021·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点 ,以下结论一定正确的选项是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点 ,并不是最|大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数 ,故-x 0应是f (-x )的极大值点 ,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数 ,故x 0应是-f (x )的极小值点.跟-x 0没有关系 ,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.y =f (x )的导函数的图象如下图 ,给出以下判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-3 -12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-12 3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时 ,函数y =f (x )有极小值; ⑤当x =-12时 ,函数y =f (x )有极大值. 那么上述判断正确的选项是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定 ,当x ∈(-∞ ,-2)时 ,f ′(x )<0 ,所以f (x )在(-∞ ,-2)上为减函数 ,同理f (x )在(2,4)上为减函数 ,在(-2,2)上是增函数 ,在(4 ,+∞)上为增函数 ,所以可排除①和② ,可选择③.由于函数在x =2的左侧递增 ,右侧递减 ,所以当x =2时 ,函数有极大值;而在x = -12的左右两侧 ,函数的导数都是正数 ,故函数在x =-12的左右两侧均为增函数 ,所以x =-12不是函数的极值点.排除④和⑤.11.f (x )=x 3+12mx 2-2m 2x -4(m 为常数 ,且m >0)有极大值-52 ,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ) , 令f ′(x )=0 ,那么x =-m 或x =23m . 当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x (-∞ ,-m ) -m⎝ ⎛⎭⎪⎪⎫-m 23m 23m ⎝ ⎛⎭⎪⎪⎫23m +∞ f ′(x ) +0 -0 +f (x )极大值极小值∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52 ,∴m =1. 12.设a 为实数 ,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时 ,曲线y =f (x )与x 轴仅有一个交点 ? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0 ,那么x =-13或x =1.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎪⎫-∞ -13 -13 ⎝ ⎛⎭⎪⎪⎫-13 1 1 (1 ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1 , 由此可知 ,x 取足够大的正数时 ,有f (x )>0 , x 取足够小的负数时 ,有f (x )<0 ,所以曲线y =f (x )与x 轴至|少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点 ,∴f (x )极大值<0或f (x )极小值>0 , 即527+a <0或a -1>0 ,∴a <-527或a >1 ,∴当a ∈⎝ ⎛⎭⎪⎪⎫-∞ -527∪(1 ,+∞)时 ,曲线y =f (x )与x 轴仅有一个交点. 三、探究与创新13.(2021·新课标Ⅱ)函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点 ,求m ,并讨论f (x )的单调性; (2)当m ≤2时 ,证明f (x )>0. (1)解 f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0 ,所以m =1. 于是f (x )=e x -ln(x +1) ,定义域为(-1 ,+∞) , f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1 ,+∞)单调递增 ,且f ′(0)=0 ,因此当 x ∈(-1,0)时 ,f ′(x )<0;当x ∈(0 ,+∞)时 ,f ′(x )>0. 所以f (x )在(-1,0)单调递减 ,在(0 ,+∞)单调递增. (2)证明 当m ≤2 ,x ∈(-m ,+∞)时 ,ln(x +m )≤ ln(x +2) ,故只需证明当m =2时 ,f (x )>0. 当m =2时 , 函数f ′(x )=e x -1x +2在(-2 ,+∞)单调递增.又f′(-1)<0 ,f′(0)>0 ,故f′(x)=0在(-2 ,+∞)有唯一实根x0 , 且x0∈(-1,0).当x∈(-2 ,x0)时,f′(x)<0;当x∈(x0 ,+∞)时,f′(x)>0 ,从而当x=x0时,f(x)取得最|小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0 ,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、根底达标1.函数y=f(x)在[a ,b]上() A.极大值一定比极小值大B.极大值一定是最|大值C.最|大值一定是极大值D.最|大值一定大于极小值答案 D解析由函数的最|值与极值的概念可知,y=f(x)在[a,b]上的最|大值一定大于极小值.2.函数y=x e-x ,x∈[0,4]的最|大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x) ,令y′=0 ,∴x=1 ,∴f(0)=0 ,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最|大值,应选B.3.函数y=ln xx的最|大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得xx>e时,y′<0;当0<x<e时,y′>0.y极大值=f(e)=1e,在定义域(0 ,+∞)内只有一个极值,所以y max=1 e.4.函数y=4xx2+1在定义域内() A.有最|大值2 ,无最|小值B.无最|大值,有最|小值-2 C.有最|大值2 ,最|小值-2 D.无最|值答案 C解析令y′=4(x2+1)-4x·2x(x2+1)2=-4x2+4(x2+1)2=0 ,得xx变化时,y′ ,y随x的变化如下表:x (-∞ ,-1)-1(-1,1)1(1 ,+∞) y′-0+0-y 极小值极大值最|大值2.5.函数f(x)=e x-2x+a有零点,那么a的取值范围是________.答案(-∞ ,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点 ,即方程e x -2x +a =0有实根 ,即函数 g (x )=2x -e x ,y =a 有交点 ,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞ ,ln 2)上递增 ,在(ln 2 ,+∞)上递减 ,因而g (x )=2x -e x 的值域为 (-∞ ,2ln 2-2] ,所以要使函数g (x )=2x -e x ,y =a 有交点 ,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的最|大值是________. 答案π6+ 3 解析 y ′=1-2sin x =0 ,x =π6 ,比拟0 ,π6 ,π2处的函数值 ,得y max =π6+ 3. 7.函数f (x )=2x 3-6x 2+a 在[-2,2]上有最|小值-37 ,求a 的值及f (x )在 [-2,2]上的最|大值.解 f ′(x )=6x 2-12x =6x (x -2) , 令f ′(x )=0 ,得x =0或x =2 ,当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) +0 - 0 f (x )-40+a极大值a-8+amin 当x =0时 ,f (x )的最|大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2 ,g (x )=ln x 的图象分别交于点M ,N ,那么当|MN |到达最|小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如下图 ,由图可以看出|MN |=y =t 2-ln t (t >0).y′=2t-1t=2t2-1t=2⎝⎛⎭⎪⎫t+22⎝⎛⎭⎪⎫t-22t.当0<t<22时,y′<0 ,可知y在⎝⎛⎭⎪⎫22上单调递减;当t>22时,y′>0 ,可知y在⎝⎛⎭⎪⎫22+∞上单调递增.故当t=22时,|MN|有最|小值.9.(2021·湖北重点中学检测)函数f(x)=x3-tx2+3x,假设对于任意的a∈[1,2] ,b ∈(2,3] ,函数f(x)在区间[a ,b]上单调递减,那么实数t的取值范围是() A.(-∞ ,3] B.(-∞ ,5] C.[3 ,+∞) D.[5 ,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3 ,由于函数f(x)在(a,b)上单调递减,那么有f′(x)≤0在[a ,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2] ,b∈(2,3] ,当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最|大值,即y max=32⎝⎛⎭⎪⎫3+13=5 ,所以t≥5 ,应选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最|大值是2 ,那么f(x)在[-1,1]上的最|小值是________.答案-1 2解析f′(x)=3x2-3x ,令f′(x)=0得x=0 ,或x=1.∵f(0)=a ,f(-1)=-52+a ,f(1)=-12+a ,∴f(x)max=a=2.∴f (x )min =-52+a =-12.11.函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)假设函数f (x )在x =-1和x =3处取得极值 ,试求a ,b 的值; (2)在(1)的条件下 ,当x ∈[-2,6]时 ,f (x )<2|c |恒成立 ,求c 的取值范围. 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值 , ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9 ,令f ′(x )=0 ,得x =-1或x =3. 当x 变化时 ,f ′(x ) ,f (x )随x 的变化如下表:x (-∞ ,-1)-1 (-1,3) 3 (3 ,+∞) f ′(x ) +0 -0 +f (x )极大值c +5极小值 c -27∴当x ∈[-2,6]时 ,f (x )的最|大值为c +54 , 要使f (x )<2|c |恒成立 ,只要c +54<2|c |即可 , 当c ≥0时 ,c +54<2c ,∴c >54; 当c <0时 ,c +54<-2c ,∴c <-18.∴c ∈(-∞ ,-18)∪(54 ,+∞) ,此即为参数c 的取值范围. 12.函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)假设f (x )在区间[-2,2]上的最|大值为20 ,求它在该区间上的最|小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0 ,解得x<-1或x>3 ,∴函数f(x)的单调递减区间为(-∞ ,-1) ,(3 ,+∞).(2)∵f(-2)=8+12-18+a=2+a ,f(2)=-8+12+18+a=22+a ,∴f(2)>f(-2).于是有22+a=20 ,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0 ,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2 ,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最|大值和最|小值,∴f(-1)=1+3-9-2=-7 ,即f(x)最|小值为-7.三、探究与创新13.(2021·新课标Ⅰ)函数f(x)=x2+ax+b,g(x)=e x(cx+d) ,假设曲线y=f(x)和曲线y=g(x)都过点P(0,2) ,且在点P处有相同的切线y=4x+2.(1)求a ,b ,c ,d的值;(2)假设x≥-2时,f(x)≤kg(x) ,求k的取值范围.解(1)由得f(0)=2 ,g(0)=2 ,f′(0)=4 ,g′(0)=4 ,而f′(x)=2x+a ,g′(x)=e x(cx+d+c) ,∴a=4 ,b=2 ,c=2 ,d=2.(2)由(1)知,f(x)=x2+4x+2 ,g(x)=2e x(x+1) ,设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2) ,F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0 ,即k≥1 ,令F′(x)=0得,x1=-ln k ,x2=-2 ,①假设1≤k<e2 ,那么-2<x1≤0 ,∴当x∈(-2 ,x1)时,F′(x)<0 ,当x∈(x1 ,+∞)时,F′(x)>0 ,即F(x)在(-2 ,x1)单调递减,在(x1 ,+∞)单调递增,故F(x)在x=x1取最|小值F(x1) ,而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0 ,即f(x)≤kg(x)恒成立.②假设k=e2 ,那么F′(x)=2e2(x+2)(e x-e2) ,∴当x ≥-2时 ,F ′(x )≥0 ,∴F (x )在(-2 ,+∞)单调递增 ,而F (-2)=0 ,∴当x ≥-2时 ,F (x )≥0 ,即f (x )≤kg (x )恒成立 ,③假设k >e 2 ,那么F (-2)=-2k e -2+2=-2e -2(k -e 2)<0 ,∴当x ≥-2时 ,f (x )≤kg (x )不可能恒成立.综上所述 ,k 的取值范围为[1 ,e 2].4.4 生活中的优化问题举例一、根底达标1.方底无盖水箱的容积为256 ,那么最|省材料时 ,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 那么V (x )=x 2·h =256 ,∴h =256x 2 ,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0 ,解得x =8 ,∴h =25682=4.2.某银行准备新设一种定期存款业务 ,经预算 ,存款量与存款利率的平方成正比 ,比例系数为k (k >0).贷款的利率为0.0486 ,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486) ,假设使银行获得最|大收益 ,那么x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B。

