考研数学高等数学笔记(辅导班)
2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。
同济大学数学系《高等数学》(第6版)上册笔记和课后习题(含考研真题)详解-微分中值定理与导数的应用(

在带有佩亚诺型余项的泰勒公式中,如果取 x0=0,则有带有佩亚诺型余项的麦克劳林 公式:
。 如 果 存 在 正 实数 M 使得 区 间 ( -r, r ) 里 的任意 x 都 有
,如果当 n 趋向于无穷大时,
,则
,那么 。
可得近似公式:
。
5 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、函数的单调性 微分中值定理,强调了函数值与导数之间的关系。这部分主要介绍如何通过函数的导数 来判定函数的单调性或凹凸性等性质。 1.单调性的判定 【定理】设函数 y=f(x)在[a,b]上连续,在(a,b)内可导。 (1)如果在(a,b)内 f'(x)>0,那么函数 y=f(x)在[a,b]上单调增加; (2)如果在(a,b)内 f'(x)<0,那么函数 y=f(x)在[a,b]上单调减少; 如果把这个判定法中的闭区间换成其他各种区间(包括无穷区间),那么结论也成立。 这是函数单调性判定的一个最基本也是最重要的法则。
2 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
那么在(a,b)内至少有一点 ε,使等式
成立。
拉格朗日中值公式是柯西中值公式的特殊形式。
二、洛必达法则 洛必达法则在求函数极限过程中,有重要作用,在考研试题中也经常出现。一般,洛必 达法则针对 或 形式的极限公式。下面我们主要介绍相关定理及引入一些例题,方便读 者更进一步理解洛必达法则的应用。 1.x→a 【定理】设 (1)当 x→a 时,函数 f(x)及 F(x)都趋于零; (2)在点 a 的某去心邻域内,f'(x)及 F'(x)都存在且 F'(x)≠0;
(3)Biblioteka 存在(或为无穷大),那么
。
2021年考研--高等数学强化课,知识笔记完整版(详细版)

●欢迎大家关注【公众号:南关OUT】●武忠祥老师的强化班课程●函数极限连续●函数●基本要素:定义域,对应规则●函数形态●单调性判定●定义●导数,●单调性应用●根的个数●证明不等式●奇偶性判定●定义●可导●原函数奇函数>导函数偶函数●原函数偶函数>导函数奇函数●连续●周期性判定●定义●可导的周期函数其导函数是周期函数●周期函数的原函数不一定为周期函数●f(x)连续且以T为周期●周期函数的原函数是周期函数的充要条件是在一个周期上的积分为0●有界性判定●定义●闭区间连续●开区间连续,左端点右极限和右端点左极限存在●导数●极限●概念●数列极限●极限值等于多少与数列前有限项无关●与项数无关●函数极限●趋于无穷●趋于有限值●极限存在与该点无关,只与该点的去心领域有关●分左右极限求●分段函数在分段处极限,两侧极限不一样●特殊函数●2●性质●局部有界性●保号性注意等号●与无穷小之间的关系●极限存在准则●夹逼●单调有界●单调有界函数一定有极限,单增上有界、单减下有界●无穷小●比较●性质●无穷大●常用无穷大比较指幂对(大到小)●无穷大与无界变量●与无穷小互为倒数●求极限方法●有理运算法则●基本极限●等价无穷小●常用●积分情况●代换原则●乘除直接换●加减有条件减不为正 1 ,加不为-1●洛必达●泰勒公式●常用●夹逼●积分定义:先提取可爱因子再确定被积函数和积分区间●单调有界●函数极限题型●0/0 0比0型●拉格朗日中值定理●加减 x 来凑常用等价无穷小●无穷 / 无穷●洛必达●分子分母同时除以分子分母各项中最高阶的无穷大●无穷—无穷●0 · 无穷●1 的无穷次方●无穷的0次方,0的无穷次方●数列极限●不定式●和求函数极限式一样,但是不可以直接使用洛必达法则,在可以使用洛必达的地方,将数列极限写成函数极限,再使用洛必达极限●n 项和的数列极限●夹逼定理●定积分定义●级数求和●常用结论●n 项连乘的数列极限●夹逼●取对数化为n项和●递推关系●数列存在单调性●收敛(单调有界准则) > 令极限取A > 