勾股定理(基础)知识讲解

合集下载

勾股定理知识点精典总结

勾股定理知识点精典总结

勾股定理知识点一:勾股定理及其证明一.勾股定理:在ABC Rt ∆中,︒=∠90C1.角与角之间有怎样的关系?︒=∠+∠90B A 直角三角形两锐角互余2.边与边之间有怎样的关系?(1)斜边最长; (2)任意两边之和大于第三边,任意两边之差小于第三边(3)勾股定理: a 2+b 2=c 2对这个等式可以变形为:22b a c += 22a c b -= 22b c a -=1、填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

⑺在Rt △ABC ,∠C=90°,如果a=7,c=25,则b= 。

⑻在Rt △ABC ,∠C=90°,如果∠A=30°,a=4,则b= 。

⑼在Rt △ABC ,∠C=90°,如果∠A=45°,a=3,则c= 。

⑽在Rt △ABC ,∠C=90°,如果c=10,a-b=2,则b= 。

⑾在Rt △ABC ,∠C=90°,如果a 、b 、c 是连续整数,则a+b+c= 。

⑿在Rt △ABC ,∠C=90°,如果b=8,a :c=3:5,则c= 。

二.选择题1.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为 ( ).(A )84 (B )24 (C )24或84 (D )84或242.如下图,线段AB=√2、CD=√5,那么,线段EF 的长度为( )A 、√7B 、√11C 、√13D 、√153.如图,点1为单位正方形内一点,且AE=BE=AB ,延长AE 交CD 于F ,作FG ⊥AB 于点G ,则EG 的长度为( )A 、B 、C 、D 、4.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是 ( )A .2cm B .4√3cm C .6cm D .8cm5.如图所示,有一个长、宽各2米,高为4米且封闭的长方体纸盒,一只昆虫从顶点要爬到顶点,那么这只昆虫爬行的最短路程为( )A 、3米 B 、 5米 C 、4√2米 D 、2√10米6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是 A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1二.填空题1. 如下图,数轴上点A 表示的数为________;2.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=√3,求线段AB 长。

勾股定理知识点+例题详解

勾股定理知识点+例题详解

勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则cb =,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n m nm n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC ==题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC , 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21DCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+= ,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?解:此三角形是直角三角形理由:222()264a b a b ab +=+-= ,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD += ,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

勾股定理(知识点)

勾股定理(知识点)

A B C ac 弦勾勾股定理(知识点)【知识要点】1.勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角8,15,17等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4;(1⇒∠A+(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°1AB可表示如下:⇒BC=2∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。

∠ACB=90°1AB=BD=AD可表示如下: CD=2D为AB的中点6.数轴上表示无理数1.2.、∠B、A.a2+b2=c2B.a2=2b2C.c2=2a2D.b2=2a23.矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为60cm2.4.如图,在△ABC中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D,则△ABC斜边上的高AD=12.5.已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高....为(C)A.12cmB.60cm C.12013cm D.1013cm136.一个直角三角形的三边为三个连续偶数,则它的三边长分别为6,8,10.7.(易错题)已知直角三角形的两边x,y的长满足│x-4│+3 y=0,则第三边的长为5或.8.10.11.别用.12.,分别以13.形A,49cm第4题第11题第12题第13题14.在Rt△ABC,∠C=90°(1)已知c=17,b=8,求a。

