3、一元二次方程综合训练(启发)

合集下载

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版一、综合题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x的取值范围.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根为;(2)不等式ax2+bx+c>0的解集为;(3)y随x的增大而减小的自变量x的取值范围为;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.3.在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(-5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=-x+l与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+l(m>0)与x轴的交点的横坐标都在-l和0之间(不包括-l和0).结合函数的图象,求m的取值范围.4.已知抛物线y=x2+bx-3与x轴交于A(-3,0),B两点,交y轴于点C。

(1)求该抛物线的表达式;(2)求△ABC的面积。

5.已知:二次函数y=−x2+2x+m.(1)如果二次函数图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB解析式.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.设b为常数,已知二次函数y=−2x2−2bx+b2+1.(1)求证:无论b为何值,该二次函数的图象与x轴一定有两个不同的交点;(2)若把二次函数的图象沿y轴方向平移2个单位长度,则使得该二次函数的图象与x轴恰有一个公共点,求b的值.8.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)当m取何值时,ax2+bx+c=m有两个不相等的实数根.9.如图,将函数y=x2﹣2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2﹣2|x|的图象.(1)观察思考函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;方程x2﹣2|x|=2有个实数根;关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是;(2)拓展探究①如图2,将直线y=x+1向下平移b个单位,与y=x2﹣2|x|的图象有三个交点,求b的值;②如图3,将直线y=kx(k>0)绕着原点旋转,与y=x2﹣2|x|的图象交于A、B两点(A左B右),直线x=1上有一点P,在直线y=kx(k>0)旋转的过程中,是否存在某一时刻,△PAB是一个以AB为斜边的等腰直角三角形(点P、A、B 按顺时针方向排列).若存在,请求出k值;若不存在,请说明理由.10.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.11.已知关于x的二次函数y=ax2+bx+c( a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0).(1)求c的值和a,b之间的关系式;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<l时,求证:S1-S2为常数,并求出该常数.12.我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(﹣1,1),则点P为二次函数y=x2图象上的“互反点”.(1)求一次函数y=﹣2x﹣3的“互反点”.(2)若二次函数y=x2﹣(2a+1)x+a只有一个“互反点”,且与y轴交于正半轴,求当1≤x≤3时,y的取值范围.(3)若对于任意的实数n,在二次函数y=(m+1)x2+nx+n﹣1的图象上,恒有两个相异的“互反点”,求m的取值范围.13.如图1,已知抛物线L:y=ax2+bx﹣1.5(a>0)与x轴交于点A(-1,0)和点B,顶点为M,对称轴为直线l:x=1.(1)直接写出点B的坐标及一元二次方程ax2+bx﹣1.5=0的解.(2)求抛物线L的解析式及顶点M的坐标.(3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′,L′与直线l相交于点N.设点P的横坐标为m①当m=5时,PM与PN有怎样的数量关系?请说明理由.②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?③是否存在这样的点P,使△PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由.14.平面直角坐标系中,抛物线C1:y1=x2-2mx+2m2-1,抛物线C2:y2=x2-2nx+2n2-1,(1)若m=2,过点A(0,7)作直线l垂直于y轴交抛物线C1于点B、C两点.①求BC的长;②若抛物线C2与直线l交于点E、F两点,若EF长大于BC的长。

人教版九年级上册 第21章 《一元二次方程》实际应用同步练习(三)

人教版九年级上册 第21章 《一元二次方程》实际应用同步练习(三)

