氢键在现代化学中的作用

合集下载

结构化学基础

结构化学基础

结构化学基础在化学中,人们常使用分子图来代表化学物质。

分子图是一种结构化学的基本工具,能够清晰地表示化学物质的结构和性质。

结构化学是分子图的基础。

它研究分子、离子和它们之间的化学键所构成的化合物的结构、性质和反应。

本文将介绍结构化学的基础知识。

一、化学键的类型化学键是互相链接原子的力。

它们决定了分子的结构和性质。

化学键的类型有以下几种。

1. 静电键静电键是正负电荷之间的吸引力。

它们在离子化合物中非常普遍,比如氯化钠。

在分子化合物中,静电键是非常弱的,因为它们只有在极性分子中才存在。

有时候,静电键出现在共价键中,此时可以称之为极性共价键。

氟气和水分子中就存在这样的极性共价键。

2. 共价键共价键是原子间由共用一对电子而形成的化学键。

共价键分为极性共价键和非极性共价键。

非极性共价键指的是两个非极性原子间的化学键,例如氢气。

而极性共价键指的则是两个原子间,如果原子的电负性存在明显差异,就会形成极性共价键。

极性共价键在分子的化学性质中扮演着重要角色。

3. 金属键金属键是由离子化合物中金属离子与自由电子构成的一种键。

金属键在金属中的性质中起着重要的作用,它使得金属成为了良好的导体和热传导介质。

二、分子几何与习惯表示法分子的几何形状对于分子的化学性质有很大的影响。

在结构化学中,常用杜瓦尔-布拉格方案表示分子几何和结构。

这个方案中,每个原子都用一个符号表示,而它们之间的化学键用线来表示。

在所有的分子几何类型中,最重要的是以下几种。

1. 线性线性分子的共价键通常都是直线分布的。

氧气和碳二氧化分子都是线性分子。

2. 三角形锥形三角形锥形分子中,原子最多有四个邻居。

水分子和氨分子都是三角锥形分子。

3. 四面体四面体分子的原子通常有五个邻居。

一些复杂的离子也属于这一类分子。

三、立体异构体分子的立体异构体是指它们在空间构型方面存在不同的结构形态。

化学家使用手性符号或矢量来表示这些立体异构体。

异构体在化学和医学上都有很多应用。

(现代基础化学课件)第二章分子结构和分子间力、氢键

(现代基础化学课件)第二章分子结构和分子间力、氢键

1)苯分子 (C6H6) 的结构:
2p
激发
2s
2s
C原子
杂化
sp2杂化轨道 2pz
2p 大π键
在苯分子中和每个C原子相 邻的有另2个C原子和1个H 原子。
2.3.5 有机化合物分子的结构
2)乙烷分子(C2H6)的结构:
H
H
sp3-s 键
H Csp3-sp3 键C H
H
H
3)乙烯分子(C2H4)的结构:
2.3.4 CO2分子的结构
经实验测得CO2分子为直线形,试用杂化轨道理 论解释之。
根据直线形结构,C 原子杂化方式为 sp 杂化:
2p 2s
2p 激发 2s
杂化sp杂化轨道 2p
C 原子轨道
所以CO2分子的 结构为:
O
C
O
2s2
2p4
8O: 1s2 2s2 2p4
2s2
2p4
8O: 1s2 2s2 2p4
杂化过程:a)激发 b)杂化 c)成键
ns np 杂化
激发 ns np
成键
sp3
sp3-x
杂化轨道特征:
1. 经杂化后轨道能量和成分均发生了变化。
2. 轨道形状改变。
3. 杂化后轨道与其它原子的成键能力增强。
2.3.1 sp 杂化
1个s 轨道和1个p 轨道的杂化。如BeCl2 的形成:
2p
2p
2p
价层电子对互斥理论VESPR
n=(中心原子价电子数+成键原子数-电 子数)/2-双键(1)三键(2)
例: CH4 n=(4+4)/2=4 H2O n=(6+2)/2=4 H3O+ n=(6+3-1)/2=4 SO42- n=(6+2)/2=4 NO2- n=(5+1)/2=3 C2H4 n=(4+2+2)/2-1=3 CH3CHO n=(4+1+1)/2=3

