1.3三角函数的诱导公式同步练习试题
三角函数的诱导公式

( 4 ) cos ( −2040
) = cos 2040
= cos ( 6 × 360 − 120
)
= cos1200 = cos(1800 − 600 ) 1 = − cos 60 = − 2
练习 将下列三角函数转化为锐角三角函数, 将下列三角函数转化为锐角三角函数,并 填在题中横线上 4 13 − cos π (1) cos π = ______; 9 9 ______; ( 2 ) sin (1 + π ) = − sin1
1.3 三角函数的诱导公式 三角函数的诱导公式(1)
双城市铁路中学: 双城市铁路中学:孔凡强
问题1:任意角 的正弦 余弦、正切是怎样定义的? 的正弦、 问题 :任意角α的正弦、余弦、正切是怎样定义的? 问题2:求下列三角函数值 借助单位圆 借助单位圆) 问题 :求下列三角函数值(借助单位圆
7π (1)sin 6 )
解:
2.典型例题 典型例题
11π π π 3 = sin π + = − sin = − ( 2 ) sin 3 3 3 2
2 (1) cos 225 = cos (180 + 45 ) = − cos 45 = − 2
16π ( 3) sin − 3
16π π = − sin 5π + = − sin 3 3 3 π = − − sin = 3 2
π +α O
α
x
P(-x,-y)
(2)与角 的终边关于 轴对称的角与 有什 与角α的终边关于 轴对称的角与α有什 与角 的终边关于x轴对称的角与 么关系?它们的三角函数之间有什么关系 么关系 它们的三角函数之间有什么关系? 它们的三角函数之间有什么关系 公式三 y
三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。
三角函数的诱导公式的练习题及答案

三角函数的诱导公式在ABC ∆中,若()()0sin sin =--+-+C A B C B A ,试判断ABC ∆的形状。
()()()[]()[]()()()CB C B B C B C B C B C B B C C C A B C B A ==+∴=-+-=∴=--∴=-+-∴=--+--∴=--+-+或或2222202sin 2sin 02sin 2sin 0sin sin 0sin sin πππππππππ ∴ABC ∆为直角三角形或等腰三角形。
2、设()()(),cos sin βπαπ+++=x b x a x f 其中βα,,,b a 都是非零实数,若(),12010-=f 则()=2011f 。
()()()()()()()()()()()[]()[]()()().1cos sin cos sin 2010cos 2010sin 2011cos 2011sin 20111cos sin 12010cos 2010sin 2010;12010,cos sin =+-=+++=+++++=+++=∴-=+∴-=+++=∴-=+++=βαβπαπβππαππβπαπβαβπαπβπαπb a b a b a b a f b a b a f f x b x a x f3、已知α是第三象限()()()()()αππαπααπαπ-+-+---=3sin tan )2tan(2cos sin x f (1)、化简();αf (2)、若;53sin -=α求();αf(3)、若,1860︒-=α();αf(1)、()()()()()αππαπααπαπ-+-+---=3sin tan )2tan(2cos sin x f()()ααααααsin sin tan tan cos sin =--= (2)、α是第三象限,;54cos ;53sin -=∴-=αα ()54-=∴αf(3)、()()()︒+︒⨯-=︒-=︒-3003606cos 1860cos 1860f().2160cos 60360cos 300cos =︒=︒-︒=︒=4.设()()()()()()⎪⎩⎪⎨⎧≥--<=⎩⎨⎧≥+-<=)21(11)21(cos 0110sin x x g x x x g x x f x x x f ππ 求)43()65()41()31(f g g f +++的值。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习一、任意角的三角函数【知识梳理】1.设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0y x xα=≠.2.三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.三角函数线:sin α=MP ,cos α=OM ,tan α=AT .4.同角三角函数的基本关系式:(平方关系式)()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;(商数关系式)()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.【典型例题】1.三角函数的定义:例1、已知sinαtanα≥0,则α的取值集合为.例2、角α的终边上有一点P(m,5),且)0(,13cos ≠=m m α,则sinα+cosα=______.例3、已知角θ的终边在直线y =33x 上,则sin θ=;θtan =例4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是.例5、求43π角的正弦、余弦和正切值.例6、已知角α的终边经过点P(4,-3),求2sin α+cos α的值;2.三角函数线例1、sin(-1770°)·cos1500°+cos(-690°)·sin780°+tan405°=.例2、化简:ππππ37sin 3149cos 21613tan 3325cos 342222222m n n m --+=.例3、求下列三角函数值:(1)sin(-1080°)(2)tan 13π3(3)cos780°3、三角函数的基本关系一、选择题1、已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是()A.锐角三角形B.钝角三角形C.不等腰直角三角形D.等腰直角三角形2、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为A.51+B.51-C.51±D.51--3、已知sinαcosα=18,则cosα-sinα的值等于()A.±34B.±23C.23D.-234、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ()A.32B.32-C.31D.31-二、填空题1、若15tan =α,则=αcos ;=αsin .2、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________.3、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为.4、已知524cos ,53sin +-=+-=m m m m θθ,则m=_________;=αtan .三、解答题1、已知51sin =α,求ααtan ,cos 的值.2、已知22cos sin =+αα,求αα22cos 1sin 1+的值.3、已知51cos sin =+ββ,且πβ<<0.(1)求ββcos sin 、ββcos sin -的值;(2)求βsin 、βcos 、βtan 的值.二、三角函数诱导公式:【基础知识】1、三角函数诱导公式(2k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).2、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正余弦互换,符号看象限.3、诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k π+α,02απ≤<;(2)转化为锐角三角函数。
高一三角函数诱导公式练习题(带详解答案)