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。

注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。

若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。

八年级上册数学勾股定律

八年级上册数学勾股定律

八年级上册数学勾股定律一、勾股定理的基本概念勾股定理可有意思啦,它说的是在一个直角三角形中,两条直角边的平方和等于斜边的平方呢。

就好比一个直角三角形的两条直角边分别是a和b,斜边是c,那么就有a² + b² = c²这个超酷的等式。

比如说,一个直角三角形的两条直角边分别是3和4,那斜边就是5,因为3²+4² = 9 + 16 = 25,5²也等于25呢。

二、勾股定理的证明1. 有个特别经典的证明方法叫赵爽弦图证明法。

赵爽呢,可是个很厉害的古代数学家。

他把四个全等的直角三角形拼成了一个大的正方形,中间又空出了一个小正方形。

从这个图形里就能很巧妙地推出勾股定理。

2. 还有欧几里得的证法也超棒。

他利用三角形的相似性等知识来证明勾股定理。

这就说明不同的数学家在不同的地方,用不同的思路都能证明这个伟大的定理。

三、勾股定理的实际应用1. 在建筑领域,勾股定理可太有用了。

工人们要确保墙角是直角的时候,就可以利用勾股定理。

比如测量出两面墙的边长,如果符合勾股定理的关系,那这个墙角就是直角。

2. 在航海中,当知道两个地点的坐标,要计算两点之间的直线距离的时候,也能用到勾股定理。

把横向和纵向的距离看作直角边,两点间的直线距离就是斜边。

3. 在测量山峰高度的时候,如果知道从山脚到山顶的水平距离和测量点到山顶的斜边距离,就可以用勾股定理算出山峰的高度啦。

四、勾股定理相关的有趣题目1. 有一个直角三角形,一条直角边是5,斜边是13,那另一条直角边是多少呢?根据勾股定理,设另一条直角边为x,就有5²+x² = 13²,25+x² = 169,x² = 169 - 25 = 144,所以x = 12。

2. 直角三角形的两条直角边的比是3:4,斜边是10,求两条直角边的长度。

设两条直角边分别是3x和4x,根据勾股定理可得(3x)²+(4x)² = 10²,9x²+16x² = 100,25x² = 100,x² = 4,x = 2。

勾股定理基础知识点

勾股定理基础知识点

知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。

勾股定理全章复习与巩固(基础)知识讲解

勾股定理全章复习与巩固(基础)知识讲解

《勾股定理》全章复习与稳固(基础)责编:杜少波【学习目标】1.认识勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决相关的实质问题.【知识网络】【重点梳理】【高清讲堂勾股定理全章复习知识重点】重点一、勾股定理1.勾股定理:直角三角形两直角边a、b 的平方和等于斜边 c 的平方.(即: a2b2c2)2.勾股定理的应用勾股定理反应了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理能够证明相关线段平方关系的问题;(3)解决与勾股定理相关的面积计算;(4)勾股定理在实质生活中的应用.重点二、勾股定理的逆定理1.勾股定理的逆定理假如三角形的三边长a、 b、 c ,知足a2b2c2,那么这个三角形是直角三角形.重点解说:应用勾股定理的逆定理判断一个三角形能否是直角三角形的基本步骤:(1)第一确立最大边,不如设最大边长为 c ;(2)考证:a2b2与 c2能否拥有相等关系:若 a2b2c2,则△ABC是以∠C为90°的直角三角形;若 a2b2> c2时,△ABC是锐角三角形;若 a2b2< c2时,△ABC是钝角三角形.2.勾股数知足不定方程x2y2z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),明显,以 x、y、 z 为三边长的三角形必定是直角三角形.重点解说:常有的勾股数:①3、4、5;② 5、12、 13;③ 8、15、17;④ 7、24、25;⑤ 9、40、41.假如 ( a、b、c )是勾股数,当t 为正整数时,以at、bt、 ct 为三角形的三边长,此三角形必为直角三角形.察看上边的①、②、④、⑤四组勾股数,它们拥有以下特点:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差 1.3.假定三个数分别为a、 b、c ,且 a b c ,那么存在a2b c 建立.(比如④中存在72=24+25、 92=40+41等)重点三、勾股定理与勾股定理逆定理的差别与联系差别:勾股定理是直角三角形的性质定理,而其逆定理是判断定理;联系:勾股定理与其逆定理的题设和结论正好相反,二者互为逆定理,都与直角三角形相关 . 【典型例题】种类一、勾股定理及逆定理的简单应用1、( 2016?益阳)在△ ABC 中, AB=15 , BC=14 , AC=13 ,求△ ABC 的面积.某学习小组经过合作沟通,给出了下边的解题思路,请你依据他们的解题思路达成解答过程.2【思路点拨】依据题意正确表示出AD的值是解题重点.解:如图,在△ABC 中, AB=15 , BC=14 ,AC=13 ,设 BD=x ,则 CD=14 ﹣ x,由勾股定理得:2222222222,AD =AB ﹣ BD =15﹣ x, AD=AC﹣CD=13 ﹣( 14﹣ x)2222故 15 ﹣ x =13﹣( 14﹣x),解之得: x=9.∴AD=12 .∴S△ABC = BC ?AD=× 14× 12=84.【总结升华】本题主假如要读懂解题思路,而后找到解决问题的切入点,问题才能水到渠成.贯通融会:【变式】在△ABC 中, AB = 15, AC = 13,高 AD = 12.求△ABC 的周长.【答案】解:在 Rt△ABD 和 Rt△ACD 中,由勾股定理,得BD 2AB2AD 215212281.∴BD 9.同理 CD2AC2AD213212225.∴CD 5.①当∠ ACB > 90°时, BC = BD -CD= 9- 5=4.∴ △ABC 的周长为: AB + BC + CA= 15+ 4+13= 32.②当∠ ACB < 90°时, BC = BD +CD= 9+ 5=14.∴ △ABC 的周长为: AB + BC + CA= 15+ 14+13= 42.综上所述:△ABC 的周长为32 或 42.2、如下图,△ABC 中,∠ ACB = 90°, AC = CB , M 为 AB 上一点.求证: AM 2BM 22CM 2.2 2 2 【思路点拨】欲证的等式中出现了 AM 、BM 、CM ,自然想到了用勾股定理证明,所以需要作 CD⊥ AB .证明:过点 C 作 CD⊥ AB 于 D.∵AC=BC,CD ⊥AB ,∴ AD =BD.∵∠ACB = 90°,∴CD= AD =DB .∴ AM2BM 222 AD DM AD DMAD22AD DM DM 2AD22AD DM DM 22(AD2DM 2)2(CD 2DM 2)在 Rt△CDM 中,CD2DM 2CM 2,∴AM2BM22CM2.【总结升华】欲证明线段平方关系问题,第一联想勾股定理,从图中找寻或作垂线结构包括所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.贯通融会:【变式】已知△ABC 中, AB = AC , D 为 BC 上任一点,求证:AB 2AD 2BD CD .【答案】解:如图,作AM ⊥ BC 于 M ,∵ AB = AC ,∴ BM = CM,则在 Rt△ABM 中:AB2AM2BM2①在 Rt△ADM 中:AD2AM2DM 2②由①-②得:AB2AD2BM 2DM 2BM DM BM DM=( MC + DM ) ?BD= CD·BD种类二、勾股定理及逆定理的综合应用3、( 2014 秋 ?黎川县期中)如图,在正方形 ABCD 中, AB=4 , AE=2 , DF=1 ,请你判断△BEF 的形状,并说明原因.【思路点拨】依据勾股定理求出BE 2、 EF2、BF2,依据勾股定理的逆定理判断即可.【答案与分析】解:∵△ BEF 是直角三角形,原因是:∵在正方形ABCD 中, AB=4 ,AE=2 , DF=1 ,∴∠ A= ∠ C=∠ D=90°, AB=AD=DC=BC=4, DE=4 ﹣ 2=2, CF=4﹣ 1=3 ,∵由勾股定理得:2222222222BE =AB+AE=4 +2 =20 , EF =DE +DF =2 +1=5,22222BF =BC +CF =4 +3 =25,222∴ BE +EF =BF,∴∠ BEF=90°,即△BEF 是直角三角形.【总结升华】本题考察了正方形性质,勾股定理,勾股定理的逆定理的应用,解本题的重点222是求出 BE +EF =BF .4、如图, P 是等边三角形ABC 内的一点,连接 PA,PB ,PC,以 BP 为边作∠ PBQ=60°,且 BQ=BP ,连接 CQ.(1)察看并猜想 AP 与 CQ 之间的大小关系,并证明你的结论.(2)若 PA: PB:PC=3 :4: 5,连接 PQ,试判断△PQC 的形状,并说明原因.【答案与分析】解: (1)猜想: AP=CQ证明:在△ABP 与△CBQ 中,∵AB=CB , BP=BQ ,∠ ABC= ∠ PBQ=60°∴ ∠ABP= ∠ ABC- ∠ PBC= ∠PBQ-∠ PBC= ∠ CBQ∴ △ABP ≌△ CBQ∴AP=CQ(2)由 PA:PB: PC=3: 4: 5 可设 PA=3a, PB=4a, PC=5a连接 PQ,在△PBQ 中,因为 PB=BQ=4a ,且∠ PBQ=60°∴ △PBQ 为正三角形∴ PQ=4a于是在△PQC 中,∵∴ △PQC 是直角三角形【总结升华】本题的重点在于能够证出△ABP≌△ CBQ,进而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.贯通融会:【变式】如下图,在BD = 5,求 DC 的长.△ABC中, D是BC边上的点,已知AB = 13, AD = 12, AC =15,【答案】解:在△ABD中,由12252132可知:AD 2BD2AB2,又由勾股定理的逆定理知∠ADB= 90°.在 Rt△ADC中,DC 2AC 2AD 281,DC9 .5、假如ABC 的三边分别为a、 b、c ,且知足a2b2c250 6a 8b10c ,判断 ABC 的形状 .【答案与分析】解:由 a2b2c2506a8b10c ,得:a26a 9b28b16c210c25 0∴ (a3)2(b4)2(c5)20∵ (a3)20,(b 4)20,(c 5) 20∴ a3, b4,c 5.∵ 324252,∴ a2b2c2.由勾股定理的逆定理得:△ABC是直角三角形 .【总结升华】勾股定理的逆定理是经过数目关系来研究图形的地点关系的,在证明中常常要用到 .种类三、勾股定理的实质应用6、如图①,一只蚂蚁在长方体木块的一个极点 A 处,食品在这个长方体上和蚂蚁相对的极点 B 处,蚂蚁急于吃到食品,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少 ?【思路点拨】将长方体表面睁开,因为蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种状况.【答案与分析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行行程就是线段AB 的长度.在图②中,由勾股定理,得AB232112130 .在图③中,由勾股定理,得AB26282100 .因为 130> 100,所以图③中的AB 的长度最短,为10 cm,即蚂蚁需要爬行的最短路线长为 10 cm.【总结升华】解本题的重点是正确画出立体图形的睁开图,把立体图形上的折线转变为平面图形上的直线,再运用勾股定理求解.贯通融会:【变式】( 2014 秋 ?郑州期末)我国古代有这样一道数学识题:“枯木一根直立地上'高二丈周三尺,有葛藤自根环绕而上,五周而达其顶,问葛藤之长几何?,题意是:如下图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20 尺,底面周长为 3 尺,有葛藤自点A 处环绕而上,绕五周后其尾端恰巧抵达点 B 处.则问题中葛藤的最短长度是多少尺?【答案】解:如下图,在如下图的直角三角形中,∵BC=20 尺, AC=5× 3=15 尺,∴ AB==25(尺).答:葛藤长为25 尺.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试说明 .
类型三、利用勾股定理作长度为 的线段
3、作长为 、 、 的线段.
【思路点拨】由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为 和1的直角三角形斜边长就是 ,类似地可作 .
类型四、利用勾股定理解决实际问题
4、(2015春•遵义期末)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)
4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)
【总结升华】掌握原命题与逆命题的关系.原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误.
举一反三:
【变式】下列命题中,其逆命题成立的是______________.(只填写序号)
①同旁内角互补,两直线平行;
②如果两个角是直角,那么它们相等;
OA42=( )2+1=4,S3= …
(1)请用含有n(n为正整数)的等式Sn=___________;
(2)推算出OA10=______________.
(3)求出 S12+S22+S32+…+S102的值.
类型二、勾股定理的证明
2、如图所示,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为N,
3、(2015春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
举一反三:
【变式】如图所示,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点,试判断EC与EB的位置关系,并写出推理过程.
③如果两个实数相等,那么它们的平方相等;
④如果三角形的三边长 满足 ,那么这个三角形是直角三角形.
类型二、勾股定理的逆定理
2、判断由线段 组成的三角形是不是直角三角形.
(1) =7, =24, =25;
(2) = , =1, = ;
(3) , , ( );
举一反三:
【变式1】判断以线段 为边的△ABC是不是直角三角形,其中 , , .
勾股定理的逆定理(基础)
【要点梳理】
【高清课堂 勾股定理逆定理 知识要点】
要点一、勾股定理的逆定理
如果三角形的三条边长 ,满足 ,那么这个三角形是直角三角形.
要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.
(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.
要点四、勾股数
满足不定方程 的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以 为三边长的三角形一定是直角三角形.
熟悉下列勾股数,对解题会很有帮助:
13、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……
1.原命题:猫有四只脚.
2.原命题:对顶角相等.
3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.
4.原命题:角平分线上的点,到这个角的两边距离相等.
【答案与解析】
1. 逆命题:有四只脚的是猫(不正确)
2. 逆命题:相等的角是对顶角(不正确)
3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上. (正确)
【变式1】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为 、 、 .
(1)已知 =2, =3,求 ;
(2)已知 , =32,求 、 .
【变式2】(2015秋•永登县期中)分析探索题:细心观察如图,认真分析各式,然后解答问题.
OA22=( )2+1=2,S1= ;
OA32=( )2+1=3,S2= ;
类型三、勾股定理逆定理的实际应用
4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了.
1.已知直角三角形的任意两条边长,求第三边;
2.用于解决带有平方关系的证明问题;
3. 例题】
类型一、勾股定理的直接应用
1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为 、 、 .
(1)若 =5, =12,求 ;
(2)若 =26, =24,求 .
举一反三:

(3)理解勾股定理的一些变式:
, , .
要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中 ,所以 .
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中 ,所以 .
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以 .
要点三、勾股定理的作用
要点二、如何判定一个三角形是否是直角三角形
(1)首先确定最大边(如 ).
(2)验证 与 是否具有相等关系.若 ,则△ABC是∠C=90°的直角三角形;若 ,则△ABC不是直角三角形.
要点诠释:当 时,此三角形为钝角三角形;当 时,此三角形为锐角三角形,其中 为三角形的最大边.
要点三、互逆命题
如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.
勾股定理(基础)
【要点梳理】
【高清课堂 勾股定理 知识要点】
要点一、勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 ,斜边长为 ,那么 .
要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
如果 是勾股数,当 为正整数时,以 为三角形的三边长,此三角形必为直角三角形.
要点诠释:(1) ( 是自然数)是直角三角形的三条边长;
(2) ( 是自然数)是直角三角形的三条边长;
(3) ( 是自然数)是直角三角形的三条边长;
【典型例题】
类型一、原命题与逆命题
1、写出下列原命题的逆命题并判断是否正确
举一反三:
【变式】如图所示,一旗杆在离地面5 处断裂,旗杆顶部落在离底部12 处,则旗杆折断前有多高?
【高清课堂 勾股定理 例3】
5、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()
A.3 B.4 C.5 D.6
【答案】D;
相关文档
最新文档