带回递推关系取极限得到A●数列不具有单调性或者单调性很难判定●先令极限为A,带回递推关系得到A的值,最后再证明极限为A●单调性判定(直接,比值,函数)●无穷小量阶的比较●洛必达●等价无穷小●泰勒公式●常用结论及举例●连续●连续●间断点●连续函数的性质●连续题型●讨论连续性及间断点类型●函数连续不代表可以取到整个实域的所有值●如果题目中间是抽象函数,只给了条件,没给具体函数,可以将函数令为简单的函数来排除选项,如函数等于1,|x|等●间断点多为使得分母为0的点,分段函数的分界点,多注意无穷(正负),0点●介值定理,最值定理,零点定理证明●一元函数微分●导数微分●导数定义●等价形式●注意分段函数●微分定义●连续、可导、可微之间的关系●求导公式●求导法则●有理运算法则●复合函数求导●隐函数求导●反函数求导●参数方程求导●高阶导数●对数求导法则●多个因式的乘除、乘幂构成,或者幂指函数的形式,可以先取对数再求导●●题型:导数与微分的概念●利用导数定义求极限●利用导数定义求导数●分段函数在分界点处的导数一般都要用定义求●利用导数定义判定可导性●导数几何意义●导数与微分计算●复合函数求导●导数与奇偶性●复合函数在一点的导数值●乘积的极限不一定等于极限的乘积,当两个极限都存在的时候才可以●高阶导数●公式●一阶二阶之后归纳●泰勒公式和泰勒级数●导数应用●微分中值定理●罗尔定理●拉格朗日定理 ---建立函数在区间上的变化与该区间内一点导数的关系●柯西定理●泰勒定理(拉格朗日余项)●极值最值●极值的必要条件●极值的充分条件●第一充分条件●第二充分条件●第三充分条件●凹向拐点●判定●必要条件●充分条件●渐近线●水平渐近线●垂直渐近线●斜渐近线●方程的根的存在性及个数●方法●注意把函数化到一边来求零点●将含有参数的式子参数分离出来●罗尔定理●证明函数不等式●方式方法●单调性●最大最小值●拉格朗日定理●泰勒公式●凹凸性●注意以及常用基本不等式●不等式●微分中值定理有关的证明题●证明存在一个点●构造辅助函数 P 82●证明存在两个中值点 p 85●方法●证明存在一个中值点 p 87●带拉格朗日余项的泰勒公式●一元函数积分●不定积分●原函数●原函数的存在性●f(x)在区间连续,有原函数●有第一类间断点,f(x)没有原函数●基本公式●公式●积分法●第一类换元法●第二类换元法●分部积分●定积分●概念●与积分变量无关●可积性●必要条件存在必有界●充分条件●连续必存在●有界,有限个间断点必存在●有限个第一类间断点必存在●计算●方法●奇偶性和周期性●公式 sin cos 公式注意上下限●变上限积分 p 105●公式●变上限积分函数及其应用●连续性●可导性●奇偶性●处理变上限积分有关极限问题方法●洛必达法则●等价无穷小代换●积分中值定理●图像●性质●不等式●大小●积分中值定理●广义积分中值定理●积分不等式问题●变量代换●积分中值定理●变上限积分●柯西积分不等式●反常积分●定义●无界函数●常用结论●定积分应用●平面图形面积●空间体体积●计算●曲线弧长●计算就是计算 d s●旋转体侧面积●常微分方程●一阶●齐次●线性方程●全微分方程●可降阶的高阶方程●形式●高阶线性微分方程●解的结构●定理一●定理二●定理三●定理四●常系数齐次线性微分方程●二阶常系数线性齐次微分方程解的形式●常系数非齐次线性微分方程●求特解●一●二●多元函数微分●●重极限●任意方式趋近时,函数都是一个值才可以,否则极限不存在●y = k x y = x x (x的方)●求重极限●连续●性质●偏导数●定义●代表斜率●二阶偏导数连续●全微分●定义非常重要●等价●注意,这个ρ 的高阶无穷小是关于ρ 的函数,但是里面的ρ 一般最低是 1 次方(此时需要刚好为0值),是高次方的时候直接使用●可微性判定●可微推出偏导数存在●偏导数连续推出可微●可微推出偏导数存在偏导数连续推出可微●计算●连续、可导、可微关系●偏导数与全微分计算●复合函数求导●全微分形式不变●隐函数求导●极值最值●无条件极值●定义对任意p(x,y)●必要条件存在偏导,且点就是极值点●充分条件领域内有二阶连续偏导,一阶导为0●二元函数在偏导数不存在的点也可能取得极值●条件极值二元函数的条件极值转换为三元函数的无条件极值计算●二重积分●二重积分概念●几何意义积分域D为底,曲面 z=f(x,y) 为曲顶的曲顶柱体的体积●二重积分性质●不等式性质●函数之间的关系●最大最小值●绝对值●二重积分计算●直角坐标●先 y 后 x●先 x 后 y●极坐标●极坐标计算●适合极坐标计算的被积函数●适合极坐标计算的积分域●对称性和奇偶性●奇偶性●变量对称性●无穷级数●级数的概念●无穷级数●部分和●级数收敛●级数发散●级数性质●收敛级数的倍数是极限s的倍数●收敛级数的求和●级数求和●收敛+发散 = 发散●发散+发散 = 敛散性不确定●在级数中去掉、加上有限项不会改变级数的敛散性●收敛级数加括号仍然收敛且和不变●级数加括号以后收敛,原级数不一定收敛●级数加括号以后发散,原级数不一定发散●级数收敛必要条件(反过来不一定成立)●级数的审敛准则●正向级数 u n > 0●比较判别法●比较法极限形式●使用比较法和比较法的极限形式时,需要适当的选择一个已知敛散性的级数作为比较准则●比值法●根值法●交错级数●充分条件●任意项级数●条件收敛●绝对收敛●基本结论●常用结论●等价无穷小代换只适用正向级数●幂级数●定义●阿贝尔定理●绝对收敛(端点收敛则里面收敛)●发散(端点发散则外面发散)●可能性●收敛半径、收敛区间、收敛域●定理3●定理4●有理运算性质●运算●分析性质●连续性●可导性(逐项求导)●可积性●函数的幂级数展开●展开式唯一●泰勒级数●常用展开式●傅里叶级数●定义●展开●方向导数和梯度●方向导数●定义●计算●梯度●定义●多元微分几何应用●曲面的切平面与法线●曲面的切线和法平面●常见曲面●旋转面●柱面平行于 