人教版九年级上册第21章《一元二次方程》实际应用同步练习(三)基础题训练(一):限时30分钟1.暑假是旅游旺季,为吸引游客,某旅游公司推出两条“精品路线”﹣﹣“亲子游”和“夏令营”.(1)7月份,“亲子游”和“夏令营”活动的价格分别为8000元/人和12000元/人.其中,参加“夏令营”活动的游客人数为“亲子游”活动游客人数的2倍少300人,且“夏令营”线路的旅游总收入不低于“亲子游”线路旅游总收入的一半,问:参加“亲子游”线路的旅游人数至少有多少人?(2)到了8月份,该旅游公司实行降价促销活动,“亲子游”和“夏令营”线路的价格分别下降%和a%(a<20),旅游人数在7月份对应最小值的基础上分别上升3a%和5a%,当月旅游总收入达到256.32万元,求a.2.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形.解决问题:(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.(2)边长为a的正方形存在“加倍”正方形吗?请做出判断,并说明理由3.甘肃是全国马铃薯主产区之一,定西又是甘肃马铃薯最大主产区.经过多年发展,定西在马铃薯种植基地建设,良种工程、优质新品种用与试验、仓储体系、合作经济组织、外销加工及市场扶植等方面取得了突出成绩,鲜薯及薯制品走销全国20多个省市区,并远销东南亚、俄罗斯等国家和地区.某种植户2016年投资20万元种植马铃薯,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植马铃薯.4.践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具.其品牌共享自行车在慈溪的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)若该品牌共享自行车前4个月的投放量的月平均增长率相同,则4月份投放了多少辆?(2)寒假里小明骑“共享单车”去离家2000米的慈溪银泰影视城观看电影,到了影视城发现假期优惠门票忘带了,于是骑车立即返回,已知返回的平均速度是来影视城时的平均速度的2倍,且途中时间少花了5分钟.求小明去影视城的平均速度?5.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?基础题训练(二):限时30分钟6.2017年的中央一号文件《中共中央、国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》明确把深入推进农业供给侧结构性改革作为新的历史阶段农业农村工作主线,某农业公司市场调研发现,新疆阿克苏冰糖心苹果、香梨特别畅销,于是决定购进大批糖心苹果和香梨进行网上销售.3月份糖心苹果每件的售价是香梨每件售价的1.5倍,3月某顾客花780元购买糖心苹果件数是花200元购买香梨件数的2倍还多3件,根据统计3月份每周可分别卖出香梨和糖心苹果300件和800件.(1)求香梨和糖心苹果每件售价分别为多少元?(2)到了四月份,进入了香梨销售的旺季,苹果的销售淡季,公司打算提高香梨的销售价格,梨每件涨价2a%,而每周的销量比三月每周销量增加2a%;糖心苹果每件降价a%,每周的销量比三月份增加(a+10)%,四月份一周总销售额为69120元,求a的值.7.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.7万件,那么该公司现有的22名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?8.如图,有一块长为21m、宽为10m的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道,且人行通道的宽度不能超过3米.(1)如果两块绿地的面积之和为90m2,求人行通道的宽度;(2)能否改变人行通道的宽度,使得每块绿地的宽与长之比等于3:5,请说明理由.9.某水果经销商上月份销售一种新上市的水果平均售价为10元/千克,月销售量为1000千克.经过市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间满足一次函数关系y=kx+b,且当x=5时,y=4000;当x=7时,y=2000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,当本月成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价﹣成本)10.名闻遐迩的采花毛尖明前茶,成本每斤400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:x(元/斤)450 500 600y(斤)350 300 200(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.参考答案1.解:(1)设参加“亲子游”线路的游客人数为x人,则参加“夏令营”活动的游客人数为(2x﹣300)人,由题意得12000(2x﹣300)≥×8000x解得x≥180,∴参加“亲子游”线路的旅游人数至少有180人;(2)由(1)可知,参加“夏令营”活动的游客人数的最小值为60人,由题意得0.8(1﹣)×180(1+3a%)+1.2(1﹣a%)×60(1+5a%)=256.32 设a%=t,整理得:50t2﹣25t+2=0解得t=0.4(舍去)或t=0.1,∴a=10.2.(1)解:存在;设“加倍”矩形的一边为x,则另一边为(10﹣x)则:x(10﹣x)=12 (3分)解之得:x1=5+,x2=5﹣,∴10﹣x1=5﹣;10﹣x2=5+;答:“加倍”矩形的长为5+,宽为5﹣;(2)不存在.因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在.3.解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=﹣3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).4.解:(1)设月平均增长率为x,依题意,得:640(1+x)2=1000,解得:x1=﹣2.25(舍去),x2=0.25=25%,∴1000(1+x)=1250.答:4月份投放了1250辆.(2)设去影视城时的平均速度为y米/分钟,则返回时的平均速度为y米/分钟,依题意,得:﹣=5,解得:y=200,经检验,y=200是所列分式方程的解,且符合题意.答:小明去影视城的平均速度为200米/分钟.5.解:(1)设通道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400,a2=40由于是惠民工程,所以a=40符合题意.答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.6.解:(1)香梨和糖心苹果每件售价分别为x元和1.5x元,根据题意得,=2×+3,解得:x=40,经检验:x=40是原方程的解,∴1.5x=60,答:香梨和糖心苹果每件售价分别为40元和60元;(2)根据题意得,40(1+2a%)[300(1+2a%)]+60(1﹣a%){800[1+(a+10)%]}=69120,解得:a=10.7.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得:10(1+x)2=14.4,解得x1=0.2,x2=﹣2.2(不合题意舍去),∴x=0.2=20%.答:该快递公司投递总件数的月平均增长率为20%;(2)今年4月份的快递投递任务是14.4×(1+20%)=17.28(万件).∵平均每人每月最多可投递0.7万件,∴22名快递投递业务员能完成的快递投递任务是:0.7×22=15.4<17.28,∴该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,∴需要增加业务员(17.28﹣15.4)÷0.7≈2.7≈3(人).答:该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,至少需要增加3名业务员.8.解:(1)设人行通道的宽度为x米,则两块矩形绿地的长为(21﹣3x)(米),宽为(10﹣2x)(米),根据题意得:(21﹣3x)(10﹣2x)=90,解得:x1=10(舍去),x2=2,答:人行通道的宽度为2米;(2)设人行通道的宽为y米时,每块绿地的宽与长之比等于3:5,根据题意得:(10﹣2y):=3:5,解得:y=,∵>3,∴不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.9.解:(1)由已知得,解得,∴y=﹣1000x+9000;(2)由题意可得1000(10﹣5)(1+20%)=(﹣1000x+9000)(x﹣4),整理得:x2﹣13x+42=0,解x1=6,x2=7(舍去).答:该种水果价格每千克应调低至6元.10.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)设总利润为w,w=(x﹣400)(﹣x+800)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.。