2019年高中数学湘教版选修2-2讲义+精练:第5章章末小结含答案

2019年高中数学湘教版选修2-2讲义+精练:第5章章末小结含答案

1.虚数单位i(1)i 2=-1(即-1的平方根是±i).(2)实数可以与i 进行四则运算,进行运算时原有的加、乘运算律仍然成立.(3)i 的幂具有周期性:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N +),则有i n +i n +1+i n +2+i n+3=0(n ∈N +). 2.复数的分类复数a +b i(a ,b ∈R)⎩⎨⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0)非纯虚数(a ≠0)3.共轭复数设复数z 的共轭复数为z ,则 (1)z ·z =|z |2=|z |2;(2)z 为实数⇔z =z ;z 为纯虚数⇔z =-z . 4.复数相等的条件复数相等的充要条件为a +b i =c +d i ⇔a =c ,b =d (a ,b ,c ,d ∈R).特别地,a +b i =0⇔a =b =0(a ,b ∈R).5.复数的运算(1)加法和减法运算:(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R).(2)乘法和除法运算:复数的乘法按多项式相乘进行运算,即(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;复数除法是乘法的逆运算,其实质是分母实数化.复数的概念[例1] 复数z =log 3(x 2-3x -3)+ilog 2(x -3),当x 为何实数时, (1)z ∈R ?(2)z 为虚数?(3)z 为纯虚数?[解] (1)∵一个复数是实数的充要条件是虚部为0,∴⎩⎪⎨⎪⎧x 2-3x -3>0, ①log 2(x -3)=0, ②由②得x =4,经验证满足①式. ∴当x =4时,z ∈R.(2)∵一个复数是虚数的充要条件是虚部不等于0,∴⎩⎪⎨⎪⎧x 2-3x -3>0,log 2(x -3)≠0,x -3>0.解得⎩⎨⎧x >3+212或x <3-212,x >3且x ≠4,即3+212<x <4或x >4. ∴当3+212<x <4或x >4时,z 为虚数.(3)∵一个复数是纯虚数的充要条件是其实部为0且虚部不为0, ∴⎩⎪⎨⎪⎧log 3(x 2-3x -3)=0,log 2(x -3)≠0,x -3>0.解得⎩⎪⎨⎪⎧x =-1或x =4,x >3且x ≠4.无解.∴复数z 不可能是纯虚数.解决此类问题的关键是正确理解复数的分类与复数的实部和虚部之间的关系,另外要注意某些函数的定义域.1.若复数z =a +2i1+i+(2-i)为纯虚数,求实数a .解:∵z =a +2i 1+i +(2-i)=(a +2i )(1-i )2+(2-i)=(a +2)+(2-a )i2+(2-i)=a +62-a 2i 为纯虚数,∴a +62=0,即a =-6. 2.已知z =x -i 1-i(x >0),且复数ω=z (z +i)的实部减去它的虚部所得的差等于-32,求ω·ω.解:ω=z (z +i)=x -i 1-i ⎝⎛⎭⎪⎫x -i 1-i +i =x -i 1-i ·x +11-i=x +12+x 2+x 2i.根据题意x +12-x 2+x 2=-32,得x 2-1=3.∵x >0,∴x =2,∴ω=32+3i.∴ω·ω=⎝⎛⎭⎫32+3i ⎝⎛⎭⎫32-3i =454.复数的四则运算[例2] 计算: (1)(2+2i )4(1-3i )5; (2)(2-i)(-1+5i)(3-4i)+2i.[解] (1)原式=16(1+i )4(1-3i )4(1-3i )=16(2i )2(-2-23i )2(1-3i )=-644(1+3i )2(1-3i )=-16(1+3i )×4=-41+3i=-1+3i.(2)原式=(3+11i)(3-4i)+2i =53+21i +2i =53+23i.复数加减乘除运算的实质是实数的加减乘除,加减法是对应实、虚部相加减,而乘法类比多项式乘法,除法类比分式的分子分母有理化,注意i 2=-1.3.计算1-i (1+i )2+1+i(1-i )2.解:1-i(1+i )2+1+i(1-i )2=1-i 2i-1+i 2i =-2i2i =-1.4.若复数z =1-2i(i 为虚数单位),求z ·z +z . 解:∵z =1-2i ,∴z =1+2i.∴z ·z +z =(1-2i)(1+2i)+(1-2i)=5+1-2i =6-2i.复数问题实数化[例3] 设存在复数z 同时满足下列条件: (1)复数z 在复平面内对应的点位于第二象限; (2)z ·z +2i z =8+a i(a ∈R).试求a 的取值范围. [解] 设z =x +y i(x ,y ∈R),则z =x -y i. 由(1),知x <0,y >0. 又z ·z +2i z =8+a i(a ∈R), 故(x +y i)(x -y i)+2i(x +y i)=8+a i , 即(x 2+y 2-2y )+2x i =8+a i.∴⎩⎪⎨⎪⎧x 2+y 2-2y =8,2x =a . 消去x ,整理,得4(y -1)2=36-a 2, ∵y >0,∴4(y -1)2≥0. ∴36-a 2≥0.∴-6≤a ≤6.又2x =a ,而x <0,∴a <0.∴-6≤a <0. ∴a 的取值范围为[-6,0).复数问题实数化是解决复数问题的最基本也是最重要的思想方法,桥梁是设z =x +y i(x ,y ∈R),依据是复数相等的充要条件.5.已知复数z =(1-i)2+1+3i.(1)求|z |;(2)若z 2+az +b =z ,求实数a ,b 的值. 解:z =(1-i)2+1+3i =-2i +1+3i =1+i. (1)|z |=12+12= 2.(2)z 2+az +b =(1+i)2+a (1+i)+b =2i +a +a i +b =a +b +(a +2)i , ∵z =1-i ,∴a +b +(a +2)i =1-i ,∴⎩⎪⎨⎪⎧a +b =1,a +2=-1, ∴a =-3,b =4.复数的几何意义[例4] 已知z 是复数,z +2i ,z 2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围.[解] 设z =x +y i(x ,y ∈R), 则z +2i =x +(y +2)i , z 2-i =x +y i 2-i =15(x +y i)(2+i) =15(2x -y )+15(2y +x )i. 由题意知⎩⎪⎨⎪⎧y +2=0,15(2y +x )=0,∴⎩⎪⎨⎪⎧x =4,y =-2.∴z =4-2i. ∵(z +a i)2=[4+(a -2)i]2=(12+4a -a 2)+8(a -2)i ,由已知得⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0.∴2<a <6.∴实数a 的取值范围是(2,6).复数z =a +b i(a ,b ∈R)和复平面上的点P (a ,b )一一对应,和向量OP ―→一一对应,正确求出复数的实部和虚部是解决此类题目的关键.6.已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .解:设z =x +y i ,x ,y ∈R ,如图, 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |, 即⎩⎪⎨⎪⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎪⎨⎪⎧ x =-5,y =0或⎩⎪⎨⎪⎧x =-3,y =4.因为|OA |≠|BC |,所以x =-3,y =4(舍去), 故z =-5.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.把复数z 的共轭复数记作z -,i 为虚数单位.若z =1+i ,则(1+z )·z -=( ) A .3-i B .3+i C .1+3iD .3解析:(1+z )·z -=(2+i)(1-i)=3-i. 答案:A2.(全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22C. 2D .2解析:因为z =2i1+i =2i (1-i )(1+i )(1-i )=i(1-i)=1+i ,所以|z |= 2.答案:C3.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:z =z 1·z 2=(3+i)(1-i)=3-3i +i -i 2=4-2i. 在复平面内对应的点为(4,-2),位于第四象限. 答案:D4.已知z 是纯虚数,z +21-i是实数,那么z 等于( ) A .2i B .i C .-iD .-2i解析:设z =b i(b ≠0),则z +21-i =2+b i 1-i=(2+b i )(1+i )2=(2-b )+(2+b )i2.∵z +21-i是实数,∴2+b =0. ∴b =-2,∴z =-2i. 答案:D5.设z =1+i(i 是虚数单位),则2z +z 2=( ) A .-1-i B .-1+i C .1-iD .1+i解析:2z +z 2=21+i +(1+i)2=1-i +2i =1+i.答案:D6.已知复数z 1=2+a i(a ∈R),z 2=1-2i ,若z 1z 2为纯虚数,则|z 1|=( )A. 2B. 3 C .2 D. 5 解析:由于z 1z 2=2+a i 1-2i =(2+a i )(1+2i )(1-2i )(1+2i )=2-2a +(4+a )i 5为纯虚数,则a =1,则|z 1|=5,故选D. 答案:D7.若z 1=(2x -1)+y i 与z 2=3x +i(x ,y ∈R)互为共轭复数,则z 1对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:由z 1,z 2互为共轭复数,得⎩⎪⎨⎪⎧2x -1=3x ,y =-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以z 1=(2x -1)+y i =-3-i.由复数的几何意义知z 1对应的点在第三象限. 答案:C8.(全国卷Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R. 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:设复数z =a +b i(a ,b ∈R),对于p 1,∵1z =1a +b i =a -b i a 2+b 2∈R ,∴b =0,∴z ∈R ,∴p 1是真命题;对于p 2,∵z 2=(a +b i)2=a 2-b 2+2ab i ∈R ,∴ab =0,∴a =0或b =0,∴p 2不是真命题; 对于p 3,设z 1=x +y i(x ,y ∈R),z 2=c +d i(c ,d ∈R), 则z 1z 2=(x +y i)(c +d i)=cx -dy +(dx +cy )i ∈R , ∴dx +cy =0,取z 1=1+2i ,z 2=-1+2i ,z 1≠z 2, ∴p 3不是真命题;对于p 4,∵z =a +b i ∈R ,∴b =0,∴z =a -b i =a ∈R , ∴p 4是真命题. 答案:B9.若复数z =1+i(i 为虚数单位),z -是z 的共轭复数,则z 2+z -2的虚部为( ) A .0 B .-1 C .1D .-2解析:因为z =1+i ,所以z -=1-i , 所以z 2+z -2=(1+i)2+(1-i)2=2i -2i =0. 故z 2+z -2的虚部为0. 答案:A 10.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+iD .1-3i解析:由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,即z =4+2i1+i =3-i.答案:A11.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|= |z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心解析:设复数z 与复平面内的点Z 相对应,由△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3及|z -z 1|=|z -z 2|=|z -z 3|可知点Z 到△ABC 的三个顶点的距离相等,由三角形外心的定义可知,点Z 即为△ABC 的外心.答案:A12.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则( ) A .b =2,c =3 B .b =-2,c =3 C .b =-2,c =-1D .b =2,c =-1解析:因为1+2i 是实系数方程的一个复数根,所以1-2i 也是方程的根, 则1+2i +1-2i =2=-b ,(1+2i)(1-2i)=3=c , 解得b =-2,c =3. 答案:B二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C .若OC ―→=2OA ―→+OB ―→,则a =________,b =________.解析:∵OC ―→=2OA ―→+OB ―→∴1-4i =2(2+3i)+(a +b i)即⎩⎪⎨⎪⎧ 1=4+a ,-4=6+b , ∴⎩⎪⎨⎪⎧a =-3,b =-10.答案:-3 -1014.若复数z 满足方程z i =i -1,则z =________. 解析:∵z i =i -1,∴z =i -1i =(i -1)(-i)=1+i.∴z =1-i. 答案:1-i15.i 是虚数单位,⎝ ⎛⎭⎪⎫21-i 2 018+⎝ ⎛⎭⎪⎫1+i 1-i 6=________.解析:原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 009+⎝ ⎛⎭⎪⎫1+i 1-i 6=⎝⎛⎭⎪⎫2-2i 1 009+i 6=i 1009+i6=i 4×252+1+i 4+2=i +i 2=-1+i.答案:-1+i16.设z 1是复数,z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是1,则z 2的虚部是________.解析:设z 1=a +b i(a ,b ∈R),则z 1=a -b i ,∴z 2=a +b i -i(a -b i)=(a -b )-(a -b )i.由已知得a -b =1.∴z 2的虚部为-1.答案:-1三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 1=2-3i ,z 2=15-5i (2+i )2.求:(1)z 1·z 2;(2)z 1z 2. 解:z 2=15-5i (2+i )2=1-3i. (1)z 1·z 2=(2-3i)(1-3i)=-7-9i.(2)z 1z 2=2-3i 1-3i =1110+310i. 18.(本小题满分12分)已知z 1=(x +y )+(x 2-xy -2y )i ,z 2=(2x -y )-(y -xy )i ,问x ,y 取什么实数值时,(1)z 1,z 2都是实数;(2)z 1,z 2互为共轭复数.解:(1)由题意得⎩⎪⎨⎪⎧x 2-xy -2y =0,y -xy =0, 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧ x =1,y =13. 所以当⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =13时,z 1,z 2都是实数. (2)由题意得⎩⎪⎨⎪⎧ x +y =2x -y ,x 2-xy -2y =y -xy , 解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎨⎧ x =32,y =34,所以当⎩⎪⎨⎪⎧ x =0,y =0或⎩⎨⎧ x =32,y =34时,z 1,z 2互为共轭复数. 19.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i.(1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. 解:(1)∵(1+2i)z =4+3i ,∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i 5=2-i ,∴z =2+i. (2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限,∴⎩⎪⎨⎪⎧4-(a +1)2>0,4(a +1)>0,解得-1<a <1, 即实数a 的取值范围为(-1,1).20.(本小题满分12分)已知复数z 1=i(1-i)3.(1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解:(1)z 1=i(1-i)3=i(1-i)2(1-i)=2-2i ,∴|z 1|=22+(-2)2=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知 |z -z 1|max =|z 1|+r (r 为圆半径)=22+1.21.(本小题满分12分)设z 为复数z 的共轭复数,满足|z -z |=2 3.(1)若z 为纯虚数,求z .(2)若z -z 2为实数,求|z |.解:(1)设z =b i(b ∈R 且b ≠0),则z =-b i ,因为|z -z |=23,则|2b i|=23,即|b |=3,所以b =±3,所以z =±3i. (2)设z =a +b i(a ,b ∈R),则z =a -b i , 因为|z -z |=23,则|2b i|=23,即|b |=3, 因为z -z 2=a +b i -(a -b i)2=a -a 2+b 2+(b +2ab )i. z -z 2为实数, 所以b +2ab =0. 因为|b |=3,所以a =-12, 所以|z |= ⎝⎛⎭⎫-122+(±3)2=132. 22.(本小题满分12分)已知z 1是虚数,z 2=z 1+1z 1是实数,且-1≤z 2≤1. (1)求|z 1|的值以及z 1的实部的取值范围;(2)若ω=1-z 11+z 1,求证:ω为纯虚数. 解:设z 1=a +b i(a ,b ∈R ,且b ≠0).(1)z 2=z 1+1z 1=a +b i +1a +b i =⎝ ⎛⎭⎪⎫a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i. 因为z 2是实数,b ≠0,于是有a 2+b 2=1,即|z 1|=1, 所以z 2=2a .由-1≤z 2≤1,得-1≤2a ≤1,解得-12≤a ≤12, 即z 1的实部的取值范围是⎣⎡⎦⎤-12,12. (2)ω=1-z 11+z 1=1-a -b i 1+a +b i =1-a 2-b 2-2b i (1+a )2+b 2=-b a +1i. 因为a ∈⎣⎡⎦⎤-12,12,b ≠0,所以ω为纯虚数.。