z 轴就是消去 z●多元积分学●三重积分●定义●计算●直角坐标●柱坐标●●线积分●对弧长的线积分(第一类)与积分路径无关●计算(平面)●利用奇偶性曲线关于哪个轴对称,就把哪个变量当作常数,然后来看另外一个变量的奇偶性●利用对称性 x y 可以互换●对坐标的线积分(第二类线积分)与积分路径有关●计算方法●直接法●格林公式●补线用格林公式●利用线积分与路径无关●线积分与路径无关的判定以下四条等价●计算●该换路径●利用原函数●计算方法●斯托克斯公式●面积分●对面积的面积分(第一类面积分)与积分曲面的方向无关●直接法●利用奇偶性●对坐标的面积分(底二类面积分)与积分曲面的方向有关●性质●计算●直接法●高斯公式●常用●多元积分应用●场论。
考研数学详细知识点总结

考研数学详细知识点总结1. 高等数学高等数学是考研数学中最为重要的一部分,内容涵盖了微积分、多元函数微积分、级数、常微分方程和偏微分方程等内容。
在备考高等数学的过程中,考生需要牢固掌握微积分的基本概念和计算方法,包括定积分、不定积分、微分方程等;同时还需要理解多元函数的概念和性质,并能够熟练地进行多元函数的微分和积分运算;此外,对于级数和常微分方程的理解和运用也是备考高等数学的重点内容。
2. 线性代数线性代数是数学中的重要分支,内容包括矩阵与行列式、向量空间、矩阵的特征值和特征向量等。
在备考线性代数的过程中,考生需要深入理解矩阵和行列式的性质,并能够熟练地进行矩阵和行列式的运算;同时还需要掌握向量空间的基本概念和性质,以及矩阵的特征值和特征向量的计算方法。
3. 概率论与数理统计概率论与数理统计是考研数学中另一个重要的部分,内容包括随机变量、概率分布、大数定律、中心极限定理、统计推断等。
在备考概率论与数理统计的过程中,考生需要理解随机变量的基本概念和性质,并能够熟练地应用各种概率分布;同时还需要掌握大数定律和中心极限定理,以及统计推断的基本原理和方法。
4. 复变函数复变函数是数学中的一个重要分支,内容包括复数、复变函数的极限、连续性、解析性、洛朗级数、留数定理等。
在备考复变函数的过程中,考生需要理解复数的基本概念和性质,并能够熟练地进行复数的运算;同时还需要掌握复变函数的极限、连续性、解析性等概念,以及留数定理的应用方法。
总的来说,备考考研数学需要考生对高等数学、线性代数、概率论与数理统计和复变函数等内容有着深入的理解和掌握,在备考过程中,考生需要花费大量的时间和精力去准备,并且需要不断地进行练习和巩固,才能够取得较好的成绩。
希望以上所述的内容能够对广大考生有所帮助,祝愿考生能够顺利通过考研数学科目的考试。
高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]
(完整版)考研高等数学知识点总结(最新整理)

du u dx u dy u dz x y z
全微分的近似计算:z dz f x (x, y)x f y (x, y)y 多元复合函数的求导法:
z f [u(t),v(t)]
dz z u z v dt u t v t
z f [u(x, y),v(x, y)]
z z u z v x u x v x
x2 a2 dx x x2 a2 a2 ln x x2 a2 C
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
sin
x
2u 1u
2
, cos
x
1 1
u u
2 2
, u
tg
x , dx 2
2du 1 u2
1 / 13
一些初等函数:
两个重要极限:
双曲正弦 : shx ex ex 2
当u u(x, y),v v(x, y)时,
du u dx u dy x y
dv v dx v dy x y
隐函数的求导公式:
隐函数F (x,
y)
0, dy dx
Fx Fy
, d 2 y dx 2
x
(
Fx Fy
)+
y
(
Fx Fy
)
dy dx
隐函数F (x, y, z) 0, z Fx , z Fy
x
x
三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sin cos tg ctg
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα
考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。