2022秋九年级数学上册 第2章 一元二次方程阶段综合训练(范围:2.1-2.2)习题课件(新版)湘

2022秋九年级数学上册 第2章 一元二次方程阶段综合训练(范围:2.1-2.2)习题课件(新版)湘

7或 x=2-3
7 .
14.已知关于x的一元二次方程mx2-(m+2)x+2=0(m≠0) 的两个实数根都是整数,则整数m的值是_±__1_或__±__2__.
A.x1=5,x2=1 B.x1=-3,x2=-7 C.x1=3,x2=-1 D.x1=-1,x2=-5
【点拨】∵方程 a(x+m)2+b=0 的解为 x1=-3,x2=1, ∴x1=-m- -ab=-3,x2=-m+ -ab=1. 解方程 a(x+m-2)2+b=0,得 x=2-m± -ab, 【答案】 C ∴方程a(x+m-2)2+b=0的两根分别为x1=2-3=-1,x2 =2+1=3.通过比较两个方程的系数,找出两个方程之间的
【答案】 D
8.【2020·邵阳】中国古代数学家杨辉的《田亩比类乘除捷 法》中记载:“直田积八百六十四步,只云阔不及长一 十二步,问阔及长各几步?”翻译成数学问题:一块矩 形田地的面积为864平方步,它的宽比长少12步,问它 的长与宽各是多少步?利用方程思想,设宽为x步,则 依题意列方程为___x_(x_+__1_2_)_=__8_6_4__________.
答案显示
1.【2021·宜宾叙州区期末】一元二次方程5x2-4x-3=0 的二次项系数、一次项系数、常数项分别是( C )
A.5、4、3 B.5、-4、3 C.5、-4、-3 D.5、4、-3
2.【2020·武威】已知x=1是一元二次方程(m-2)x2+4x -m2=0的一个根,则m的值为( B )
根的联系是本题的难点,而求方程a(x+m-2)2+b=0的两
根时,2到底是加-3或1还是减-3或1是本题的易错点.
7.
若关于x的一元二次方程ax2+bx+c=0有两个实数
根,且其中一个根为另一个根的2倍,则称这样的方程为“倍

人教版九年级上册第21章一元二次方程实际应用 专项培优练习(三)(解析版)

人教版九年级上册第21章一元二次方程实际应用 专项培优练习(三)(解析版)

