自抗扰控制介绍概要共52页
自抗扰控制技术简介

NLSEF
根据fal函数的特点和现场运行经验适当地选择非线 性因子,将极大地改变控制效果,使比例、微分各 自发挥出各自的功效。
自抗扰控制技术简介
自抗扰控制技术的应用
自抗扰控制技术的应用
自抗扰控制技术提出多年以来,在国内 外已经得到了大量的应用。在美国,NASA空 间飞行器太阳能发电稳定装置;飞机喷气发 动机控制采用了自抗扰控制技术。在日本, 自抗扰控制技术也应用于高精度位移控制、 温度控制。在国内,电力系统、化工系统、 精密机械加工、军工系统等领域里也成功应 用了自抗扰控制技术。
自抗扰控制技术简介
自抗扰控制器的基本结构
ADRC的组成 非线性跟踪微分器 扩张状态观测器 非线性误差反馈控制律
ADRC结构框图
TD
跟踪微分器最常用的形式为
TD
fhan(z11,z12,r,h)为如下定义的非线性函数
ESO
设有未知外扰动的不确定对象
上式中 f(x,x,…,x(n-1),t)为未知函数,w(t)为未 知外扰,u为控制量,ESO的形式如下:
小 节
自抗扰控制器是对PID的改进,省去了积分环节, 增加了ESO以实现对系统内部模型摄动和外部扰动的 实时估计,并采用非线性误差状态反馈策略,保留 了PID控制的优点,克服了其控制精度低的缺陷。
在国内,大多数成果仍处于仿真或简单的实体实验 阶段,并且集中低阶系统模型的应用,对高阶系统 自抗扰控制器的阶数确定,高阶ESO的稳定性证明, 控制参数的整定于优化等方面还缺乏深入的研究。
自抗扰控制技术简介
自抗扰控制技术简介
PID控制及其优势和缺陷
PID控制
PID控制器在工业过程控 制中占据的主导地位是绝无仅 有的。目前,PID控制器在运 动控制、航天控制及其他过程 控制的应用中,仍然占据95% 以上。
10-02 自抗扰控制

国家精品课程/ 国家精品资源共享课程/ 国家级精品教材国家级十一(二)五规划教材/ 教育部自动化专业教学指导委员会牵头规划系列教材控制系统仿真与CAD第十章智能控制器设计方法自抗扰控制Auto Disturbances Rejection Control主讲:薛定宇教授自抗扰控制自抗扰控制199x年有韩京清研究员提出的控制策略 控制器设计时无需受控对象模型的参数 有三个组成部分微分跟踪器扩张状态观测器自抗扰控制器微分跟踪器 数学模型S-函数(状态方程)的实现 S-函数入口语句S-函数的基本框架扩张的状态观测器 数学模型其中扩张状态观测器的S-函数实现选择参数,设计状态观测器主函数 输入输出路数、连续离散状态变量个数扩张状态观测器支持函数自抗扰控制器数学模型其中方程没有连续、离散状态输入信号为m(t)=[v(t), v2(t), z1(t), z2(t), z3(t)]1输出信号为u(t)自抗扰控制器S-函数实现 主函数支持函数 输入信号为 m (t )=[v 1(t ), v 2(t ), z 1(t ), z 2(t ), z 3(t )]输出信号为 u (t )例10-4自抗扰控制器仿真 时变受控对象模型搭建仿真框图 ex_han2.slx控制器参数仿真模型 受控对象ADRC控制器模块封装 自抗扰控制器内部结构自抗扰控制器仿真 新的系统框图控制器参数选择自抗扰控制设计小结 自抗扰控制的三个组成部分 微分跟踪器扩张的状态观测器自抗扰控制器数学模型与S-函数实现自抗扰控制系统的仿真与设计。
自抗扰控制技术