淀粉分子之间的氢键重新紧密排列

淀粉分子之间的氢键重新紧密排列

淀粉分子之间的氢键重新紧密排列淀粉分子在生物体系中起着非常重要的作用,是一种被许多有机生物体固有存在的有机大分子。

淀粉分子主要由α-D葡萄糖分子组成,它通常是羟乙基化的,并在α-1,4-葡萄糖基上具有α-1,6-葡萄糖基的分支。

淀粉分子在水中可溶,从而向细胞和器官提供能量。

过去的研究指出,淀粉分子之间的氢键在物理学和化学上非常重要。

现代科学家们已经初步证实,淀粉分子之间氢键的重新紧密排列可以改变其物化特性,这将对一系列更广泛的领域产生重大影响。

下面对淀粉分子之间的氢键重新紧密排列进行分析:1. 氢键重新排列是如何影响淀粉的物化特性的?淀粉分子之间的氢键的重新紧密排列可以改变其物化特性。

经过实验证明,淀粉分子之间的氢键重新排列不仅会改变它的膨胀率,还会改变其稳态(即结晶)和速率。

氢键是两个或多个分子或离子之间的一种非共价原子间相互作用,通常是一种静电吸引力。

在淀粉分子中,氢键连接α-D葡萄糖分子的氧原子和α-D葡萄糖分子的羟基,从而将淀粉分子连接在一起,形成更大的复合物。

当淀粉分子的氢键重新排列时,淀粉分子的膨胀率,稳态和反应速率都会受到影响。

2. 氢键重新排列如何通过生物途径进行控制?淀粉分子之间的氢键的重排是一个多方面的过程,需要共同作用的多种因素。

动植物体细胞内的酵素可以通过控制温度,pH值以及淀粉分子本身的组成来影响淀粉分子的氢键排列。

此外,在动物体内,胰岛素和其他激素通过调节淀粉合成和分解途径来控制淀粉分子排列,从而进一步影响其物化特性。

这是淀粉分子在人体内进行能量代谢所必需的一个生物途径,它可以通过调节淀粉分子之间的氢键排列来维持生命活动。

3. 氢键重新排列对生物科学和其他领域的意义是什么?淀粉分子之间氢键排列的重排可以对生命科学的研究领域产生重大影响,比如在淀粉溶液制备和生物能量代谢过程中。

此外,淀粉分子也是高分子材料的一种常见成分,它们被广泛用于医疗、纺织、食品等领域。

氢键的重新排列将对这些应用产生重大影响。

高中化学化学键知识点2024

高中化学化学键知识点2024

高中化学化学键知识点2024一、化学键的基本概念1. 化学键的定义化学键是相邻原子或离子之间强烈的相互作用,这种作用使得原子或离子结合成稳定的分子或晶体。

化学键的形成和断裂是化学反应的本质。

2. 化学键的分类根据形成方式和性质的不同,化学键主要分为以下几类:离子键:由正负离子之间的静电引力形成。

共价键:由原子间共享电子对形成。

金属键:由金属原子中的自由电子与金属阳离子之间的相互作用形成。

分子间作用力:包括范德华力、氢键等,虽然不属于化学键,但对物质的性质有重要影响。

二、离子键1. 离子键的形成离子键通常在金属和非金属元素之间形成。

金属原子失去电子形成阳离子,非金属原子获得电子形成阴离子,阳离子和阴离子通过静电引力结合在一起。

2. 离子键的特点高熔点和沸点:由于离子键较强,需要大量能量才能打破。

导电性:在熔融状态或水溶液中,离子可以自由移动,因此具有导电性。

硬度大、脆性大:离子晶体结构紧密,但受外力时容易发生离子层错位,导致脆性。

3. 离子键的实例NaCl(氯化钠):钠失去一个电子形成Na⁺,氯获得一个电子形成Cl⁻,两者通过离子键结合。

CaO(氧化钙):钙失去两个电子形成Ca²⁺,氧获得两个电子形成O²⁻,形成离子键。

三、共价键1. 共价键的形成共价键通常在非金属元素之间形成。

原子通过共享电子对达到稳定的电子构型。

2. 共价键的类型单键:共享一对电子,如H₂中的HH键。

双键:共享两对电子,如O₂中的O=O键。

三键:共享三对电子,如N₂中的N≡N键。

3. 共价键的特点方向性:共价键的形成依赖于原子轨道的重叠,因此具有方向性。

饱和性:每个原子能形成的共价键数量有限,取决于其未成对电子的数量。

极性:根据共享电子对的偏移情况,共价键可分为极性共价键和非极性共价键。

4. 共价键的实例H₂(氢气):两个氢原子通过共享一对电子形成HH键。

CO₂(二氧化碳):碳和氧通过双键形成O=C=O结构。

2020届高三化学选修三二轮专题复习——氢键及对物质性质的影响

2020届高三化学选修三二轮专题复习——氢键及对物质性质的影响

2020届届届届届届届届届届届届届届——届届届届届届届届届届届届一、单选题(本大题共20小题,共40分)1.下列说法正确的是()A. C4H9Cl有4种同分异构体B. 乙醇的沸点比乙烷的沸点低C. 糖类、油脂和蛋白质都能发生水解反应D. 石油分馏可以得到丙烯等重要化工基本原料2.X、Y、Z、M、W为五种短周期元素.X原子的质子数与电子层数相同,W原子核外电子数是M原子最外层电子数的2倍,Y、Z、M、W在周期表中的相对位置如图所示.下列说法不正确的是()Y Z MWA. 原子半径:W>Y>Z>M>XB. 热稳定性:XM>X2Z,沸点:X2Z>YX3C. X、Y、Z三种元素形成的化合物中不可能含离子键D. ZM2、YM3、WM4分子中每个原子最外层均满足8电子结构3.我国药学家屠呦呦因发现植物黄花蒿叶中含有抗疟疾的物质−青蒿素而荣获2015年诺贝尔奖。