湘教版高中数学选修2-2同步精练:4.4 生活中的优化问

湘教版高中数学选修2-2同步精练:4.4 生活中的优化问

1.甲工厂八年来某产品年产量与时间(单位:年)的函数关系如图所示,现有四种说法: ①前三年该产品产量增长速度越来越快;②前三年该产品产量增长速度越来越慢;③第三年后该产品停止生产;④第三年后该产品产量保持不变.其中说法正确的有( ).A .①④B .②C .①③D .②③2.要做一个圆锥形漏斗,其母线长为20,要使其体积最大,则其高为( ).A .2033B .100C .20D .2033.设底为等边三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( ).A .3VB .32VC .34VD .23V4.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400, 则总利润最大时,每年生产的产量是( ).A .100B .150C .200D .3005.用总长14.8m 的钢条制作一个长方体容器的框架,如果所制作容器的底面一边比另一边长0.5m ,那么高为__________ 时容器的容积最大,最大容积为__________.6.某厂生产某种商品x 单位的利润是L (x )=500+x -0.001x 2,生产__________单位这种商品时利润最大,最大利润是__________.7.做一个无盖的圆柱形水桶,若需容积是27π,且用料最省,则圆柱的底面半径为__________.8.一艘轮船在航行中的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,要使航行1海里所需的费用最少轮船的速度为________,航行1海里所需的费用总和最少为________.参考答案1.B2.A 如图,设底面半径为r ,高为h ,则有r 20=sin θ,h 20=cos θ,∴V (θ)=πr 2·h =8 000πsin 2θcos θ.∴V ′(θ)=16 000πsin θcos 2θ-8 000πsin 3θ.令V ′(θ)=0,解得tan θ=2,得唯一极值点.∴cos θ=33.∴h =2033.3.C 设底面边长为x ,则表面积S =32x 2+43Vx (x >0),S ′=3x 2(x 3-4V ),令S ′=0,得唯一极值点x =34V .4.D 设总利润为y 元,则y =⎩⎪⎨⎪⎧ -12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.当x ∈(400,+∞)时,y ′=-100≠0,此时y 无最值.当x ∈0,400]时,y ′=-x +300.令y ′=0,得x =300.由y ′在x =300处由正变负,故y 在x =300处有唯一极值点.又f (0)<0,f (400)<0,∴f (300)为最大值.5.1.2 m 1.8 m 3 设容器底面短边长为x m ,则另一边长为(x +0.5) m ,高为14.8-4x -4(x +0.5)4=3.2-2x .由3.2-2x >0和x >0,得0<x <1.6.设容器的容积为y m 3,则有y =x (0.5+x )·(3.2-2x )=-2x 3+2. 2x 2+1.6x (0<x <1.6). ∴y ′=-6x 2+4.4x +1.6.令y ′=0,有-6x 2+4.4x +1.6=0,解得x 1=1,x 2=-415(不合题意,舍去). 当x =1时,y 取最大值,y 最大=-2+2.2+1.6=1.8(m 3),这时高为3.2-2×1=1.2(m). ∴当高为1.2 m 时,容器的容积最大为1.8 m 3.6.500 750 L ′(x )=1-0.002x .令L ′(x )=0,得x =500,此时L (500)=750.由已知,L (x )在其定义域0,+∞)上只有一个极值点,所以生产500单位这种商品时利润最大,最大利润为750.7.3 设底面半径为R ,母线长为l ,则V =πR 2l =27π.∴l =27R 2.要使用料最省,只需使圆柱的表面积最小. ∴S 表=πR 2+2πRl =πR 2+2π·27R, S ′表=2πR -54πR 2=0,∴R =3.∵S 表有唯一极值点,故当R =3时,S 表最小. 8.20海里/时 7.2元 设速度为每小时v 海里时燃料费是每小时p 元,那么由题设的比例关系,得p =k ·v 3,其中k 为比例常数,它可以由v =10,p =6求得,即k =6103=0.006.于是有p =0.006v 3.又设当船的速度为每小时v 海里时,航行1海里所需的总费用为q 元,那么因每小时所需的总费用是0.006v 3+96(元),而航行1海里所需时间为1v 小时.所以,航行1海里的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v 2(v 3-8 000). 令q ′=0,解得v =20.又当v <20时,q ′<0;当v >20时,q ′>0,所以当v =20时,q 取得最小值,即当速度为20海里/时,航行1海里所需费用的总和最少为q =0.006v 2+96v =0.006×202+9620=7.2(元).。