自抗扰控制技术一、本文概述自抗扰控制技术是一种先进的控制策略,其核心在于通过内部机制的设计,使系统能够自动抵御和补偿外部干扰和内部参数变化对系统性能的影响。
随着现代工业系统的日益复杂,对控制系统的鲁棒性和稳定性的要求也越来越高,自抗扰控制技术的出现为解决这些问题提供了新的思路和方法。
本文将对自抗扰控制技术进行详细的介绍和分析。
我们将阐述自抗扰控制的基本原理和核心思想,包括其与传统控制方法的主要区别和优势。
我们将介绍自抗扰控制技术的关键组成部分,如扩展状态观测器、非线性状态误差反馈控制律等,并详细解析其在控制系统中的作用和实现方式。
我们将通过实例分析和仿真实验,验证自抗扰控制技术在提高系统鲁棒性和稳定性方面的实际效果,并探讨其在实际工业应用中的潜力和前景。
本文旨在为从事控制系统设计、分析和优化的工程师和研究人员提供一种新的思路和方法,以应对日益复杂的工业控制问题。
也希望通过对自抗扰控制技术的深入研究和应用,为现代工业系统的智能化和自主化提供有力的技术支持。
二、自抗扰控制技术的基本原理自抗扰控制技术是一种先进的控制方法,其基本原理可以概括为对系统内部和外部扰动的主动抑制和补偿。
该技术的核心在于通过特定的控制策略,使系统在面对各种扰动时能够保持其稳定性和性能。
自抗扰控制技术的基本原理主要包括三个部分:扩张状态观测器(ESO)、非线性状态误差反馈(NLSEF)和跟踪微分器(TD)。
扩张状态观测器用于实时估计系统的总扰动,包括内部不确定性和外部干扰。
通过观测并提取这些扰动信息,系统能够在控制过程中主动抵消这些不利影响。
非线性状态误差反馈部分则根据观测到的扰动信息,通过非线性控制律的设计,实现对系统状态的快速调整。
这种非线性控制策略使得系统在面对扰动时能够迅速作出反应,从而保持其稳定性和性能。
跟踪微分器是自抗扰控制技术的另一个重要组成部分,它通过对期望信号的微分处理,生成一系列连续的指令信号。
这些指令信号能够引导系统以平滑、稳定的方式跟踪期望轨迹,进一步提高系统的控制精度和鲁棒性。
自抗扰控制算法范文

自抗扰控制算法范文自抗扰控制(Active Disturbance Rejection Control,简称ADRC)是一种用于实时控制系统的先进控制算法。
该算法最早由中国科学家刘一达教授于2003年提出,其核心思想是通过对系统的扰动进行建模和估计,将扰动直接参与控制器设计,从而实现对扰动的主动抑制。
ADRC主要适用于系统存在非线性和时变扰动的情况,具有较强的鲁棒性和适应性,并且能够实现较好的跟踪性能和鲁棒稳定性。
一、ADRC算法的基本原理ADRC的设计原则是将被控对象的动力学特性建模为一个主被控模型和一个扰动估计器。
主被控模型描述了系统的主要动力学特性,扰动估计器用于实时估计系统的扰动状态。
ADRC的核心思想是将扰动估计器的输出作为控制器的输入,通过对扰动的估计和抵消,实现对系统扰动的主动抑制。
ADRC的基本结构由三个主要模块组成:扰动观测器、非线性组合环节和线性控制器。
其中,扰动观测器用于实时估计扰动信号的状态和参数;非线性组合环节将主被控模型的输出与扰动观测器的输出进行非线性组合;线性控制器通过对非线性组合环节的输出进行线性控制,实现对系统的控制。
二、ADRC算法的特点和优势1.对于非线性和时变扰动具有较好的抑制效果:ADRC通过实时估计和抵消扰动信号,能够有效地抑制非线性和时变扰动的影响,提升控制系统的鲁棒性和控制精度。
2.具有较强的适应性和鲁棒性:ADRC能够自动适应系统参数的变化和扰动的不确定性,具有较强的鲁棒性和适应性,适用于各种复杂工况下的实时控制系统。
3.算法结构简单,易于实现:ADRC的算法结构相对简单,可以快速实现和调试,并能够方便地与现有的控制系统进行集成和改进。
4.良好的鲁棒稳定性:ADRC能够保证控制系统的稳定性,在系统参数变化、扰动变化等情况下依然能够保持系统的稳定性,并对不确定性具有较好的鲁棒性。
5.可实现较好的跟踪性能:ADRC能够实现较好的跟踪性能,对于系统的输入变化能够迅速响应,并且实现较快的跟踪和控制。
自抗扰控制介绍