科学家对青蒿素的结构进行进一步改良,合成药效更佳的双氢青蒿素、蒿甲醚。

下列说法不正确的是()A. 利用黄花蒿叶研究青蒿素结构的基本步骤为:元素分析确定实验式→测定相对分子质量确定分子式→波谱分析确定结构式B. 青蒿素的分子式是C15H22O5,属于烃的衍生物C. 双氢青蒿素中含有过氧键,遇湿润的淀粉碘化钾试纸立刻显蓝色D. 双氢青蒿素在水中的溶解性大于青蒿素4. 下列叙述中不正确的是( )①液态HF 中存在氢键,所以其分子比HCl 更稳定②将SO 2通入紫色石蕊溶液,溶液先变红后褪色③可用浓氨水检验输送氯气的管道是否有泄漏④在Fe(NO 3)2溶液中通入过量碘化氢气体,最终Fe 2+被氧化为Fe 3+⑤将过量的二氧化碳气体通入硅酸钠溶液中,然后加热蒸干,再在高温下充分灼烧最后得到的固体为碳酸钠和二氧化硅.A. ①②⑤B. ②③④C. ①②④⑤D. ①③④⑤ 5. 有关甲醛()、苯、二氧化碳及水说法不正确的是( )A. 苯与B 3N 3H 6互为等电子体,且分子中原子共平面B. 甲醛、苯和二氧化碳中碳原子均采用sp 2杂化C. 苯、二氧化碳是非极性分子,水和甲醛是极性分子D. 水的沸点比甲醛高得多,是因为水分子间能形成氢键,而甲醛分子间不能形成氢键6. 下列说法正确的是( )A. 具有共价键的化合物就是共价化合物B. 离子化合物不可能全部由非金属构成C. H 2O 比H 2S 的沸点高是由于H 2O 中的O −H 键更牢固D. 寻找半导体材料可以在元素周期表的金属与非金属的分界线附近寻找7. 下列说法正确的是( )A. 由于水分子之间存在氢键,所以水分子比较稳定B. 晶体中有阴离子则必然有阳离子,有阳离子一定有阴离子C. NH 4HSO 3溶液与足量NaOH 溶液混合加热:NH 4++HSO 3−+2OH − △ ̲̲̲̲̲̲ NH 3↑+SO 32−+2H 2OD. 电解水生成H 2和O 2的实验中,可加入少量盐酸或硫酸增强导电性8. 下列说法正确的是( )A. 若把H 2S 分子写成H 3S 分子,违背了共价键的饱和性B. 氢键属于共价键,也有方向性和饱和性C. 所有共价键都有方向性D. Ni 能与CO 形成配合物Ni(CO)4,1mol Ni(CO)4中含有4mol σ键9. 中学化学中很多“规律”都有适用范围,下列根据有关“规律”推出的结论正确的是( ) 选项 规律 结论A 元素的非金属性较强,其单质也越活泼磷单质比N2稳定B反应物浓度越大,反应速率越快常温下,相同的铝片中分别加入足量的浓硝酸、稀硝酸,浓硝酸中铝片先溶解完全C 结构和组成相似的物质,沸点随相对分子质量增大而升高NH3沸点低于PH3D 溶解度小的沉淀易向溶解度更小的沉淀转化ZnS沉淀中滴加CuSO4溶液可以得到CuS黑色沉淀A. AB. BC. CD. D10.M、X、Y、Z、W是原子序数依次递增的五种短周期元素,M是所有元素中原子半径最小的,X的一种单质是自然界中硬度最高的物质,Z、W同主族且能形成多种常见化合物.下列叙述正确的是()A. 稳定性:W的氢化物>Z的氢化物,沸点:W的氢化物<Z的氢化物B. 元素X、Y、Z的单质晶体可能属于同种类型的晶体C. XZ2、X2M2、M2Z2均为直线型的共价化合物D. 由Z和W组成的一种化合物能使酸性高锰酸钾溶液褪色,表明其具有漂白性11.下列说法正确的是()A. 邻羟基苯甲醛的沸点比对羟基苯甲醛的高B. 基态碳原子的最外层电子排布图:C. 原子核外价电子排布式分别为3s1和3s23p5两种元素,不能形成AB2型化合物D. 原子核外电子排布式为1s2的原子与原子核外电子排布式为1s22s2的原子化学性质相似12.下列说法正确的是()A. 按系统命名法,命名为3,3,6−三甲基−4−乙基庚烷B. 是某有机物分子的比例模型,该物质可能是一种氨基酸C. 与Br2发生加成反应生成的产物最多有4种D. 室温下,在水中的溶解度:苯酚>丙三醇>1−氯丁烷13.关于氢键的下列说法中不正确的是()A. 晶体冰中每个水分子通过氢键可连接4个水分子B. HF的沸点高于NH3,主要因为前者分子间氢键强于后者C. 邻羟基苯甲醛的沸点低于对羟基苯甲醛,是因为前者形成了分子间氢键,后者形成了分子内氢键D. 测量接近沸点的水蒸气的相对分子质量大于18,是因为相当量的水分子之间通过氢键形成了“缔合分子”14.下列说法中,不正确的是()A. X射线衍射实验是区别晶体与非晶体的最科学的方法B. 金属键无方向性,金属晶体中原子尽可能采取紧密堆积C. 凡AB3型的共价化合物,其中心原子A均采用sp2杂化轨道成键D. 