湘教版高中数学选修2-2同步精练:6.3 数学归纳法 含解析

湘教版高中数学选修2-2同步精练:6.3 数学归纳法 含解析

1.用数学归纳法证明1+a+a2+…+a n+1=错误!(a≠1,n∈N+),验证n=1时等式的左边为( ).A.1 B.1+aC.1+a+a2D.1+a+a2+a32.在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步验证n等于().A.1 B.2 C.3 D.03.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( ).A.假设n=2k+1时正确,再推n=2k+3时正确B.假设n=2k-1时正确,再推n=2k+1时正确C.假设n=k时正确,再推n=k+1时正确D.假设n≤k(k≥1),再推n=k+2时正确4.用数学归纳法证明“1+错误!+错误!+…+错误!<n(n∈N+且n >1)”时,由n=k(k>1)时不等式成立,推证n=k+1时,左边应增加的项数是().A.2k-1B.2k-1 C.2k D.2k+15.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f (k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”那么,下列命题总成立的是().A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立6.用数学归纳法证明34n+2+52n+1能被14整除的过程中,当n=k+1时,34(k+1)+2+52(k+1)+1应变形为________.7.将正△ABC分割成n2(n≥2,n∈N+)个全等的小正三角形(图甲,图乙分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时),都分别依次成等差数列.若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=__________,…,f(n)=__________.甲乙8.证明tan α·tan 2α+tan 2α·tan 3α+…+tan(n-1)α·tan nα=错误!-n(n≥2,n∈N+).9.某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍代的木材量为b,设a n为n年后该地区森林木材存量.(1)求a n的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材量应不少于错误!a,如果b=错误!a,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2≈0.30)参考答案1.C 当n=1时,左边=1+a+a2.2.C 在凸n边形中,边数最少的是三角形.3.B4.C 增加的项数为(2k+1-1)-(2k-1)=2k+1-2k=2k。

2019年高中数学湘教版选修2-2讲义+精练:模块综合检测含答案

2019年高中数学湘教版选修2-2讲义+精练:模块综合检测含答案

模块综合检测(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 1=2+i ,z 2=1+i ,则 z 1z 2在复平面内对应的点位于( )A .第一象限B .第三象限C .第二象限D .第四象限解析:z 1z 2=2+i 1+i =32-i2,对应点⎝⎛⎭⎫32,-12在第四象限. 答案:D2.已知f (x )=x (2 018+ln x ),f ′(x 0)=2 019,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:由题意可知f ′(x )=2 018+ln x +x ·1x =2 019+ln x .由f ′(x 0)=2 019,得ln x 0=0,解得x 0=1. 答案:B3.若⎠⎛0k(2x -3x 2)d x =0,则k 等于( ) A .0 B .1C .0或1D .以上都不对解析:取F (x )=x 2-x 3,则F ′(x )=2x -3x 2. ∴⎠⎛0k(2x -3x 2)d x =F (k )-F (0)=k 2-k 3=0, ∴k =1或k =0(舍去). 答案:B4.曲线f (x )=x 2+a x +1在点(1,f (1))处切线的倾斜角为3π4,则实数a =( )A .1B .-1C .7D .-7解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a(x +1)2,又∵f ′(1)=tan 3π4=-1,∴a =7.答案:C5.如图所示,着色的三角形的个数依次构成数列{a n }的前4项,则这个数列的一个通项公式为( )A .a n =3n -1 B .a n =3nC .a n =3n -2nD .a n =3n -1+2n -3解析:因为a 1=1,a 2=3,a 3=9,a 4=27,猜想a n =3n -1. 答案:A6.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB ―→⊥AB ―→时,其离心离为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析:如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB ―→=(c ,b ),AB ―→=(-a ,b ).又因为FB ―→⊥AB ―→,所以FB ―→·AB ―→=b 2-ac =0, 所以c 2-a 2-ac =0, 即e 2-e -1=0,解得e =1+52或e =1-52(舍去).答案:A7.用数学归纳法证明“S n =1n +1+1n +2+1n +3+…+13n +1>1(n ∈N +)”时,S 1等于( ) A.12B.12+13C.12+13+14D .以上答案均不正确解析:当n =1时,S 1=11+1+11+2+13+1=12+13+14.答案:C8.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:由图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 由图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:B9.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”. 其中类比结论正确的个数是( ) A .0 B .1 C .2D .3解析:①②正确,③错误. 答案:C10.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2 (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )(e x )′(e x )2=f ′(x )-f (x )e x ,由题意g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x 2f (x 1). 答案:A11.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =f (x ), 所以f (x )为偶函数. 由f (x 1)<f (x 2), 得f (|x 1|)<f (|x 2|).(*)又f ′(x )=e x -1e x +x ⎝⎛⎭⎫e x +1e x =e 2x (x +1)+x -1e x , 当x ≥0时,e 2x (x +1)+x -1≥e 0=1>0, 所以f ′(x )≥0,所以f (x )在[)0,+∞上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22.答案:D12.直线y =a 分别与曲线y =2(x +1),y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3B .2C.324D.32解析:当y =a 时,2(x +1)=a ,所以x =a 2-1.设方程x +ln x =a 的根为t ,则t +ln t =a , |AB |=⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0),则g ′(t )=12-12t =t -12t,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0; 当t ∈(1,+∞)时,g ′(t )>0, 所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.答案:D二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上) 13.复数z 满足(1+i)z =|3-i|,则z -=________. 解析:∵(1+i)z =|3-i|=2, ∴z =21+i =2(1-i )2=1-i ,∴z -=1+i.答案:1+i14.观察下列式子: 1+122<32, 1+122+132<53, 1+122+132+142<74,…, 则可归纳出____________________________. 解析:根据三个式子的规律特点进行归纳可知, 1+122+132+142+…+1(n +1)2<2n +1n +1(n ∈N +). 答案:1+122+132+142+…+1(n +1)2<2n +1n +1(n ∈N +)15.一辆汽车的速度-时间曲线如图所示,则此汽车在这1 min 行驶的路程为______ m.解析:由速度-时间曲线易知,v (t )=⎩⎪⎨⎪⎧3t , t ∈[0,10],30, t ∈[10,40],-1.5t +90, t ∈[40,60],由变速直线运动的路程公式可得s =⎠⎛0103t d t +⎠⎛104030d t +⎠⎛4060(-1.5t +90)d t =1 350 (m). 答案:1 35016.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.下图中实心点的个数5,9,14,20,…,被称为梯形数.根据图形的构成,记第2 018个梯形数为a 2 018,则 a 2 018=________.解析:5=2+3=a 1, 9=2+3+4=a 2,14=2+3+4+5=a 3, …,a n =2+3+…+(n +2)=(n +1)(2+n +2)2=12(n +1)(n +4),由此可得a 2 018=2+3+4+…+2 020=12×2 019×2 022=2 019×1 011.答案:2 019×1 011三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知复数z =(1-i )2+3(1+i )2-i.(1)若复数z 1与z 在复平面上所对应的点关于虚轴对称,求z 1; (2)若实数a ,b 满足z 2+az +b =1-i ,求z 2=a +b i 的共轭复数.解:由已知得复数z =(1-i )2+3(1+i )2-i =-2i +3+3i 2-i =3+i 2-i =(3+i )(2+i )(2-i )(2+i )=5+5i5=1+i.(1) 复数z 1与z 在复平面上所对应的点关于虚轴对称, (2) 则它们实部互为相反数,虚部相等, 所以z 1=-1+i.(2)因为z 2+az +b =1-i ,所以(1+i)2+a (1+i)+b =1-i , 整理得a +b +(2+a )i =1-i ,因为a ,b ∈R ,所以a +b =1,且2+a =-1, 解得a =-3,b =4,所以复数z 2=-3+4i ,所以z 2的共轭复数为-3-4i.18.(本小题满分12分)已知函数f (x )=ax 3+bx +1的图象经过点(1,-1),且在x =1处,f (x )取得极值.求:(1)函数f (x )的解析式; (2)f (x )的单调递增区间.解:(1)由f (x )=ax 3+bx +1的图象过点(1,-1),得a +b =-2. ∵f ′(x )=3ax 2+b , ∴f ′(1)=3a +b =0,∴由⎩⎪⎨⎪⎧ a +b =-2,3a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-3.∴f (x )=x 3-3x +1. (2)∵f ′(x )=3x 2-3,∴由f ′(x )>0,得x >1或x <-1.∴f (x )的单调递增区间为(-∞,-1),(1,+∞).19.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的 取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立. 令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2,当x ∈(1,e)时,g ′(x )<0; 当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增.故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).20.(本小题满分12分)在数列{a n }中,a 1=1,a n +1=ca n +c n +1(2n +1)(n ∈N +),其中实数c ≠0.求{a n }的通项公式.解:a 2=ca 1+c 2·3=3c 2+c =(22-1)c 2+c , a 3=ca 2+c 3·5=8c 3+c 2=(32-1)c 3+c 2, a 4=ca 3+c 4·7=15c 4+c 3=(42-1)c 4+c 3, 猜测a n =(n 2-1)c n +c n -1,n ∈N +. 下面用数学归纳法证明. 当n =1时,等式成立.假设n =k 时,等式成立,即a k =(k 2-1)c k +c k -1, 则当n =k +1时, a k +1=ca k +c k +1(2k +1)=c [(k 2-1)c k +c k -1]+c k +1(2k +1) =(k 2+2k )c k +1+c k =[(k +1)2-1]c k +1+c k . 即当n =k +1时,结论成立.综上,{a n }的通项公式为a n =(n 2-1)cn+c n -1(n ∈N +).21.(本小题满分12分)某开发商用9 000万元在市区购买一块土地,用于建一幢写字楼,规划要求写字楼每层建筑面积为2 000平方米.已知该写字楼第一层的建筑费用为每平方米4 000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1)若该写字楼共x 层,总开发费用为y 万元,求函数y =f (x )的表达式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层? 解:(1)由已知,写字楼最下面一层的总建筑费用为 4 000×2 000=8 000 000(元)=800(万元), 从第二层开始,每层的建筑总费用比其下面一层多 100×2 000=200 000(元)=20(万元),写字楼从下到上各层的总建筑费用构成以800为首项,20为公差的等差数列, 所以函数表达式为y =f (x )=800x +x (x -1)2×20+9 000=10x 2+790x +9 000(x ∈N +).(2)由(1)知写字楼每平方米平均开发费用为g (x )=f (x )2 000x ×10 000=5(10x 2+790x +9 000)x =50⎝⎛⎭⎫x +900x +79, 则g ′(x )=50⎝⎛⎭⎫1-900x 2, 由g ′(x )=0及x ∈N +得,x =30. 易知当x =30时,g (x )取得最小值.所以要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为30层. 22.(本小题满分12分)已知函数f (x )=x ·ln x ,g (x )=ax 3-12x -23e .(1)求f (x )的单调递增区间和最小值;(2)若函数y =f (x )与函数y =g (x )的图象在交点处存在公共切线,求实数a 的值. 解:(1)∵f ′(x )=ln x +1,由f ′(x )>0,得x >1e ,∴f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞.又当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,则f (x )在⎝⎛⎭⎫0,1e 上单调递减, ∴f (x )的最小值为f ⎝⎛⎭⎫1e =-1e. (2)∵f ′(x )=ln x +1,g ′(x )=3ax 2-12,设公切点的横坐标为x 0,则与f (x )的图象相切的直线方程为y =(ln x 0+1)x -x 0, 与g (x )的图象相切的直线方程为y =⎝⎛⎭⎫3ax 20-12x -2ax 30-23e, ∴⎩⎨⎧ln x 0+1=3ax 20-12,-x 0=-2ax 3-23e,解得x 0ln x 0=-1e ,由(1)知x 0=1e ,∴a =e 26.。