x&2
r
2
x1
u
2rx2
x1 k 1 x1 k hx2 k
x2
k
1
x2
k
h
r
2
x1
k
u
k
2rx2
k
上式只是能无超调的跟踪输入信号,但是还不是最快 地跟踪输入信号。 为此寻求快速最优控制综合函数。
19
针对二阶积分器串联对象
x&1 x&2
x2 u,
|
u
|
r
以原点为终点的快速最优控制综合函数为
只需根据系统带宽要求确定或在线整定 o
对于一阶、二阶、三阶对象来说分别将特征值配置成
s o 2 , s o 3 , s o 4 即可
38
目录
• ADRC的产生 • ADRC的结构 • 安排过渡过程TD • 扩张状态观测器 • 非线性反馈 • 参数整定方法 • 应用
39
五、非线性反馈
• 线性组合 • 非线性组合
27
目录
• ADRC的产生 • ADRC的结构 • 安排过渡过程TD • 扩张状态观测器 • 非线性反馈 • 参数整定方法 • 应用
28
四、扩张状态观测器(ESO)
• 线性扩张状态观测器 • 非线性扩张状态观测器 • ESO参数整定
29
• 根据测量到的系统输入(控制量) 和系统输出(部分状态变量或状 态变量的函数)来确定系统所有 内部状态信息的装置就是状态观 测器。
因为连续函数的最优函数不再是该函数离散化后的最优函数。
22
改进的算法fhan
u fhan x1, x2, r, h
d rh
d0 hd
y
自抗扰控制技术简介

自抗扰控制技术简介1.自抗扰控制技术概述1.1 什么是自抗扰控制技术自抗扰控制器(Auto/Active Disturbances Rejection Controler,ADRC)技术,是发扬PID控制技术的精髓并吸取现代控制理论的成就,运用计算机仿真实验结果的归纳和总结和综合中探索而来的,是不依赖被控对象精确模型的、能够替代PID控制技术的、新型实用数字控制技术。
1.2 自抗扰控制技术的提出者——韩京清韩京清,朝鲜族, 1937生,系统与控制专家,中国科学院数学与系统科学研究院系统科学研究所研究员、博士生导师,长期从事控制理论与应用研究工作,是我国控制理论和应用早期开拓者之一。
韩京清先生于1998年正式提出自抗扰控制这一思想。
在这个思想提出之后,国内外许多研究者都围绕着“自抗扰控制”展开实际工程应用的研究。
同时,自抗扰控制的理论分析的研究也在不断的深入。
1.3 自抗扰控制技术的特点和优点(1)自抗扰控制器采用“观测+补偿”的方法来处理控制系统中的非线性与不确定性,同时配合非线性的反馈方式,提高控制器的动态性能。
(2)自抗扰控制器算法简单、易于实现、精度高、速度快、抗扰能力强。
(3)统一处理确定系统和不确定系统的控制问题;扰动抑制不需外扰模型或者外扰是否观测;控制算法不需辨识控制对象;统一处理非线性和线性系统;可以进行时滞系统控制;解耦控制只要考虑静态耦合,不用考虑动态耦合等。
2.自抗扰控制技术提出的背景2.1 现代控制理论的缺点和改进现代控制理论以状态变量描述为基础,以状态反馈实现极点配置来改善全局动态特性的问题。
因而,此种控制的主要手段是状态反馈。
“这种全局控制方法需要知道关于开环动态特性的先验知识和状态变量的信息,这在许多工程实际中是很不现实的,因为工程实际提供不了有关开环动态特性的多少先念知识,因此这种全局控制方法是很难在实际中得到应用。
”这就是现代控制理论的缺点,这也限制了这种控制方法在工程实际中的应用。
自抗扰控制技术简介 ppt课件