第21章一元二次方程实际应用同步专项培优练习基础题训练(一):限时30分钟1.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.2.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?3.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?4.某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?5.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发秒时,△BPQ中有一个角与∠A相等.基础题训练(二):限时30分钟6.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?7.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低3元,平均每天可多售出6件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.9.3月国际风筝节在婺源县举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高0.1元,销售量就会减少1个,请回答下列问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.参考答案1.解:(1)设降价x 元,依题意,得:8000×0.9﹣x ﹣5000≥5000×20%,解得:x ≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m %)﹣40m ﹣5000]×8(1+m %)=50000,整理,得:m 2+275m ﹣16250=0,解得:m 1=50,m 2=﹣325(不合题意,舍去).答:m 的值为50元.2.解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元). 答:每周获得的利润为2210元;(2)由题意,y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x 2+1100x ﹣28000;(3)∵y =﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250,∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.3.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.4.解:(1)设2017年这种礼盒的进价是x 元/盒,则2019年这种礼盒的进价是(x ﹣11)元/盒,依题意,得:=, 解得:x =35,经检验,x =35是原方程的解,且符合题意.答:2017年这种礼盒的进价是35元/盒.(2)2017年及2019年购进这种礼盒的数量为3500÷35=100(盒).设该商店每年销售这种礼盒所获利润的年增长率为y,依题意,得:(60﹣35)×100(1+y)2=(60﹣35+11)×100,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店每年销售这种礼盒所获利润的年增长率为20%.5.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.6.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.7.解:(1)20+6÷3×6=32(件).故答案为:32.(2)设每件商品降价x元,则平均每天的销售数量为(20+)件,依题意,得:(40﹣x)(20+)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵40﹣x≥25,解得:x≤15,∴x=10.答:当每件商品降价10元时,该商店每天销售利润为1200元.8.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.9.解:(1)根据题意得:y =180﹣,整理得: y =300﹣10x (12≤x ≤30),(2)根据题意得:(x ﹣10)(300﹣10x )=840,整理得:x 2﹣40x +384=0,解得:x 1=16,x 2=24,为让利给顾客,售价应定16元,答:售价应定16元.10.解:(1)设甲种苹果的进价为a 元/千克,乙种苹果的进价为b 元/千克, 根据题意得:,解得:. 答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x )(100﹣10x )+(2+x )(140﹣10x )=960, 整理得:x 2﹣9x +14=0,解得:x 1=2,x 2=7,经检验,x 1=2,x 2=7均符合题意.答:x 的值为2或7.。