三角函数诱导公式(带答案)1.全国Ⅱ)若sinα<0且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(07·湖北)tan690°的值为()A.-33 B.33 C. 3D.- 33.f(sin x)=cos19x,则f(cos x)=()A.sin19x B.cos19x C.-sin19x D.-cos19x4.设f(x)=a sin(πx+α)+b cos(πx+β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( ) A .-22 B.22 C .-32D.326.函数y =5sin ⎝ ⎛⎭⎪⎫25x +π6的最小正周期是( )A.25πB.52πC.π3D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)8.函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案) 1.[答案] C 2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A.3.[答案] C[解析]f(cos x)=f(sin(90°-x))=cos19(90°-x)=cos(270°-19x)=-sin19x.4.[答案] C[解析]∵f(2009)=a sin(2009π+α)+b cos(2009π+β)=-a sinα-b cosβ=5,∴a sinα+b cosβ=-5.∴f(2010)=a sinα+b cosβ=-5.5.[答案] A[解析]sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-2 2.6.[答案]D[解析]T=2π25=5π.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数;选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.8. [答案]⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝ ⎛⎭⎪⎫3x +π4的递增区间,由k π-π2<3x+π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12,∴减区间是⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12,k ∈Z.。
1.3三角函数的诱导公式—1学练案及答案

§1.3三角函数的诱导公式—1设计者:杨文锟学习目标1、掌握+πα、α-的三角函数与α的三角函数间的关系;. 学习过程 一、复习准备 复习1:写出2k πα+的三角函数与α的三角函数间的关系式:sin(2)k πα+=sin α;cos(2)k πα+=cos α; tan(2)k πα+=tan α.()k Z ∈结论:(1)终边相同的角的同名三角函数值 相等 ; (2)作用:将任意角的三角函数转化为0~2π(0~360) 间的角的三角函数.复习二:设角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,(,)P x y 为其终边上不同于顶点的任意一点,则sin α=yr;cos α=xr ;tan α=yx(其中22rx y=+.二、新课学习※学习探究一:在同一坐标系中,角πα+的终边与角α的终边有什么关系?(,)P x y α点,则点(,)P x y '--在角πα+的终边上.由此,试计算:sin()πα+=yr-、cos()πα+=x r -、tan()πα+=yx,并分别与sin α、cos α、tan α比较.结论(公式二):sin()πα+=sin α-、cos()πα+=cos α-、tan()πα+=tan α.※典例选析例1 求值:(1)sin 225; (2)16cos 3π;解:(1)sin 225sin(18045)=+2sin 452=-=-;(2)1644cos cos(4)cos 333ππππ=+=1cos()cos 332πππ=+=-=-变式练习1 将下列三角函数转化为锐角三角函数,并填在横线上(1)13cos9π=4cos 9π-; (2)sin(1)π+=sin1-.※学习探究二:仿照学习探究一的步骤,参照课本第23页图1.31-,推导出α-与α的三角函数间的关系式:sin()α-=sin α-、cos()α-=cos α、tan()α-=tan α-※典例选析例2 求值:(1)34sin()3π-; (2)13tan()4π- 解:(1)3434sin()sin33ππ-=- 44sin(10)sin33πππ=-+=- 3sin()sin 33πππ=-+==(2)1313tan()tan44ππ-=- 55tan(2)tan44πππ=-+=- tan()tan 144πππ=-+== 例3 化简 cos(180)sin(360)sin(180)cos(180)αααα+⋅+--⋅--解:原式化为cos sin cos sin 1sin(180)cos(180)sin cos αααααααα-⋅⋅==-+⋅+⋅o α πα+ xy (,)P x y变式练习2 填空 (1)cos(420)-=12; (2)7sin()6π-=12; (3)tan(1305)-=1-;(4)79cos()6π-=32-; (5)sin(180)cos()sin(180)ααα+--- 2sin cos αα=-;(6)3sin ()cos(2)tan()απααπ-+--=4sin α.小结:运用公式特别注意:(1)公式的格式;(2)三角函数值的符号. 三、总结提升※学习小结 化归思想:任意负角的三角函数−−−→公式三任意正角的三角函数−−−→公式一0~3600~2π ()间角的三角函数→0~900~2π()间角的三角函数. 当堂检测1、下列式子正确的是( C ).A sin()sin 55ππ-= .B 32coscos 55ππ= .C 6tan tan 55ππ= .D cos sin 155ππ+= 2、25tan()4π-=1-3、若1cos()2x π+=,则cos()x -=12-.课后预习1、观察课本第23页图1.31-,角πα-的终边与角α的终边有什么关系?关于y 轴对称.2、设(,)P x y 是角α终边上不同于顶点的一点,试计算:sin()πα-=y r、cos()πα-=x r-、tan()πα-=y x-,并分别与sin α、cos α、tan α比较.你能否得出结论:sin()πα-=sin α、cos()πα-=cos α-、tan()πα-=tan α-.。
1.3 三角函数的诱导公式