PID控制的优缺点
缺陷:
➢直接以e=v-y的方式产生原始误差。控制目标v是 有可能产生突变的,而对象输出y一定是连续的,用 连续的缓变的变量追踪可能跳变的变量本身就是不 合理的。 误差的取法
➢产生e的微分信号没有太好的办法。 由误差e提取de/dt的办法
➢线性组合不一定是最好的组合方式。 “加权和”策略不一定最好。
NLSEF
根据fal函数的特点和现场运行经验适当地选择非线 性因子,将极大地改变控制效果,使比例、微分各 自发挥出各自的功效。
自抗扰控制技术简介
自抗扰控制技术的应用
自抗扰控制技术的应用
自抗扰控制技术提出多年以来,在国内 外已经得到了大量的应用。在美国,NASA空 间飞行器太阳能发电稳定装置;飞机喷气发 动机控制采用了自抗扰控制技术。在日本, 自抗扰控制技术也应用于高精度位移控制、 温度控制。在国内,电力系统、化工系统、 精密机械加工、军工系统等领域里也成功应 用了自抗扰控制技术。
从上文中可以看出,在纸浆和造纸工业中, PI控制器的应用甚至超过了98%。
PID控制
传统PID控制的结构如下图: NhomakorabeaPID控制的优缺点
优势:
靠控制目标于实际行为之间的 误差来确定消除误差的策略。
“不用被控对象的精确模型,只用控制 目标与对象实际行为的误差来产生消除此误 差的控制策略的过程控制思想,是PID留给人 类的宝贵思想遗产,是PID控制技术的精髓。” 也正是因为这个原因,PID控制才能在控制工 程实践中得到广泛有效的应用。
➢误差信号e的积分反馈的引入有很多负作用。
自抗扰控制技术简介
克服PID“缺陷”的具体办法
克服PID“缺陷”的具体办法
(1)安排合适的“过渡过程”; (2)合理提取“微分——“跟踪微分器; (3)探讨合适的组合方法一“非线性
自抗扰技术

缺点
误差的取法不合理。 没有合理提取误差微分的办法。 加权和不一定是最好的组合方式。 积分反馈有许多副作用。
从PID到自抗扰控制(ADRC)
安排合适的“过渡过程” 合理提取“微分”-“跟踪微分器”(Tracking Differentiator,TD); 探讨合适的组合方法-“非线性组合”(NF); 探讨扰动估计办法-“扩张状态观测器”(Extended State Observer,ESO)。
从PID到自抗扰控制(ADRC) 考察一阶误差系统:
.
.
w u
(2.6.1)
u k , k 0 ,则 对上式实施误差的线性反馈,
如果存在一常数 w0 0满足
k w,1 / 2(d 2 / dt ) k 2 w
w w0 ,1 / 2(d 2 / dt ) k ( w0 / k )
(2.4.16)
上式是很好的数值微分器,称作“快速离散跟踪微 分器”。把函数 fst ()中的变量 h 取成与步长 h 相互 独立的新变量 h0 ,得:
x1 (t h) x1 (t ) hx2 (t ) x2 (t h) x2 (t ) hfst ( x1 (t ) v(t ), x2 (t ), r , h0 )
(2.4.17)
h0 。 r 决定着跟踪速度,称作 上式有两个可调参数 r , “速度因子”;h0 起对噪声的滤波作用,称作“滤 波因子”。
从PID到自抗扰控制(ADRC) 在一般的控制系统中,误差直接取成:
ev y
(2.5.1)
误差的这种取法使初始误差很大,易引起“超调”, 很不合理。 改进:根据对象的承受能力,我们考虑先安排合理 的过渡过程v1 (t ) ,然后将误差取为: