《一元二次方程》课后拓展训练
人教版数学九年级上册 第21章 一元二次方程 拓展训练(一)

九年级上册第21章拓展训练(一)一.选择题1.下列方程中是一元二次方程的是()A.x2﹣=2B.x(x﹣1)=x2+1C.5x2﹣6y﹣2=0D.x(x﹣1)=02.若关于x的方程(m+1)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠﹣1B.m=﹣1C.m≥﹣1D.m≠03.关于一元二次方程x2﹣2x+4=0根的情况描述正确的是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.不能确定4.已知x1,x2是一元二次方程x2+5x﹣3=0的两个根,则x1x2为()A.5B.﹣5C.﹣3D.35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③7.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6008.定义新运算:a*b=a(m﹣b).若方程x2﹣mx+4=0有两个相等正实数根,且b*b=a*a(其中a≠b),则a+b的值为()A.﹣4B.4C.﹣2D.29.关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,(a,b,m均为常数,a≠0),则关于x的方程a(x﹣m+2)2+b=0的根是()A.x1=7,x2=﹣4B.x1=3,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=410.从﹣2,﹣1,0,1,2,4,这六个数中,随机抽一个数、记为a,若数a使关于x的一元二次方程x2﹣2(a﹣4)x+a2=0有实数解,且关于y的分式方程有整数解,则符合条件的a的值的和是()A.﹣2B.0C.1D.2二.填空题11.关于x的方程(m﹣3)x+mx+1=0是一元二次方程,则m为.12.把一元二次方程(x+1)(3x﹣4)=(2x+1)2化为一般式为,它的一次项系数是.13.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.14.若关于x的一元二次方程(a+)x2﹣(4a2﹣1)x+1=0的一次项系数为0,则a的值为.15.若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为.三.解答题16.试说明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.17.计算:(1)3x(x﹣1)=2﹣2x;(2)3x2﹣7x+4=018.已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x12﹣2kx1﹣x2+2x1x2=4,求k的值.19.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.(1)每件衬衫降价多少元时,平均每天赢利750元?(2)要想平均每天赢利1000元,可能吗?请说明理由.20.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?参考答案一.选择题1.解:A.分母中含有未知数,不符合一元二次方程的定义,A项错误,B.整理得:﹣x=1,属于一元一次方程,不符合一元二次方程的定义,B项错误,C.含有两个未知数,不符合一元二次方程的定义,C项错误,D.符合一元二次方程的定义,D项正确,故选:D.2.解:∵关于x的方程(m+1)x2+mx﹣1=0是一元二次方程,∴m+1≠0,即m≠﹣1,故选:A.3.解:x2﹣2x+4=0,△=(﹣2)2﹣4×1×4=4>0,故方程有两个不相等的实数根.故选:C.4.解:根据题意得x1x2=﹣3.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.7.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.8.解:∵方程x2﹣mx+4=0有两个相等实数根,∴△=(﹣m)2﹣4×4=0,解得m1=4,m2=﹣4,当m=﹣4时方程有两个相等的负实数解,∴m=4,∴a*b=a(4﹣b),∵b*b=a*a,∴b(4﹣b)=a(4﹣a)整理得a2﹣b2﹣4a+4b=0,(a﹣b)(a+b﹣4)=0,而a≠b,∴a+b﹣4=0,即a+b=4.故选:B.9.解:∵关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,∴关于x的方程a(x﹣m+2)2+b=0,即a[﹣(x﹣m+2)]2+b=0,a(﹣x﹣2+m)2+b=0满足﹣x﹣2=5或﹣x﹣2=﹣6,解得x1=﹣7,x2=4,故选:D.10.解:方程x2﹣2(a﹣4)x+a2=0有实数解,∴△=4(a﹣4)2﹣4a2≥0,解得a≤2,∴满足条件的a的值为﹣2,﹣1,0,1,2.方程,解得y=+2,∵y有整数解且y≠1,∴a=0,2,4.综上所述,满足条件的a的值为0,2,符合条件的a的值的和是0+2=2.故选:D.二.填空题11.解:由题意可知:m2﹣2m+1=2,解得:m=1±,∵m﹣3≠0,∴m≠3,∴m=1±,故答案为:112.解:原方程化为:x2+5x+5=0,∴一次项的系数为:5,故答案为:x2+5x+5=0,5.13.解:依题意,得:1+x+x(1+x)=121或(1+x)2=121.故答案为:1+x+x(1+x)=121或(1+x)2=121.14.解:由题意得:﹣(4a2﹣1)=0,且a+≠0,解得:a=,故答案为:.15.