一元二次方程 实际应用同步提高综合习题(三)2021-2022学年人教版 九年级数学上册

一元二次方程  实际应用同步提高综合习题(三)2021-2022学年人教版 九年级数学上册

第二十一章《一元二次方程》实际应用同步提高综合习题(三)1.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场,与去年相比,今年这种水果的产量增加了25%,每千克的平均批发价降低了1元,批发销售总额增加了20%.(1)已知去年这种水果批发销售总额为10万元.求这种水果今年每千克的平均批发价是多少元?(2)今年某水果店从果农处直接批发,专营这种水果,调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,当水果店一天的利润为7260元时,求这种水果的平均售价.(计算利润时,其它费用忽略不计)2.2020年秋冬以来,由于全国大葱种植面积的减少与产量的减产,10月份到12月份,大葱的批发价格持续走高.10月份大葱的批发价格为5元/公斤,12月份大葱的批发价格涨到7.2元/公斤.(1)求10月份到12月份大葱批发价格的月平均增长率;(2)进入12月份以来,某农贸市场按照7.2元/公斤的批发价购进大葱进行销售,销售价格为10元/公斤,每天能销售大葱500公斤.为了扩大销售,增加盈利,最大限度让利于顾客,该农贸市场决定对大葱进行降价销售,根据市场调查发现,大葱的销售单价每降低0.1元,每天的销售量将增加40公斤.求当大葱的销售价格降低多少元时,该农贸市场每天销售大葱的利润为1640元?3.新华商场销售某种商品,每件进货价为40元,市场调研表明:当销售价为80元时,平均每天能售出20件;在每件盈利不少于25元的前提下,经过一段时间销售,当销售价每降低1元时,平均每天就能多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品定价多少元时,该商场平均每天销售某种商品利润达到1200元?4.列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?5.如图,某校准备一面利用墙,其余三面用篱笆围成一个矩形花圃ABCD.已知旧墙可利用的最大长度为13m,篱笆长为24m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m2时,求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78m2,请你判断能否围成这样的花圃?如果能,求BC的长;如果不能,请说明理由.6.某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?7.某商店经销一种成本为每千克80元的水果,据市场分析,若按每千克100元销售,一个月能售出500千克.若销售价每涨5元,则月销售量减少20千克.针对这种水果的销售情况请解答以下问题:(1)当销售单价为每千克110元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过20000元的情况下,使月销售利润达到12000元,销售单价应定为多少元?8.某商店销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.①若降价6元时,则平均每天销售数量为多少件?②当每件商品降价多少元时,该商店每天销售利润为1200元?9.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为28米.(1)这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?10.在“精准扶贫”工作中,某单位建议贫困户借助家里长25m的墙AB建造面积为450m2的长方形区域来养一些家禽,该单位给贫困户提供65m长的篱笆(全部用于建造长方形区域),并提供如图所示的两种方案:(1)如图1,若选取墙AB的一部分作为长方形的一边,其他三边用篱笆围成,则在墙AB上借用的CF 的长度为多少?(2)如图2,若将墙AB全部借用,并在墙AB的延长线上拓展BF,构成长方形ADEF,BF,FE,ED和DA 都由篱笆构成,求BF的长.11.一个批发商销售成本为25元/千克的某产品,物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50 60 70 80 …销售量y(千克)…100 90 80 70 …(1)求y与x之间的函数关系式.(2)该批发商若想获得3750元的利润,应将售价定为多少元?12.綦江区通惠街道绿化工作如火如荼开展,某校积极参与此项活动,学校在去年10月份购买甲、乙两种花卉共144盆美化学校,共花费了736元,其中甲种花卉的单价是乙种花卉单价的1.5倍,且乙种花卉每盆4元.(1)求甲、乙两种花卉各买了多少盆?(2)由于美化效果好,今年1月份学校决定再购买一批这两种花卉进一步美化学校,其中乙种花卉购买数量与去年10月份数量相同,甲种花卉在去年10月份购买数量基础上增加了m%,购买时发现甲种花卉单价下降了m%,乙种花卉的单价下降了m%,结果比去年10月份少花了56元,求m的值.13.“绿水青山就是金山银山”,为加快城乡绿化建设,我们在行动.广安市某县2018年的绿化面积约1200万平方米,预计2020年的绿化面积约1587万平方米.假设每年绿化面积的平均增长率相同.(1)求每年绿化面积的平均增长率.(2)若2021年的绿化面积继续保持相同的增长率,那么2021年的绿化面积是多少?14.2020年9月29日,国家卫健委新闻发言人米锋在发布会上表示,疫情仍在全球扩散蔓延,但我国疫情已得到有效控制.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).(1)每轮传染中平均每个人传染了几个人?(2)如果这169位病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?15.“早黑宝”葡萄品种是农科院研制的优质新品种,市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,若售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时尽可能减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?16.每年春节,香肠是家家户户必不可少的年货,某生鲜店销售两种不同口味的香肠,一种是广味香肠,另一种是川味香肠.其中“广味香肠”标价每千克50元,“川味香肠”标价每千克60元.(1)某天,若该生鲜店售出“广味香肠”和“川味香肠”两种香肠共600千克,且销售总额不低于33000元,则这一天该生鲜店销售“川味香肠”至少多少千克?(2)12月的第一周,该生鲜店按标价售出“广味香肠”300千克,“川味香肠”400千克.生鲜店根据市场情况,第二周适当调整两种香肠的售价,“广味香肠”的售价比第一周的标价增加了a%,销量与第一周保持不变;“川味香肠”的售价比第一周的标价减少了a%,销量比第一周增加了a%;结果第二周两种口味香肠的销售总额比第一周增加了a%,且a>0,求a的值.17.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人.某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2018年投入5亿元资金,之后投入资金逐年增长,2020年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2021年该市计划保持相同的年平均增长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2021年该市能够帮助多少户建设保障性住房?18.国家电网在某地投资兴建抽水蓄能电站,2018年投入资金12800万元,并规划投入资金逐年增加,2020年在2018年的基础上增加投入资金16000万元.(1)从2018年到2020年,国家电网在该地投入资金的年平均增长率为多少?(2)在2018年,库区移民工作的具体实施中,计划投入资金(用于异地安置)不低于500万元用于优先搬迁租房奖励,规定前1000户(含1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.19.为了提升小区形象,改善业主居住环境,开发商准备对小区进行绿化.利用长度为64m的篱笆和一段小区围墙搭建如图所示的矩形花圃(接口忽略不计),花圃分为三块形状大小相同的矩形,分别用来种植不同的花卉.则花圃的一边AB为多长时,花圃的面积为192m2.20.某房地产商决定将一片小型公寓作为精装房出售,每套公寓面积均为32平方米,现计划为100套公寓地面铺地砖,根据用途的不同选用了A、B两种地砖,其中50套公寓全用A种地砖铺满,另外50套公寓全用B种地砖铺满,A种地砖是每块面积为0.64平方米的正方形,B种地砖是每块面积为0.16平方米的正方形,且A种地砖每块的进价比B种地砖每块的进价高40元,购进A,B两种地砖共花费350000元(注:每套公寓地面看成正方形,均铺满地砖且地砖无剩余).(1)求A、B两种地砖每块的进价分别是多少元?(2)实际施工时,房地产商增加了精装的公寓套数,结果实际铺满A种地砖的公寓套数增加了a%,铺满B 种地砖的公寓套数增加了3a%,由于地砖的购进量增加,B种地砖每块进价在(1)问的基础上降低了a%,但A种地砖每块进价保持不变,最后购进A、B两种地砖的总花费比原计划增加了a%,求a的值.。

九年级上册数学一元二次方程计算题训练(含解析)

九年级上册数学一元二次方程计算题训练(含解析)

一元二次方程计算题训练(含解析)1.解方程:2.解方程:.3.解方程:(x-1)(2x+3)=(2x+3).4.解方程:x2-4x+2=05.解方程:.6.解方程:x2﹣x﹣1=0.7.解方程:2x2﹣5x+1=0 8.用配方法解方程:. .9.解下列方程:(1)x2﹣6x﹣3=0;(2)3x(x﹣1)=2(1﹣x).10.解方程:11.解方程:.12.解方程:(1)(2)(3)(4)(x+1)(x+8)=-1213.解方程:.14.用配方法解方程:.15.解方程:(1);(2).16.解方程:2x2+x﹣6=0.17.解方程:.18.解方程19.解下列一元二次方程:(1);(2). 20.解方程:(1);(2)21.解方程(1)(x-1)2=4(2)x2﹣6x﹣7=0;22.用适当方法解方程:. .23.用适当的方法解下列一元二次方程:(1)(2).24.解方程:25.解方程:.26.解方程:x2+4x﹣21=0.27.解方程:(1)2x2-8=0 (2)x2-3x+1=028.解方程:29.用适当的方法解方程:(1);(2).一元二次方程计算题训练(含解析)1.解方程:【答案】解:由原方程,得:(x+1)(x﹣2)=0,解得:x1=2,x2=﹣12.解方程:.【答案】解:∵,∴,∴,∴,.3.解方程:(x-1)(2x+3)=(2x+3).【答案】解:2x²-x-6=0(x-2)(2x+3)=0x1=2 ;x2=4.解方程:x2-4x+2=0【答案】解:由方程可得:a=1,b=-4,c=2 x===2±∴x1=2+ ,x2=2-5.解方程:.【答案】解:,,,或,解得:,6.解方程:x2﹣x﹣1=0.【答案】解:∵x2﹣x﹣1=0,∴x2﹣2x﹣2=0,∴x2﹣2x+1=3,∴(x﹣1)2=3,∴x=1± ;7.解方程:2x2﹣5x+1=0【答案】解:∵2x2-5x=-1,∴,∴,即,则,∴x=8.用配方法解方程:. 【答案】解:,解得,.9.解下列方程:(1)x2﹣6x﹣3=0;(2)3x(x﹣1)=2(1﹣x).【答案】(1)解:∴∴(2)解:∴或,解得:10.解方程:【答案】解:∴,11.解方程:.【答案】解:移项得:,提公因式x-1得:,∴或,解得:,. 12.解方程:(1)(2)(3)(4)(x+1)(x+8)=-12 【答案】(1)解:∴∴;(2)解:∴;(3)解:∴,∴;(4)解:∴.13.解方程:.【答案】解:,14.用配方法解方程:.【答案】解:,移项得:,配方得:,即,开方得:,解得:,.15.解方程:(1);(2).【答案】(1)解:由原方程,移项,得,开平方,得,∴x1=3,x2=-1;(2)解:由原方程,移项,得,变形得:,∴x-1=0,x+1=0,∴x1=1,x2=-1.16.解方程:2x2+x﹣6=0.【答案】解:(2x﹣3)(x+2)=02x﹣3=0 或x+2=0∴x1=1.5x2=-217.解方程:.【答案】解:,∴,或,∴,. 18.解方程【答案】解:,19.解下列一元二次方程:(1);(2).【答案】(1)解:,∴或,解得,;(2)解:,,,∴或,解得,,20.解方程:(1);(2)【答案】(1)解:∵,∴,∴,;(2)解:原方程可变形为:,∴,即,∴x+2=0或x-1=0,∴,.21.解方程(1)(x-1)2=4(2)x2﹣6x﹣7=0;【答案】(1)解:,;(2)解:,,22.用适当方法解方程:. 【答案】解:,,,,,.23.用适当的方法解下列一元二次方程:(1)(2).【答案】(1)解:∴x1=1+ ,x2=1﹣;(2)解:∴x1=﹣3,x2=﹣1 24.解方程:【答案】解:解得:25.解方程:. 【答案】解:∵x2-4x-3=0,∴x2-4x=3,∴x2-4x+4=3+4,即(x-2)2=7,∴x-2=±,∴x1=2+,x2=2-.26.解方程:x2+4x﹣21=0.【答案】解:(x+7)(x-3)=0 ∴x+7=0或x-3=0解之:x1=-7,x2=3.27.解方程:(1)2x2-8=0(2)x2-3x+1=0【答案】(1)解:2x2=8x2=4解之:x1=2,x2=-2.(2)解:∵a=1,b=-3,c=1∴b2-4ac=9-4=5.∴∴.28.解方程:【答案】解:或,29.用适当的方法解方程:(1);(2).【答案】(1)解:∵,∴,∴,∴,∴或,∴.(2)解:∵.∴,∴,∴或.∴。

备战中考数学专题训练---一元二次方程的综合题分类及答案

备战中考数学专题训练---一元二次方程的综合题分类及答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣12.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答.【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人,依题意得:7.5-x ≤2x ,解得x ≥2.5.即A 社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50答:m 的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.5.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t , ()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.6.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“启发”辅导中心专用资料
九(上)数学辅导---------《一元二次方程》综合训练
主讲:黄耀丰
1、a 满足什么条件时,关于x 的方程()
()132+-=+x x x x x a 是一元二次方程?
2、一块矩形铁片,面积为1平方米,长比宽多3米,求铁片的长。

小明在做这道题时,是这样做的:
设铁片的长为x ,列出方程为1)3(=-x x ,整理得:0132
=--x x ,小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程: 第一步:
所以,_______< x < ________ 第二步:
所以, _______< x < ________
(1)请你帮小明填完空格,完成他未完成的部分。

(2)通过以上探索,估计出矩形铁片的整数部分为__________ ,十分位为 _________ 3、如果x = 1是方程032
=++bx ax 的一个根,求ab b a 4)(2+-的值
4、已知:0492
2
=-b a ,求代数式ab
b a a b b a 2
2+--的值
5、在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在
0112)1(222=+---x x x x x 中,令x
x 12-= y ,则有0122=+-y y ,根据上述变形数学思想(换
元法),解决小明给出的问题:在0)1()1(222=-+-x x 中,求出0)1()1(222=-+-x x 的根。

6、已知0)1)((=-++y x y x ,求y x +的值
7、如果01326422=+++++-z y y x x ,求z xy 的值。

8、判断164222+--+y x y x 的最小值,用配方法说明。

9、若关于x 的一元二次方程已知:012)2(2
=++--a ax x a 没有实数根,求03>+ax 的解集(用含a 的式子表示)
10、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对这种情况,请解答下列问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润。

(2)设销售单价为每千克x元,月销售利润y为元,求y与x的关系式。

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
11、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长围成一个正方形。

(1)要使这两个正方形的面积之和等于17cm2 , 那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由。

12、如图,在ABC ∆中,,8,6,900cm BC cm AB C ===∠点P 从点A 开始沿AB 向点B 以1cm/s的速度运动,点Q 从点B 开始沿BC 向点C 以2cm/s的速度运动。

(1) 如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使28cm S PBQ =∆
(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C 后以继续在CA 边上前进,经过几秒钟,使26.12cm S PCQ =∆(友情提示:过Q 点作DQ CB ⊥垂足为D ,则
AC
CQ
AB DQ =)。

相关文档
最新文档