2019年高中数学湘教版选修2-2讲义+精练:第5章5.3复数的四则运算含解析

2019年高中数学湘教版选修2-2讲义+精练:第5章5.3复数的四则运算含解析

5.3复数的四则运算[读教材·填要点]复数的四则运算一般地,设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),有 (1)加法:z 1+z 2=a +c +(b +d )i. (2)减法:z 1-z 2=a -c +(b -d )i.(3)乘法:z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i. (4)除法:z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0).[小问题·大思维]1.若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2? 提示:不能.如2+i -i>0,但2+i 与i 不能比较大小.2.复数的乘法满足我们以前学过的完全平方公式、平方差公式吗? 提示:复数的乘法类似多项式的乘法,满足完全平方公式和平方差公式. 3.如何辨析复数除法与实数除法的关系?提示:复数的除法和实数的除法有所不同,实数的除法可以直接约分、化简得出结果;而复数的除法是先将两复数的商写成分式,然后分母实数化.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x ,y ∈R),若z 1-z 2= 13-2i ,求z 1,z 2.[自主解答] z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i] =[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i.又∵z 1-z 2=13-2i ,∴(5x -3y )+(x +4y )i =13-2i.∴⎩⎪⎨⎪⎧ 5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.∴z 1=(3×2-1)+(-1-4×2)i =5-9i. z 2=[4×(-1)-2×2]-[5×2+3×(-1)]i =-8-7i.对复数进行加减运算时,先分清复数的实部与虚部,然后将实部与实部、虚部与虚部分别相加减.1.(1)计算:⎝⎛⎭⎫13+12i +(2-i)-⎝⎛⎭⎫43-32i . (2)已知复数z 满足z +1-3i =5-2i ,求z . 解:(1)⎝⎛⎭⎫13+12i +(2-i)-⎝⎛⎭⎫43-32i =⎝⎛⎭⎫13+2-43+⎝⎛⎭⎫12-1+32i =1+i. (2)法一:设z =x +y i(x ,y ∈R), 因为z +1-3i =5-2i , 所以x +y i +(1-3i)=5-2i , 即x +1=5且y -3=-2, 解得x =4,y =1, 所以z =4+i.法二:因为z +1-3i =5-2i , 所以z =(5-2i)-(1-3i)=4+i.计算:(1)(1+i)(1-i)+(-1+i); (2)⎝⎛⎭⎫-12+32i⎝⎛⎭⎫32+12i (1+i); (3)(-2+3i)÷(1+2i); (4)(5-295i)÷(7-35i).[自主解答] (1)(1+i)(1-i)+(-1+i) =1-i 2+(-1+i)=2-1+i =1+i. (2)⎝⎛⎭⎫-12+32i⎝⎛⎭⎫32+12i (1+i) =⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i) =⎝⎛⎭⎫-32+12i (1+i) =⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i.(3)原式=-2+3i 1+2i =(-2+3i )(1-2i )(1+2i )(1-2i )=(-2+6)+(3+4)i 12+22=45+75i. (4)原式=5-295i 7-35i =(5-295i )(7+35i )(7-35i )(7+35i )=(35+29×15)+(155-29×75)i72+(35)2=470-1885i94=5-25i.(1)三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算和实数的运算顺序一样. (2)复数的除法法则难以记忆,在做题时,牢记分母“实数化”即可.2.(1)已知复数z 1=4+8i ,z 2=6+9i ,求复数(z 1-z 2)i 的实部与虚部; (2)已知z 是纯虚数,z -21+i是实数,求z .解:(1)由题意得z 1-z 2=(4+8i)-(6+9i)=(4-6)+(8i -9i)=-2-i , 则(z 1-z 2)i =(-2-i)i =-2i -i 2=1-2i. 于是复数(z 1-z 2)i 的实部是1,虚部是-2. (2)设纯虚数z =b i(b ∈R), 则z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i2.由于z -21+i是实数,所以b +2=0,即b =-2,所以z =-2i.若关于x 的方程x 2+(1+2i)x -(3m -1)i =0有实根,求纯虚数m 的值.[自主解答] 设m =b i(b ≠0),x 0为一实根,代入原方程得x 20+(1+2i)x 0-(3b i -1)i =0. ∴(x 20+x 0+3b )+(2x 0+1)i =0.∴⎩⎪⎨⎪⎧x 20+x 0+3b =0,2x 0+1=0,解得⎩⎨⎧x 0=-12,b =112.∴m =112i.若将“求纯虚数m ”改为“求实数m ”,如何求解? 解:x 2+(1+2i)x -(3m -1)i =0,即(x 2+x )+(2x -3m +1)i =0,∴⎩⎪⎨⎪⎧x 2+x =0,2x -3m +1=0,∴⎩⎪⎨⎪⎧x =0,m =13或⎩⎪⎨⎪⎧x =-1,m =-13. 即m =13或-13.复数方程问题,常借助复数相等的充要条件转化为实数问题解决.3.已知关于x 的方程x 2+kx -i =0有一根是i ,求k 的值. 解:因为i 为方程x 2+kx -i =0的一个根, 所以代入原方程,得i 2+k i -i =0. 所以k =1+i i =(1+i )ii2=1-i.计算:1+i +i 2+i 3+…+i 2 018.[解] 法一:∵i +i 2+i 3+i 4=0,∴i n +i n +1+i n +2+i n +3=0.∴1+i +i 2+i 3+…+i 2 018=1+i +i 2+(i 3+i 4+i 5+i 6)+(i 7+i 8+i 9+i 10)+…+(i 2 015+i 2 016+i 2 017+i 2 018) =1+i +i 2=i.法二:1+i +i 2+…+i 2 018 =1-i 2 0191-i =1-i 504×4+31-i=1-i 31-i =1+i 1-i=i.1.(6-2i)-(3i +1)等于( ) A .3-3i B .5-5i C .7+iD .5+5i解析:(6-2i)-(3i +1)=(6-1)+(-2-3)i =5-5i. 答案:B2.(全国卷Ⅱ)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i解析:3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i.答案:D3.已知复数z =1-i ,则z 2-2zz -1=( )A .2iB .-2iC .2D .-2解析:法一:因为z =1-i ,所以z 2-2z z -1=(1-i )2-2(1-i )1-i -1=-2-i=-2i.法二:由已知得z -1=-i ,而z 2-2z z -1=(z -1)2-1z -1=(-i )2-1-i =2i =-2i.答案:B4.若z =-1-i2时,求z 2 018+z 102=________.解析:z 2=⎝⎛⎭⎪⎫-1-i 22=-i. z 2 018+z 102=(-i)1 009+(-i)51 =(-i)1 008·(-i)+(-i)48·(-i)3 =-i +i =0 答案:05.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________. 解析:由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以⎩⎪⎨⎪⎧a 2-2a -3=0,a 2-1≠0,解得a =3.答案:36.已知复数z =(1-i )2+3(1+i )2-i .(1)求复数z ;(2)若z 2+az +b =1-i ,求实数a ,b 的值. 解:(1)z =-2i +3+3i 2-i =3+i 2-i =(3+i )(2+i )5=1+i.(2)把z =1+i 代入得(1+i)2+a (1+i)+b =1-i , 即a +b +(2+a )i =1-i ,所以⎩⎪⎨⎪⎧ a +b =1,2+a =-1,解得⎩⎪⎨⎪⎧a =-3,b =4.1.设i 为虚数单位,则5-i1+i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i解析:5-i 1+i =(5-i )(1-i )(1+i )(1-i )=4-6i2=2-3i.答案:C2.(山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2解析:∵z i =1+i ,∴z =1+i i =1i+1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i. 答案:A3.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2解析:∵(2+a i)(a -2i)=-4i , ∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0. 答案:B4.已知z 1=-2-3i ,z 2=3-2i (2+i )2,则z 1z 2=( ) A .-4+3i B .3+4i C .3-4iD .4-3i解析:∵z 1=-2-3i ,z 2=3-2i (2+i )2, ∴z 1z 2=(-2-3i )(2+i )23-2i =-i (3-2i )(2+i )23-2i =-i(2+i)2=-(3+4i)i =4-3i. 答案:D 二、填空题5.复数1-2+i +11-2i的虚部是________.解析:∵1-2+i +11-2i =15(-2-i)+15(1+2i)=-15+15i ,∴虚部是15.答案:156.若复数z 满足z =i(2-z )(i 是虚数单位),则z =______. 解析:∵z =i(2-z ),∴z =2i -i z , ∴(1+i)z =2i ,∴z =2i1+i=1+i. 答案:1+i7.(天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:由a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15-2+a 5i 是实数,得-2+a5=0,所以a =-2.答案:-28.若z =i -1是方程z 2+az +b =0的一个根,则实数a ,b 的值分别为________,________. 解析:把z =i -1代入方程z 2+az +b =0,得(-a +b )+(a -2)i =0,即⎩⎪⎨⎪⎧-a +b =0,a -2=0.解得a =2,b =2. 答案:2 2 三、解答题9.复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .解:z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i =1-i.∵a 为纯虚数, ∴设a =m i(m ≠0),则z 2+a z =(1-i)2+m i 1-i=-2i +m i -m 2=-m 2+⎝⎛⎭⎫m 2-2i <0. ∴⎩⎨⎧-m2<0,m2-2=0,∴m =4.∴a =4i.10.已知x ,y ∈R ,且x 1+i +y 1+2i =51+3i ,求x ,y 的值.解:∵x 1+i +y 1+2i =51+3i, ∴x (1-i )2+y (1-2i )5=5(1-3i )10.即5x (1-i)+2y (1-2i)=5-15i. (5x +2y )-(5x +4y )i =5-15i.∴⎩⎪⎨⎪⎧ 5x +2y =5,5x +4y =15,解得⎩⎪⎨⎪⎧x =-1,y =5.。