解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴由根与系数的关系得:α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣4)=12,故答案为:12.三.解答题16.解:∵a2﹣8a+20=(a﹣4)2+4又∵(a﹣4)2≥0,∴a2﹣8a+20≠0,∴关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.17.解:(1)∵3x(x﹣1)=﹣2(x﹣1),∴3x(x﹣1)+2(x﹣1)=0,则(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,解得:x1=1,x2=﹣;(2)∵3x2﹣7x+4=0,∴(3x﹣4)(x﹣1)=0,则3x﹣4=0或x﹣1=0,解得:x1=1,x2=.18.解:(1)∵关于x的方程x2﹣(2k﹣1)x+k2=0有两个实数根x1,x2.∴△=[﹣(2k﹣1)]2﹣4k2=﹣4k+1≥0,解得k≤;(2)∵此方程有两个实数根x1,x2,∴﹣(2k﹣1)x1+k2=0,x1+x2=2k﹣1,x1x2=k2,∴x12﹣2kx1=﹣(x1+k2),∵x12﹣2kx1﹣x2+2x1x2=4,∴﹣(x1+k2)﹣x2+2x1x2=4,∴﹣2k+1﹣k2+2k2=4,整理得,k2﹣2k﹣3=0,解得:k1=3,k2=﹣1,∵k≤,∴k=﹣1.19.解:(1)设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15.∵尽快减少库存,∴x=15.答:每件衬衫降价15元时,平均每天赢利750元.(2)不可能,理由如下:依题意,得::(100﹣70﹣x)(20+2x)=1000,整理,得:x2﹣20x+200=0.∵△=(﹣20)2﹣4×1×200=﹣400<0,∴此方程无实数根,∴不可能盈利1000元.20.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.。
一元二次方程(拓展练习)

一元二次方程(拓展练习)一.选择题1.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣20192.若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.20243.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,694.方程x2﹣9x+14=0的两个根分别是等腰三角形的底和腰,则这个三角形的周长为()A.11B.16C.11或16D.不能确定5.一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣26.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快,已知有1个人患了新冠,经过两轮传染后共有625个人患了新冠,每轮传染中平均一个人传染m人,则m的值为()A.24B.25C.26D.277.下列一元二次方程没有实数根的是()A.x2+x+1=0B.x2+x﹣1=0C.x2﹣2x﹣1=0D.x2﹣2x+1=08.下列用配方法解方程x2﹣x﹣2=0的四个步骤中,出现错误的是()A.①B.②C.③D.④9.对于实数a、b,定义运算“★”:a★b=,关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是()A.t<B.t>C.t<D.t>10.用求根公式计算方程x2﹣3x+2=0的根,公式中b的值为()A.3B.﹣3C.2D.二.填空题11.关于x的方程(m+1)x2﹣(m﹣1)x+1=0是一元二次方程,那么m.12.若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2=,x1x2=,x12+x22=.13.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为.14.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.15.已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m的取值范围是.三.解答题16.解方程:(1)x2﹣2x﹣3=0;(2)2x2+3x﹣1=017.解下列方程:(1)3x2+8x﹣3=0(用配方法)(2)4x2+1=4x(用公式法)(3)2(x﹣3)2=x2﹣9(用因式分解法)(4)x2+5x﹣6=0(用适当的方法)18.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?19.已知关于x的一元二次方程nx2﹣2x+1=0(n≠0)有实数根.(1)求n的取值范围;(2)当n取最大值时,求方程nx2﹣2x+1=0(n≠0)的根.20.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.。
人教版九年级上册数学 第21章 一元二次方程 拓展训练(含答案)