乙醇与水互溶可以用“相似相溶”原理和氢键来解释15.已知弱酸的电离平衡常数如下表,下列选项正确的是()弱酸H2CO3水杨酸()电离平衡常数(25℃)K a1=4.3×10−7K a2=5.6×10−11K a1=1.3×10−3K a2=1.1×10−13A. 常温下,等浓度、等体积的NaHCO3溶液pH小于溶液pHB. 常温下,等浓度、等体积的Na2CO3溶液和溶液中所含离子总数前者小于后者C. +2NaHCO3→+2H2O+2CO2↑D. 水杨酸的第二级电离K a2远小于第一级电离K a1的原因之一是能形成分子内氢键16.关于下列说法正确的是()A. 加热氯化铵与固化碘过程中发生的都是升华B. 氢键的存在主要影响物质的物理性质,如熔沸点和在水中的溶解度C. 水分子相当稳定是因为水分子间存在很强的分子间作用力D. 直接由原子构成的晶体必然是原子晶体17.下列叙述中正确的是()A. 金属晶体的熔点和沸点都很高B. CH4、CCl4都是含有极性键的非极性分子C. HF、HCl、HBr、HI的稳定性依次增强D. H2O是一种非常稳定的化合物,这是由于氢键所致18.下列说法正确的是()A. 碱金属单质都是银白色质软的金属B. 需要加热的反应都是吸热反应C. 由于NH3分子间存在氢键,所以NH3的沸点比PH3、AsH3和SbH3都高D. 化学反应的限度决定了反应物在该条件下的最大转化率19.下列事实与氢键有关的是()A. CH4、SiH4、GeH4、SnH4熔点随相对分子质量增加而升高B. HF、HCI、HBr、HI的热稳定性依次减弱C. 0℃时,水的密度比冰大D. 水加热到很高的温度都难以分解20.下列有关叙述正确的是()A. Na2O2晶体中阳离子与阴离子个数比为1:1B. H2O比H2S稳定,H−S键比H−O键更易断裂C. D和T的中子数相同,质子数不同,互为同位素D. HF、HCl、HBr、HI的沸点逐渐增大二、简答题(本大题共5小题,共60分)21.已知T、W、X、Y、Z是元素周期表前四周期中的常见元素,原子序数依次增大,相关信息如表.元素相关信息T T元素可形成自然界硬度最大的单质W W与T同周期,核外有一个未成对电子X X原子的第一电离能至第四电离能分别是:I1=578kJ⋅mol−1,I2=1817kJ⋅mol−1,I3=2745kJ⋅mol−1,I4=11575kJ⋅mol−1Y常温常压下,Y单质是固体,其氧化物是形成酸雨的主要物质Z Z的一种同位素的质量数为63,中子数为34(1)TY2是一种常用的溶剂,是______ (填“极性分子”或“非极性分子”),分子中存在______ 个σ键.W的最简单氢化物容易液化,理由是______ .(2)在25℃、101kPa下,已知13.5g的X固体单质在O2中完全燃烧后恢复至原状态,放热419kJ,该反应的热化学方程式为______ .(3)基态Y原子中,电子占据的最高能层符号为______ ;该能层具有的原子轨道数为______ 、电子数为______ .Y、氧、W元素的电负性由大到小的顺序为______ (用元素符号作答).(4)已知Z的晶胞结构如图所示,又知Z的密度为9.00g⋅cm−3,则晶胞边长为______ (用含立方根的式子表示);ZYO4常作电镀液,其中YO42−的空间构型是______ ,其中Y原子的杂化轨道类型是______ .Z的单质与人体分泌物中的盐酸以及空气反应可生成超氧酸:Z+HCl+O2=ZCl+HO2,HO2(超氧酸)不仅是一种弱酸而且也是一种自由基,具有极高的活性.下列说法或表示正确的是______A.O2是氧化剂B.HO2是氧化产物C.HO2在碱中能稳定存在D.1mol Z参加反应有1mol 电子发生转移.22.元素周期表是学习化学的工具,也为化学的进一步探索与研究提供了理论指导,化学学习者和研究者一直关注周期表的运用与发展.试回答下列问题:(1)1906年的诺贝尔化学奖授予为制备F2单质作出重大贡献的化学家莫瓦桑,你认为最先用来与F2反应制备稀有气体化合物的元素是______(填写元素符号).(2)周期表第四周期中,未成对电子数最多的元素是______,它有______ 种运动状态不同的电子,属于______ 分区.(3)元素周期表第一、二周期的四种元素氢、碳、氮、氧构成的分子中,键角最小的是______.A、NH3B、NF3C、OF2D、CF4(4)人们发现Li+溶剂化倾向很强,提出类似于氢键的“锂键”,请画出(LiF)2含含锂键的结构式:______.(5)研究周期表发现存在对角线规则,处于对角线上的元素性质相似,如铍与铝处于对角线,请写出氢氧化铍和氢氧化钠溶液反应的离子方程式______.23.图A所示的转化关系中(具体反应条件略),a、b、c和d分别为四种短周期元素的常见单质,其余均为它们的化合物,i的溶液为常见的酸,a的一种同素异形体的晶胞如图B所示.回答下列问题:(1)图B对应的物质名称是______ ,晶体类型为______ .(2)d中元素的原子核外电子排布式为______ .(3)图A中由二种元素组成的物质中,沸点最高的是______ ,原因是______ ,该物质的分子构型为______ .(4)图A中的双原子分子中,极性最大的分子是______ .(5)k的分子式为______ ,中心原子的杂化轨道类型为______ ,属于______ 分子(填“极性”或“非极性”).K又称光气,实验室制取时,可用四氯化碳与发烟硫酸(SO3的硫酸溶液)反应.将四氯化碳加热至55−60℃,滴加入发烟硫酸,即发生逸出光气和磺酰氯(该物质在高温时分解成SO2和Cl2),写出制取光气的化学方程式:______制取光气也可用氯仿和双氧水直接反应,生成光气和一种极易溶于水的气体,且水溶液呈强酸性,写出该化学方程式:______ .24.如表中列出五种短周期元素X、Y、Z、W、T的信息.元素相关信息X基态原子最外层电子排布为ns n np n+1Y其原子L层电子数是K层的3倍Z其单质能与冷水剧烈反应,生成的阴阳离子电子数相同W其单质在Y2中燃烧,发出明亮的蓝紫色火焰T其最高正价与最低负价的代数和为6回答下列问题:(1)Y、Z、W三种元素所形成的简单离子半径由小到大的顺序是______(用离子符号表示);T元素的基态原子核外电子排布式为______.(2)X、Z两元素可形成化合物ZX3,其晶体中化学键类型有______,晶体类型为______.(3)T元素的最高价氧化物对应水化物的化学式是______H2Y的沸点比H2W高的原因是______.(4)Z2WY3溶液呈______性,其原因是(用离子方程式表示)______.(5)已知25℃、101kPa下:①2Z(s)+12Y2(g)=Z2Y(s)△H2=−414kJ⋅mol−1②2Z(s)+Y2(g)=Z2Y2(s)△H2=−511kJ⋅mol−1则1mol Z2Y2(S)与足量Z(s)反应生成Z2Y(s)的热化学方程式为______.25.氟是自然界中广泛分布的元素之一.由于氟的特殊化学性质,它和其他卤素在单质及化合物的制备与性质上存在较明显的差异.Ⅰ.化学家研究发现,SbF5能将MnF4从离子[MnF6]2−的盐中反应得到,SbF5转化成稳定离子[SbF6]−的盐.而MnF4很不稳定,受热易分解为MnF3和F2.根据以上研究写出以K2MnF6和SbF5为原料,在423K 的温度下制备F2的化学方程式:______现代工业以电解熔融的氟氢化钾(KHF2)和氟化氢(HF)混合物制备氟单质,电解制氟装置如图所示.已知KHF2是一种酸式盐,写出阴极上发生的电极反应式______.电解制氟时,要用镍铜合金隔板将两种气体产物严格分开的原因是______.Ⅱ.①卤化氢的熔沸点随相对分子质量增加而升高,而HF熔沸点高于HCl的原因是______.HF的水溶液是氢氟酸,能用于蚀刻玻璃,其化学反应方程式为:______.②已知25℃时,氢氟酸(HF)的电离平衡常数K a=3.6×10−4.某pH=2的氢氟酸溶液,由水电离出的c(H+)=______ mol/L;若将0.01mol/L HF 溶液与pH=12的NaOH溶液等体积混合,则溶液中离子浓度大小关系为:______ ③又已知25℃时,溶度积常数K sp(CaF2)=1.46×10−10.现向1L 0.2mol/L HF溶液中加入 1L 0.2mol/L CaCl2溶液,通过列式计算说明是否有沉淀产生:______.答案和解析1.【答案】A【解析】解:A.C4H9Cl可以看作是丁烷中的1个H原子被Cl取代产物,C4H9Cl同分异构体与丁基的数目相同,丁基有−CH2CH2CH2CH3、−CH(CH3)CH2CH3、−CH2CH(CH3)2、−C(CH3)3,总共有4种,则C4H9Cl的同分异构体种数有4种,故A正确;B.含有氢键的物质熔沸点较高,乙醇中含有氢键、乙烷中不含氢键,所以熔沸点:乙烷<乙醇,故B错误;C.二糖、多糖、油脂和蛋白质都能发生水解反应,但单糖不能水解,故C错误;D.石油的裂解可以得到乙烯、丙烯等重要化工基本原料,石油分馏无法获得丙烯,故D 错误;故选:A。

c-h基团 相互作用

c-h基团 相互作用

c-h基团相互作用
C-H键是化学中最常见的共价键之一,它存在于几乎所有的有机化合物中。

C-H基团的相互作用涉及许多化学和物理过程,包括化学反应、分子间作用力和物理状态的变化。

以下是一些关于C-H基团相互作用的方面:
1. 化学反应性:C-H键因其相对稳定,通常不易断裂,但在特定条件下,如在催化剂存在下,C-H键可以被活化,参与有机合成反应。

2. 分子间作用力:C-H基团可以通过范德华力(London dispersion forces)与其他分子相互作用。

这些作用力虽然较弱,但在决定物质的物理性质(如沸点和溶解度)中起着重要作用。

3. 氢键:在某些情况下,C-H基团可以与其他分子的孤对电子形成氢键,这种相互作用在生物分子(如蛋白质和DNA)中尤为重要。

4. 极化效应:C-H基团的极性相对较小,但随着共轭体系的延伸或在特定环境中,C-H键的极性可能会增加,影响分子的电子分布。

5. 化学环境的影响:C-H基团附近的化学环境会对其性质产生影响。

例如,邻近吸电子基团会使C-H键变得更易于活化。

6. 光谱学:在红外光谱中,C-H键的伸缩振动峰可以提供有关分子结构的信息。

不同的C-H键由于化学环境的不同,其振动频率也会有所区别。

7. 动力学:C-H键的解离和形成是许多化学反应中的关键步骤,其动力学性质影响着反应速率和平衡。

在研究和应用中,理解和操控C-H基团的相互作用对于有机合成、材料科学、药物化学和生物学等领域都具有重要意义。

通过现代谱学技术和计算化学方法,科学家可以深入研究C-H基团的相互作用,从而设计出更加高效和特异性的化学反应。

电化学 氢键

电化学 氢键

电化学氢键
氢键是电化学中的一个重要概念。

它是由氢原子与电负性较高的原子(如氧、氮、氟等)之间的相互作用所形成的一种化学键。

氢键的形成是由于氢原子的特殊性质。

氢原子只有一个电子,它可以与其他原子共享,形成共价键。

当氢原子与电负性较高的原子相连时,由于电负性差异,电子倾向于更靠近电负性较大的原子。

这就导致了氢原子带有正电荷,而电负性较大的原子带有负电荷。

这种电荷分布的不均匀性使得氢原子与电负性较大的原子之间存在着一种强烈的吸引力,即氢键。

氢键的存在对于许多化学和生物学过程起着重要的作用。

例如,在水中,氢键使得水分子之间形成了网状结构,使得水具有了许多特殊的性质,如高沸点、高比热、高表面张力等。

在蛋白质和DNA分子中,氢键起到了保持分子结构稳定的作用,使得它们能够正常地进行生物功能。

除了在水和生物大分子中,氢键还在许多其他化学反应中发挥作用。

例如,在有机化学中,氢键可以影响分子的构象和反应性质。

在催化剂设计中,氢键的理解也起到了重要的作用,可以帮助研究人员设计更高效的催化剂。

总的来说,氢键是电化学中一个重要的概念,它的存在和性质对于理解和解释许多化学和生物学现象起着重要的作用。

通过深入研究
氢键的形成和性质,我们可以更好地理解和应用它在各个领域中的作用,推动科学的发展。

现代物理化学电子教案 湖南大学 1[1].5 统计热力学的应用

现代物理化学电子教案 湖南大学 1[1].5 统计热力学的应用
5. 规定熵 : 规定完整晶体0K时的微态数为零,用积分式计算温度T 时的熵值, 若有状态变化,则进行分段积分,这样得到的熵称为 规定熵。
6. 标准摩尔熵 :标准压力下,实验温度T时求得1mol物质的熵值 称为 标准摩尔熵,只有298K时的数值有表可查.
h
22
残余熵、量热熵、统计熵的关系 Sm(残余)=Sm(统计) - Sm(量热)
〔解〕 (1)摩尔热力学能 Ut,m-U0,t,m
(2)恒容热容 Cv,m
(3)摩尔熵 Syt,m
h
5
统计热力学应用一 2 双原子及线性多原子气体
双原子及线性多原子气体除了三个 平动自由度之外,还有二个转动自由度 和(3n-5)个振动自由度(暂不考虑电子 配分函数贡献)。它们相应的配分函数 如下:
298.15K 时
h
14
3.3 非线型多原子分子气体振动
非线性多原子分子具有 3N -6 个振动自由度,每一振 动自由度的配分函数、Uv-Uv,0、Cv,v 和 Sv 的计算方法在 前面已讨论过。若有 j 个振动模式,则
h
15
统计热力学应用二 热力学定律的统计诠释
1 热力学第一定律
为使粒子按指定的方向发生相同的能量变化,则要求粒子作有 序的运动,显然只有做功才能达到此目的。与上式对比:
R N0
T
V
nRT hV
2
1.2 单原子分子气体热力学能及热容
结论与实验结果基本上一致
h
3
1.3 单原子分子气体热力学熵
Sackur-Tetrode公式用来计算理想气体的平动熵
可得到恒压下一摩尔理想气体温度由 T1 变化至 T2 的熵变:
这一结论与经典热力学中
h 的结果一致
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氢键在现代化学中的作用
随着科学的不断发展,现在化学的研究对象,已经远远超出了常规的、以共价键为基础的分子,它包括从原子、分子片、结构单元、分子、高分子、生物大分子、超分子、分子和原子的各种不同维数、不同尺度和不同复杂程度的聚集体、组装体、分子材料、分子器件和分子机器。

化学已从分子化学发展为超分子化学,超分子化学是分子以上层次的化学,是化学、生物学、物理学、材料科学、信息科学、环境科学等学科相互交叉融合的产物。

超分子化合物因其在光、电、磁化学和分离、吸附、催化等领域所具有的应用前景而备受青睐。

而分子之间以及分子以上层次的超分子及有序高级结构的组装体,则是依靠分子间的相互作用如氢键、范德华力、偶极-偶极相互作用、亲水-疏水相互作用、π-π堆积力等将分子结合在一起。

在各种分子间相互作用中,氢键占有很特殊的地位,被称作为“超分子化学中的万能相互作用”。

氢键有别于其他分子间相互作用之处在于:
(1)氢键在类型、长度、强度和几何构型上是变化多样的,每个分子中的一个强氢键足以决定固态结构,并且在很大程度上影响其液态和气态的存在。

弱氢键在稳定结构中也起到一定的作用,当有很多氢键协同作用时效果可以变得很显著;
(2)氢键具有方向性、饱和性和可预见性,能够设计和合成出含有特征质子给体和特征质子受体的分子,可以按照所希望的方式将一定的结构单元或功能单元通过氢键组装成具有优异的光、电、磁、催化、生物活性等特性的材料;
(3)氢键强度介于化学键和范德华力之间,形成和破坏都比较容易,其动态可逆的特点,使其对外部环境的刺激能产生独特的响应,在决定材料的性质和新型材料的设计中至关重要。

因此,氢键在现代化学、材料科学以及生命科学中所起的作用越来越重要。

通过氢键形成超分子
超分子是指由2种或2种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,具有明确的微观结构和宏观特性。

超分子不是分子的简单聚集,它的结构和特性与它们的纯分子组分的聚集性质不同。

通过氢键进行分子识别
超分子体系主要有识别、转换和传输功能。

而分子识别是超分子化学的核心。

分子识别
既是分子器件处理信息的基础,又是组装高级结构的重要途径之一。

为了实现高度的专一性识别,在设计受体分子时要实现受体与识别物种间的高度互补,其中包括形状、尺寸以及作用点(或键合点)分布等的相互匹配。

通过形成氢键进行分子识别的例子有很多。

如在DNA双螺旋结构中,A、G、C、T四种碱基则是通过氢键识别互补配对,2条链上的碱基形成A…T、G…C碱基对,这种由氢键作用决定的配对关系,是决定生物信息传递的结构基础,在遗传机制中起决定作用。

由于氢键具有方向性,因此可以设计出具有特殊形状的受体。

例如,普通冠醚不能区分NH4+和K+,因为NH4+和K+的大小尺寸近似,而三环氮杂冠醚只倾向于和NH4+结合,因为在孔穴中4个N 原子的排布位置,正好适合和NH4+形成4个N—H…N氢键
氢键型晶体工程
晶体工程是分子工程学的一个重要组成部分,它通过控制构筑单元间的相互作用的类型、强度及几何性质来获得具有所希望结构和性能的晶体材料。

它涉及分子或化学基团在晶体中的行为、晶体的设计、结构与性能的控制及晶体结构的预测,是实现从分子到材料的一条重要途径。

氢键作为一种非常重要的方向性相互作用力,在晶体工程中显示越来越重要的作用。

通过调节氢键使其在晶体中具有最优的几何构型和空间方向,可以获得优良材料。

氢键可以产生分子平移的稳定性,使晶体出现极性,这是许多物理性质产生的必要条件。

通过氢键进行自组装
超分子自组装是指分子或分子亚单元通过非共价键弱相互作用,自发组成具有某种性能的长程有序的超分子聚集体的过程。

氢键强度介于化学键和范德华力之间,其特殊的几何构型和方向性,使得它在超分子自组装过程中起着关键的作用。

利用分子间氢键键合,可以自组装合成自然界不存在、但在分子水平上具有储存信息、转移信息和催化功能的新型超分子结构或体系,使现代化学在生命科学、材料科学和信息技术等方面发挥更大的作用。

氢键在材料化学中的作用
氢键在材料领域中也有广泛的应用,利用氢键结合单元之间的可逆性,可以设计环境响应(诸如pH响应性、光响应性、压力响应性、生物分子响应性、电场响应性等)的连续动态材料。

液晶材料领域是氢键应用研究较早较多的领域。

分子间氢键具有良好的热稳定性,既能使不具有液晶行为的质子给体和受体形成的氢键复合物呈现液晶性,也可改变原质子给体和受体的液晶行为。

虽然氢键键能较弱,给其复合物稳定性带来不利影响,但它的适当弱化,反而使得氢键液晶高分子具有独特的动力学性质,尤其是对温度的变化具有可逆响应性能,为其在感应材料制备方面的应用提供了广阔的空间。

氢键的催化作用
氢键在加速各种反应(如酰基、磷酰基转移、羰基加成、周环反应等)中均起着中心作用。

近年来,有机化学家们注意到氢键在小分子合成催化剂中的巨大催化潜力,特别是手性氢键给体在不对称合成中的作用,先后研究报道了尿素和硫脲衍生物、TADDOL衍生物和BINOL衍生物等氢键型催化剂。

它们均是通过与羰基、亚胺基等基团之间形成氢键而起到催化作用。

此外,氢键还参与质子传递、电子及能量转移等反应。

相关文档
最新文档