湘教版高中数学选修2-2同步精练:6.2.2 间接证明:反证法 含解析

湘教版高中数学选修2-2同步精练:6.2.2 间接证明:反证法 含解析

1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用?().①结论相反的判断,即反设②原命题的条件③公理、定理、定义④原结论A.②④B.①③④C.①②③D.②③④2.用反证法证明命题“若a,b∈N,ab可以被7整除,则a,b中至少有一个能被7整除”,其假设正确的是().A.a,b都能被7整除B.a,b都不能被7整除C.a不能被7整除D.a,b中有一个不能被7整除3.有下列叙述:①“a>b"的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有( ).A.0个B.1个C.2个D.3个4.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲,丙都未获奖.”丙说:“我获奖了."丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ).A.甲B.乙C.丙D.丁5.设正实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于( ).A.错误!B.错误!C.错误!D.错误!6.用反证法证明:当m为任何实数时,关于x的方程x2-5x+m =0与2x2+x+6-m=0至少有一个方程有实数根.7.已知函数f(x)=a x+错误!(a>1).用反证法证明方程f(x)=0没有负数根.8.如图所示,在△ABC中,AB>AC,AD为BC边上的高线,AM 是BC边上的中线,求证:点M不在线段CD上.9.如图,已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a。

求证:b与c是异面直线.参考答案1.C2.B “至少有一个”的否定是“一个也没有”.3.B ①不正确,应为a≤b。

②正确.③不正确,应为三角形的外心在三角形内或三角形的边上.④不正确,应为三角形的内角中有2个或2个以上的钝角.4.C 若甲获奖,则甲、乙、丙、丁四位歌手说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.5.A 假设a,b,c都小于x,即a<x,b<x,c<x.∴a+b+c<3x.∵a+b+c=1,∴3x>1。

2017-2018学年湘教版数学选修2-2当堂检测:6-1-1归纳

2017-2018学年湘教版数学选修2-2当堂检测:6-1-1归纳

第6章 推理与证明6.1 合情推理和演绎推理6.1.1 归 纳1.关于归纳推理下列说法正确的是( )A .归纳推理是一般到一般的推理B .归纳推理是一般到特殊的推理C .归纳推理的结论一定是正确的D .归纳推理的结论不一定正确答案 D2.由2+13+1>23,1+35+3>15,3+0.57+0.5>37,运用归纳推理,可猜测出的合理结论是( ) A.c +b a +b >c a B.1+1n +1>1nC .若a ,b ,c ∈(0,+∞),则b +c a +c >b aD .若a >b >0,c >0,则b +c a +c >b a答案 D3.数列2,5,11,20,x,47,…中的x 等于________.答案 324.观察下列不等式:|2+3|≤|2|+|3|,|(-3)+5|≤|-3|+|5|,|-2-3|≤|-2|+|-3|,|4+4|≤|4|+|4|,归纳出一般结论为______________________(x ,y ∈R ).答案 |x +y |≤|x |+|y |解析 观察易发现:两个实数和的绝对值不大于这两个数的绝对值的和,即|x+y|≤|x|+|y|.1.归纳推理的前提和结论不具有必然性联系,前提正确,其结论不一定正确.结论的正确性还需要理论证明或实践检验.2.归纳推理的特点:(1)归纳推理是由部分到整体、由特殊到一般的推理,因此,由归纳推理得出的结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论不一定真实,因此它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想可以作为进一步研究的起点,帮助人们发现问题和提出问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(湘教版)高中数学选修2-2(全册)课堂练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索——求自由落体的瞬时速度1.一质点的运动方程是s=4-2t2,则在时间段[1,1+d]内相应的平均速度为()A.2d+4 B.-2d+4 C.2d-4 D.-2d-4 答案 D解析v(1,d)=4-2(1+d)2-4+2×12d=-4d+2d2d=-2d-4.2.已知物体位移s与时间t的函数关系为s=f(t).下列叙述正确的是() A.在时间段[t0,t0+d]内的平均速度即是在t0时刻的瞬时速度B.在t1=1.1,t2=1.01,t3=1.001,t4=1.000 1,这四个时刻的速度都与t=1时刻的速度相等C.在时间段[t0-d,t0]与[t0,t0+d](d>0)内当d趋于0时,两时间段的平均速度相等D.以上三种说法都不正确答案 C解析两时间段的平均速度都是在t0时刻的瞬时速度.3.已知s=12gt2,从3秒到3.1秒的平均速度v=________.答案 3.05g解析v=12g·3.12-12g·323.1-3=3.05g.4.如果质点M的运动方程是s=2t2-2,则在时间段[2,2+d]内的平均速度是________.答案8+2d解析v(2,d)=s(2+d)-s(2)d=8+2d.1.平均速度与瞬时速度的区别与联系平均速度是运动物体在某一段时间内位移的平均值,即用时间除位移得到,而瞬时速度是物体在某一时间点的速度,当时间段越来越小的过程中,平均速度就越来越接近一个数值,这个数值就是瞬时速度,可以说,瞬时速度是平均速度在时间间隔无限趋于0时的“飞跃”.2.求瞬时速度的一般步骤设物体运动方程为s=f(t),则求物体在t时刻瞬时速度的步骤为:(1)从t到t+d这段时间内的平均速度为f(t+d)-f(t)d,其中f(t+d)-f(t)称为位移的增量;(2)对上式化简,并令d趋于0,得到极限数值即为物体在t时刻的瞬时速度.4.1.2 问题探索——求作抛物线的切线1.一物体作匀速圆周运动,其运动到圆周A处时() A.运动方向指向圆心OB.运动方向所在直线与OA垂直C.速度与在圆周其他点处相同D.不确定答案 B2.若已知函数f(x)=2x2-1的图象上的一点(1,1)及邻近一点(1+d,1+Δy),则Δy d等于() A.1 B.2+d C.4+2d D.4+d答案 C解析Δyd=2(1+d)2-1-(2×12-1)d=4+2d.3.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为________.答案 1解析由平均变化率的几何意义知,k=2-11-0=1.4.已知函数f(x)=-x2+x的图象上一点(-1,-2)及邻近一点(-1+d,-2+Δy),则Δyd=________.解析Δy=f(-1+d)-f(-1)=-(-1+d)2+(-1+d)-(-2) =-d2+3d.∴Δyd=-d2+3dd=-d+3.答案-d+31.求曲线y=f(x)上一点(x0,y0)处切线斜率的步骤(1)作差求函数值增量Δy,即f(x0+d)-f(x0).(2)化简Δyd,用x0与d表示化简结果.(3)令d→0,求Δyd的极限即所求切线的斜率.2.过某点的曲线的切线方程要正确区分曲线“在点(u,v)处的切线方程”和“过点(u,v)的切线方程”.前者以点(u,v)为切点,后者点可能在曲线上,也可能不在曲线上,即使在曲线上,也不一定是切点.3.曲线的割线与切线的区别与联系曲线的割线的斜率反映了曲线在这一区间上上升或下降的变化趋势,刻画了曲线在这一区间升降的程度,而曲线的切线是割线与曲线的一交点向另一交点逼近时的一种极限状态,它实现了由割线向切线质的飞跃.4.1.3 导数的概念和几何意义1.f(x)在x=x0处可导,则limh→0f(x0+h)-f(x0)h()A.与x0、h都有关B.仅与x0有关,而与h无关C.仅与h有关,而与x0无关D.与x0、h均无关答案 B2.若f(x0)-f(x0-d)=2x0d+d2,下列选项正确的是() A.f′(x)=2 B.f′(x)=2x0C.f′(x0)=2x0D.f′(x0)=d+2x0答案 C3.已知函数y=f(x)图象如图,则f′(x A)与f′(x B)的大小关系是() A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定答案 A4.在曲线f(x)=x2+x上取一点P(1,2),则在区间[1,1+d]上的平均变化率为________,在点P(1,2)处的导数f′(1)=________.答案3+d 31.求导数的步骤主要有三步:(1)求函数值的增量:Δy=f(x0+d)-f(x0);(2)求平均变化率:Δyd=f(x0+d)-f(x0)d;(3)取极限:f′(x0)=Δy d.2.导数的几何意义(1)对于函数y=f(x)在x0处的导数是表示在x0处函数值变化快慢的一个量,其几何意义为在x=x0处的切线的斜率.(2)f′(x)是指随x变化,过曲线上的点(x,f(x))的切线斜率与自变量x之间的函数.4.2.3 导数的运算法则1.下列结论不正确的是() A.若y=3,则y′=0B.若f(x)=3x+1,则f′(1)=3C.若y=-x+x,则y′=-12x+1D.若y=sin x+cos x,则y′=cos x+sin x答案 D解析利用求导公式和导数的加、减运算法则求解.D项,∵y=sin x+cos x,∴y′=(sin x)′+(cos x)′=cos x-sin x.2.函数y =cos x1-x的导数是 ( )A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案 A 解析 ∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为y +1=2(x +1),即y =2x +1.4.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________. 答案 ln 2-1解析 设切点为(x 0,y 0), ∵ y ′=1x ,∴12=1x 0,∴x 0=2,∴y 0=ln 2,ln 2=12×2+b ,∴b =ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表1.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9 答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( )A.36 B .0 C.12x D.32答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.4.3 导数在研究函数中的应用4.3.1 利用导数研究函数的单调性1.函数f (x )=x +ln x 在(0,6)上是( )A .单调增函数B .单调减函数C .在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D .在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数 答案 A解析 ∵x ∈(0,6)时,f ′(x )=1+1x >0,∴函数在(0,6)上单调递增. 2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )答案 D解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确.3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A .[1,+∞)B .a =1C .(-∞,1]D .(0,1)答案 A解析∵f′(x)=3x2-2ax-1,又f(x)在(0,1)内单调递减,∴不等式3x2-2ax-1≤0在(0,1)内恒成立,∴f′(0)≤0,且f′(1)≤0,∴a≥1. 4.函数y=x2-4x+a的增区间为________,减区间为________.答案(2,+∞)(-∞,2)解析y′=2x-4,令y′>0,得x>2;令y′<0,得x<2,所以y=x2-4x+a的增区间为(2,+∞),减区间为(-∞,2).1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f(x)的单调区间的一般步骤为(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间.4.3.2函数的极大值和极小值1.下列关于函数的极值的说法正确的是() A.导数值为0的点一定是函数的极值点B.函数的极小值一定小于它的极大值C.函数在定义域内有一个极大值和一个极小值D.若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数答案 D解析由极值的概念可知只有D正确.2.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 答案 C解析 在x =x 0的两侧,f ′(x )的符号由正变负,则f (x 0)是极大值;f ′(x )的符号由负变正,则f (x 0)是极小值,由图象易知有两个极大值点,两个极小值点. 3.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( )A .-1<a <2B .-3<a <6C .a <-1或a >2D .a <-3或a >6答案 D解析 f ′(x )=3x 2+2ax +(a +6), 因为f (x )既有极大值又有极小值, 那么Δ=(2a )2-4×3×(a +6)>0, 解得a >6或a <-3.4.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________. 答案 9解析 f ′(x )=18x 2+6(a +2)x +2a .由已知f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a 18=1,所以a =9.1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.4.3.3 三次函数的性质:单调区间和极值1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( )A .f (2),f (3)B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)答案 B解析 ∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减,故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1)( )A .有最大值,但无最小值B .有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值答案 D解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1 B.π2-1 C .π D .π+1 答案 C解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π,时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C. 4.(2012·安徽改编)函数f (x )=e xsin x 在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为 ( )A. B.C.D.答案 A解析 f ′(x )=e x (sin x +cos x ). ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,f ′(x )>0. ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调增函数,∴f (x )min =f (0)=0,f (x )max =f ⎝ ⎛⎭⎪⎫π2=.5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. 答案 -71解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.1.求函数y =f (x )在[a ,b ]上的最值(1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值.(2)求最值的步骤:①求出函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.2.极值与最值的区别和联系(1)函数的极值表示函数在某一点附近的局部性质,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.(2)函数的极值不一定是最值,需要将极值和区间端点的函数值进行比较,或者考查函数在区间内的单调性.(3)如果连续函数在区间(a,b)内只有一个极值,那么极大值就是最大值,极小值就是最小值.(4)可导函数在极值点的导数为零,但是导数为零的点不一定是极值点.例如,函数y=x3在x=0处导数为零,但x=0不是极值点.4.4生活中的优化问题举例1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=13x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.203C.-1 D.-8答案 C解析原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.2.设底为等边三角形的直三棱柱的体积为V,那么其表面积最小时底面边长为()A.3VB.32VC.34V D.23V答案 C解析 设底面边长为x ,则表面积S =32x 2+43x V (x >0). ∴S ′=3x 2(x 3-4V ).令S ′=0,得x =34V . 3. 在边长为60 cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?解 设箱底边长为x cm ,则箱高h =60-x2cm ,箱子容积V (x )=x 2h =60x 2-x32(0<x <60).V ′(x )=60x -32x 2令V ′(x )=60x -32x 2=0, 解得x =0(舍去)或x =40,并求得V (40)=16 000.由题意知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值.答 当x =40 cm 时,箱子容积最大,最大容积是16 000 cm 3.4.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h (x )升,依题意得h (x )=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8×100x =11 280x 2+800x -154(0<x ≤120),h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120). 令h ′(x )=0,得x =80.因为x ∈(0,80)时,h ′(x )<0,h (x )是减函数; x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x=80时,h(x)取得极小值h(80)=11.25(升).因为h(x)在(0,120]上只有一个极小值,所以它是最小值.答汽车以80千米/时匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.1.解有关函数最大值、最小值的实际问题,在分析问题中的各个变量之间的关系的基础上,列出合乎题意的函数关系式,并确定函数的定义域.注意所求得的结果一定符合问题的实际意义.2.利用导数解决生活中的优化问题时,有时会遇到在定义域内只有一个点使f′(x)=0,如果函数在该点取得极大(小)值,极值就是函数的最大(小)值,因此在求有关实际问题的最值时,一般不考虑端点.4.5.3定积分的概念1.