人教版九年级上册数学第21章一元二次方程拓展训练一.选择题1.已知方程x2﹣(k+1)x+3k=0的一个根是2,则k为()A.﹣2 B.﹣3 C.1 D.32.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A. B. C. D.3.设x1,x2是方程x2+10x﹣2=0的两个根,则+的值是()A.8 B.5 C.4 D.104.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根 D.没有实数根5.若x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,设p=(ax1﹣2)2,q=ac+5,则p与q的大小关系为()A.p<q B.p>q C.p=q D.不能确定6.已知x1,x2是一元二次方程x2+5x﹣3=0的两个根,则x1x2为()A.﹣5 B.5 C.﹣3 D.37.已知方程x2+x+m=0有两个不相等的实数根,则()A.m<B.m>C.m≤D.m≥8.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2018年起到2020年累计投入4250万元,已知2018年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A.1500 (1+2x)=4250 B.1500 (1+x)2=4250C.1500+1500x+1500x2=4250 D.1500+1500 (1+x)+1500 (1+x)2=42509.设关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,记S1=x1+2011x2,S2=x12+2011x22,…,S n=x1n+2011x2n,则aS2012+bS2011+cS2010的值为()A.0 B.2011 C.2010 D.201210.三角形两边的长是6和8,第三边满足方程x2﹣24x+140=0,则三角形周长为()A.24 B.24或28 C.28 D.以上都不对二.填空题11.关于x的方程x2﹣x+c=0的一个根是3,则c=.12.若关于x的方程(m﹣1)x﹣x=1是一元二次方程,则m=.13.已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共实数根,则的值为.14.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程.15.若关于x的一元二次方程x2+2x﹣k=0有不相等实数根,则k的取值范围是.三.解答题16.解一元二次方程:(1)2x2﹣3x﹣1=0;(2)x2﹣3x+2=0.17.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?18.汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为64万辆,到2010年,该品牌汽车的年产量达到100万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变.(1)求年平均增长率;(2)求该品牌汽车2011年的年产量为多少万辆?19.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.20.已知等腰△ABC的三边长为a,b,c,其中a,b满足:a2+b2=6a+12b﹣45,求△ABC的周长.答案一.选择题1.A.2.C.3.B.4.A.5.A.6.C.7.A.8.D.9.A.10.A.二.填空题(共5小题)11.﹣6.12.﹣1.13.3.14.x2﹣6x+6=0.15. k>﹣1.三.解答题(共5小题)16.解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴△=b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=.(2)x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,所以x1=2,x2=1;17.解:设垂直于墙的边长为x米,则平行于墙的边长为(28﹣2x)米,依题意,得:x(28﹣2x)=80,整理,得:x1=4,x2=10.当x=4时,28﹣2x=20>12,不符合题意,舍去;当x=10时,28﹣2x=8,符合题意.答:这个花圃的长为10米,宽为8米.18.解:(1)设年平均增长率为x,依题意,得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:年平均增长率为25%.(2)100×(1+25%)=125(万辆).答:该品牌汽车2011年的年产量为125万辆.19.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,即a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.20.解:a2+b2=6a+12b﹣45,a2﹣6a+9+b2﹣12b+36=0,(a﹣3)2+(b﹣6)2=0,则a﹣3=0,b﹣6=0,解得,a=3,b=6,∵△ABC为等腰三角形,∴三边长分别为3、6、6,∴△ABC的周长为3+6+6=15.。
一元二次方程的应用拓展训练