1.3 三角函数的诱导公式1.诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(课堂训练 一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是 ( )(A)-53 (B)53 (C)±53 (D)54 2.若cos100°= k ,则tan ( -80°)的值为 ( )(A)(D)3.在△ABC,则△ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形 (D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( ) (A)-45(B)-35(C)±35(D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( ) (A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π] ⑤sin[(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( ) (A)①② (B)①③④ (C)②③⑤ (D)①③⑤ 二.填空题7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= .8.sin 2(3π-x )+sin 2(6π+x )= .9.= .*10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题:f (2006) =1516-,则f (2007) = . 三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-.12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)的值.*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2π-β), cos (-απ+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.同步提升一、选择题 1.已知sin()4πα+=,则3sin()4πα-值为( ) A.21 B. —21C. 23D. —232.cos (π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-∙-+ππ得( ) A. sin 2cos2+ B. cos2sin 2- C. sin 2cos2- D.±cos2sin 2- 4.已知3tan =α,23παπ<<,那么ααsin cos -的值是( ) A 231+-B 231+-C 231-D 231+ 二、填空题5.如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限6.求值:2sin(-1110º) -sin960º+)210cos()225cos(2︒-+︒-= . 三、解答题7.设()f θ=)cos()7(cos 221)cos(2)(sin cos 2223θθππθπθθ-++++---+-,求()3f π的值.8.已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3 三角函数的诱导公式
一.选择题
1.已知sin(π+α)=45
,且α是第四象限角,则cos(α-2π)的值是 ( ) (A)-53 (B)53 (C)±53 (D)5
4 2.若cos100°= k ,则tan ( -80°)的值为 ( )
(A)
(D)
3.在△ABC
ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形
(D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( )
(A)-45 (B)-35 (C)±35 (D)±45
5.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( )
(A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin
2A B +=sin 2C *6.下列三角函数:①sin(n π+43
π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π] ⑤sin[(2n +1)π-
3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( ) (A)①②
(B)①③④ (C)②③⑤ (D)①③⑤ 二.填空题 7.tan(150)cos(570)cos(1140)tan(210)sin(690)
-︒⋅-︒⋅-︒-︒⋅-︒= . 8.sin 2(3π-x )+sin 2(6
π+x )= . 9.
= . *10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题: f (2006) =1516
-
,则f (2007) = .
三.解答题 11.化简23tan()sin ()cos(2)2cos ()tan(2)π
πααπααπαπ-⋅+⋅---⋅-. 12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3
π)的值.
13.已知cos α=
13,cos(α+β)=1求cos(2α+β)的值.
*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2
π-β(-α)=
π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.。