定积分⎠⎛11d x的值等于()A.0 B.1 C.12D.2答案 B2.已知⎠⎛13f(x)d x=56,则()A.⎠⎛12f(x)d x=28B.⎠⎛23f(x)d x=28C.⎠⎛122f(x)d x=56D.⎠⎛12f (x )d x +⎠⎛23f (x )d x =56 答案 D3.如图所示,⎠⎛a b f 1(x )d x =M ,⎠⎛ab f 2(x )d x =N ,则阴影部分的面积为( )A .M +NB .MC .ND .M -N 答案 D4.不用计算,根据图形,用不等号连接下列各式( )(1)⎠⎛01x d x ________⎠⎛01x 2d x (图1); (2)⎠⎛01x d x ________⎠⎛12x d x (图2); (3)⎠⎛024-x 2d x ________⎠⎛022d x (图3). 答案 (1)> (2)< (3)<1.定积分可以表示图形的面积从几何上看,如果在区间[a ,b ]上,函数f (x )连续且恒有f (x )≥0,那么定积分⎠⎛abf (x )d x 就表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积,这就是定积分⎠⎛a b f (x )d x 的几何意义.2.定积分表示图形面积的代数和被积函数是正的,定积分的值也为正,如果被积函数是负的,函数曲线在x 轴之下,定积分的值就是带负号的曲边梯形的面积.当被积函数在积分区间上有正有负时,定积分就是x 轴之上的正的面积与x 轴之下的负的面积的代数和.3.此外,定积分还有更多的实际意义,比如在物理学中,可以用定积分表示功、路程、压力、体积等.4.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即⎠⎛a b f (x )d x =⎠⎛a b f (u )d u =⎠⎛a b f (t )d t =…(称为积分形式的不变性),另外定积分⎠⎛a b f (x )d x 与积分区间[a ,b ]息息相关,不同的积分区间,所得的值也不同,例如⎠⎛01(x 2+1)d x 与⎠⎛03(x 2+1)d x 的值就不同.4.5.4 微积分基本定理1.(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2 答案 D解析 ∵(x +sin x )′=1+cos x ,=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝⎛⎭⎪⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2 答案 D解析 ⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1x d x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2,解得a =2. 3.⎠⎛02⎝⎛⎭⎪⎫x 2-23x d x =________.答案 43解析 ⎠⎛02⎝ ⎛⎭⎪⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x=x 33⎪⎪⎪⎪⎪⎪20-x 2320=83-43=43.4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x .1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x轴下方的图形面积要取定积分的相反数.4.5定积分与微积分基本定理4.5.1曲边梯形的面积4.5.2计算变力所做的功1.由直线x=1,x=2,y=0和y=x+1围成的图形的面积为()A.32B.2 C.52D.3答案 C解析S=12(2+3)×1=52.2.抛物线y=x2与直线x=0,x=1,y=0所围成的平面图形的面积为()A.14B.13C.12 D .1 答案 B3.∑6k =1(1k -1k +1)=________.答案 674.已知和式1p +2p +3p +…+n pn p +1(p >0)当n →∞时,能无限趋近于一个常数A ,此时,A 的几何意义是表示由y =f (x )和x =0,x =1以及x 轴围成的图形面积,根据和式,可以确定f (x )=________. 答案 x p解析 因为1p +2p +3p +…+n p n p +1=1n ·[(1n )p +(2n )p +…+(n n )p ],所以当n →∞时,和式表示函数f (x )=x p 和x =0,x =1,以及x 轴围成的曲边梯形面积,填x p .1.曲边梯形的面积要求一个曲边梯形的面积,不能用已有的面积公式计算,为了计算曲边梯形的面积,可以将它分割成许多个小曲边梯形,每个小曲边梯形用相应的小矩形近似代替,对这些近似值求和,就得到曲边梯形面积的近似值.当分割无限变细时,这个近似值就无限趋近于所求曲边梯形的面积. 2.变力所做的功变力做功的计算和曲边梯形面积的计算所用的方法是一样的,仍然是“化整为零,以直代曲”的策略.虽然它们的意义不同,但都可以归纳为求一个特定形式和的极限.通过这两个背景问题,能使我们更好地了解定积分的概念.5.3 复数的四则运算1.若z-3-2i=4+i,则z等于() A.1+i B.1-iC.-1-i D.-1-3i答案 B解析z=(4+i)-(3+2i)=1-3i.2.若复数z1=1+i,z2=3-i,则z1·z2=() A.4+2i B.2+i C.2+2i D.3+i答案 A解析z1·z2=(1+i)(3-i)=4+2i,故选A.3.5-(3+2i)=________.答案2-2i4.复数11-i的虚部是________.答案1 2解析∵11-i=1+i(1-i)(1+i)=1+i2=12+12i.∴虚部为12.1.复数代数形式的加、减法运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则有z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i.即两个复数相加(减),就是把实部与实部、虚部与虚部分别相加(减). 2.复数代数形式的乘法运算法则 (1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部、虚部分别合并. (2)复数乘法的运算律 对于任意的z 1,z 2,z 3∈C ,有 z 1·z 2=z 2·z 1(交换律), (z 1·z 2)·z 3=z 1·(z 2·z 3)(结合律),z 1·(z 2+z 3)=z 1z 2+z 1z 3(乘法对加法的分配律). 3.复数代数形式的除法运算法则在无理式的除法中,利用有理化因式可以进行无理式的除法运算.类似地,在复数的除法运算中,也存在所谓“分母实数化”问题.将商a +b ic +d i的分子、分母同乘以c -d i ,最后结果写成实部、虚部分开的形式:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(-ad +bc )i c 2+d 2=ac +bd c 2+d 2+-ad +bcc 2+d 2i 即可.5.4 复数的几何表示1.在复平面内,复数z =i +2i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限.2.当0<m <1时,z =(m +1)+(m -1)i 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 ∵0<m <1,∴m +1>0,-1<m -1<0,故对应的点在第四象限内. 3.在复平面内,O 为原点,向量OA→对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB→对应的复数为( )A .-2-iB .-2+iC .1+2iD .-1+2i 答案 B解析 ∵A (-1,2)关于直线y =-x 的对称点B (-2,1),∴向量OB →对应的复数为-2+i.4.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上,则实数m 的值为________. 答案 9解析∵z=(m-3)+2m i表示的点在直线y=x上,∴m-3=2m,解之得m=9.1.复数的几何意义的理解中需注意的问题(1)复数的实质是有序实数对.(2)复平面内的纵坐标轴上的单位长度是1,而不是i.(3)当a=0时,对任何b≠0,a+b i=0+b i=b i(a,b∈R)是纯虚数,所以纵轴上的点(0,b)(b≠0)都表示纯虚数.(4)复数z=a+b i(a,b∈R)中的z,书写时应小写,复平面内点Z(a,b)中的Z,书写时应大写.2.共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数.设复数z=a+b i(a,b∈R),则其共轭复数z=a-b i.虚部不等于0的两个共轭复数也叫做共轭虚数.5.1 解方程与数系的扩充5.2 复数的概念1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是( )A.2,1B.2,5 C .±2,5 D .±2,1 答案 C解析 令⎩⎨⎧a 2=2-2+b =3,得a =±2,b =5.2.下列复数中,满足方程x 2+2=0的是( )A .±1B .±iC .±2iD .±2i 答案 C3.下列命题正确的是( )A .若a ∈R ,则(a +1)i 是纯虚数B .若a ,b ∈R 且a >b ,则a +i>b +iC .若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x =±1D .两个虚数不能比较大小 答案 D解析 对于复数a +b i(a ,b ∈R ), 当a =0且b ≠0时为纯虚数.在A 中,若a =-1,则(a +1)i 不是纯虚数,故A 错误; 在B 中,两个虚数不能比较大小,故B 错误; 在C 中,若x =-1,不成立,故C 错误;D 正确. 4.在下列几个命题中,正确命题的个数为( )①两个复数相等的一个必要条件是它们的实部相等; ②两个复数不相等的一个充分条件是它们的虚部不相等; ③1-a i(a ∈R )是一个复数; ④虚数的平方不小于0;⑤-1的平方根只有一个,即为-i ; ⑥i 是方程x 4-1=0的一个根; ⑦2i 是一个无理数.A .3个B .4个C .5个D .6个 答案 B解析 命题①②③⑥正确,④⑤⑦错误.1.对于复数z =a +b i(a ,b ∈R ),可以限制a ,b 的值得到复数z 的不同情况. 2.两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的条件进行判断.第6章 推理与证明6.1 合情推理和演绎推理6.1.1 归 纳1.关于归纳推理下列说法正确的是( )A .归纳推理是一般到一般的推理B .归纳推理是一般到特殊的推理C .归纳推理的结论一定是正确的D .归纳推理的结论不一定正确 答案 D2.由2+13+1>23,1+35+3>15,3+0.57+0.5>37,运用归纳推理,可猜测出的合理结论是( )A.c +b a +b >c aB.1+1 n+1>1nC.若a,b,c∈(0,+∞),则b+ca+c >b aD.若a>b>0,c>0,则b+ca+c >b a答案 D3.数列2,5,11,20,x,47,…中的x等于________.答案324.观察下列不等式:|2+3|≤|2|+|3|,|(-3)+5|≤|-3|+|5|,|-2-3|≤|-2|+|-3|,|4+4|≤|4|+|4|,归纳出一般结论为______________________(x,y∈R).答案|x+y|≤|x|+|y|解析观察易发现:两个实数和的绝对值不大于这两个数的绝对值的和,即|x+y|≤|x|+|y|.1.归纳推理的前提和结论不具有必然性联系,前提正确,其结论不一定正确.结论的正确性还需要理论证明或实践检验.2.归纳推理的特点:(1)归纳推理是由部分到整体、由特殊到一般的推理,因此,由归纳推理得出的结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论不一定真实,因此它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想可以作为进一步研究的起点,帮助人们发现问题和提出问题.6.1.2类比1.下面几种推理是类比推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形的内角和为180°,四边形的内角和为360°,五边形的内角和为540°,由此推断出凸n边形内角和是(n-2)×180°.A.①②B.①③C.①D.②④答案 C2.下面使用类比推理恰当的是() A.“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类推出“a+bc=ac+bc”C.“(a+b)c=ac+bc”类推出“a+bc=ac+bc(c≠0)”D.“(ab)n=a n b n”类推出“(a+b)n=a n+b n”答案 C解析由类比推理的特点可知.3.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=底×高2,可推知扇形的面积公式S扇形等于________.答案lr 24.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为________.答案三角形三条角平分线交于一点,且这个点是三角形内切圆的圆心解析二面角类比角,平分面类比平分线,故原来三角形的性质为三角形三条角平分线交于一点,且这个点是三角形内切圆的圆心.1.类比推理是在两个(或两类)不同的对象之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式,类比推理所引出的结论并不一定真实.2.类比推理的特点:①类比是从人们已经掌握了的事物的属性推测正在研究中的事物的属性,它以旧的认识作基础,类比出新的结果.②类比是从一种事物的特殊属性推测另一种事物的特殊属性.③类比的结果是猜测性的,尽管不一定可靠,但它却具有发现的功能.6.1.3演绎推理6.1.4合情推理与演绎推理的关系1.下面几种推理过程是演绎推理的是() A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C.由平面三角形的性质,推测空间四面体的性质D.在数列{a n}中,a1=1,a n=12⎝⎛⎭⎪⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式答案 A解析A是演绎推理,B、D是归纳推理,C是类比推理.2.“因为对数函数y=log a x是增函数(大前提),又y=x是对数函数(小前提),所以y=x是增函数(结论).”下列说法正确的是() A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提都错误导致结论错误答案 A解析y=log a x是增函数错误.故大前提错.3.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论,则大前提:________;小前提:________;结论:________.答案二次函数的图象是一条抛物线函数y=x2+x+1是二次函数函数y=x2+x+1的图象是一条抛物线4.“如图,在△ABC中,AC>BC,CD是AB边上的高,求证:∠ACD>BCD”.证明在△ABC中,因为CD⊥AB,AC>BC,①所以AD>BD,②于是∠ACD>∠BCD.③则在上面证明的过程中错误的是________.(只填序号)答案③解析由AD>BD,得到∠ACD>∠BCD的推理的大前提应是“在同一三角形中,大边对大角”,小前提是“AD>BD”,而AD与BD不在同一三角形中,故③错误.1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.6.2直接证明与间接证明6.2.1直接证明:分析法与综合法1.已知y>x>0,且x+y=1,那么()A.x<x+y2<y<2xy B.2xy<x<x+y2<yC.x<x+y2<2xy<y D.x<2xy<x+y2<y答案 D解析 ∵y >x >0,且x +y =1,∴设y =34,x =14, 则x +y 2=12,2xy =38,∴x <2xy <x +y 2<y ,故选D. 2.欲证2-3<6-7成立,只需证( )A .(2-3)2<(6-7)2B .(2-6)2<(3-7)2C .(2+7)2<(3+6)2D .(2-3-6)2<(-7)2 答案 C解析 根据不等式性质,a >b >0时,才有a 2>b 2, ∴只需证:2+7<6+3, 只需证:(2+7)2<(3+6)2. 3.求证:1log 519+2log 319+3log 219<2.证明 因为1log b a=log a b ,所以左边 =log 195+2log 193+3log 192=log 195+log 1932+log 1923=log 19(5×32×23)=log 19360. 因为log 19360<log 19361=2, 所以1log 519+2log 319+3log 219<2.4.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).证明 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12, ∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因.2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语.3.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法居主导地位,而分析法伴随着它.6.2.2间接证明:反证法1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设() A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角。

相关文档
最新文档