一元二次方程拓展训练列方程解决应用问题1.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)2.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的平均年增长率.(精确到1%)3.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.服装厂向24名家庭贫困学生免费提供.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.问这批演出服共生产了多少套?4.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.(精确到0.1米)(第7题)5.某商店2月份营业额为50万元,春节过后3月份下降了30%,4月份比3月份有所增长,5月份的增长率又比4月份的增长率增加了5个百分点(即5月份的增长率要比4月份的增长率多5%),营业额达到48.3万元.问4、5两月营业额增长的百分率各是多少?6.商场销售某种空调,每台进价为2500元,市场调查表明当销售价为2900元时,平均每天能售出8台,而当销售价每台降低50元时,平均每天能多售出4台,要想使这种空调的销售利润平均每天达到5000元,请问:每台空调的定价应为多少元?7.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案供其选择:①打9.8折销售;②不打折,一次性送装修每平方米80元,试问:哪种方案更优惠?8.小明家有一块长m 8、宽m 6的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x 值.9. 如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)如图2,《思维游戏》这本书的长为21cm ,宽为15cm ,厚为1cm ,现有一张面积为875cm 2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;(2)若有一张长为60cm ,宽为50cm 的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?10.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?11.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达21.6万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,从2011年初起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过23.196万辆;另据估计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数多不能超过多少万辆.。
人教版数学九年级上册第21章 一元二次方程 拓展训练【答案】

九年级上册第21章拓展训练一.选择题1.下列方程属于一元二次方程的是()A.x2+y﹣2=0B.x+y=3C.x2+2x=3D.x +=52.方程9x2=8x+2化为一般式后的二次项、一次项、常数项分别是()A.9x2,8x,2B.﹣9x2,﹣8x,﹣2C.9x2,﹣8x,﹣2D.9x2,﹣8x,23.一元二次方程3x2﹣2=x化成一般形式后,二次项系数为3,它的一次项系数和常数项分别是()A.1、2B.﹣1、﹣2C.3、2D.0、﹣24.一元二次方程x2﹣x=0的解是()A.x1=﹣1,x2=0B.x1=1,x2=0C.x1=﹣1,x2=1D.x1=x2=15.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A .x(x+1)=110B .x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.已知(a2+b2+2)(a2+b2)=8,那么a2+b2的值是()A.2B.﹣4C.2或﹣4D.不确定7.关于x的方程(m+2)x|m|+mx﹣1=0是一元二次方程,则m=()A.2或﹣2B.2C.﹣2D.0第5页(共13页)8.一元二次方程y2+y=0,配方后可化为()A.(y +)2=1B.(y ﹣)2=1C.(y +)2=D.(y ﹣)2=9.已知关于x的一元二次方程x2﹣(2m﹣1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m ≤C.m <D.m >10.已知a≠b且a2﹣a=6,b2﹣b=6,则a+b=()A.1B.﹣1C.3D.﹣3二.填空题11.若2是方程x2﹣c=0的一个根,则c 的值为.12.将方程3x(x﹣1)=2(x+2)化成ax2+bx+c=0(a>0)的形式为.13.某校棋艺社开展围棋比赛,共m位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场,记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,有所有参赛者的得分总和为76分且平局的场数不超过比赛场数的,则m =.14.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别为和.15.关于x的一元二次方程(2k+3)x2﹣x﹣=0有实数根,则常数k的取值范围是.三.解答题16.解一元二次方程:(1)(x﹣2)2=9;第5页(共13页)(2)x2+2x﹣1=0.17.(1)解方程:2x2+5x+3=0(2)某校为解决大班额问题,拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为90分、86分、90分,综合成绩笔试占40%,试讲占50%,面试占10%,求该名教师的综合成绩?18.已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0.(1)若该方程有实数根,求m的取值范围.(2)若m=﹣1时,求的值.第5页(共13页)19.已知关于x的一元二次方程x2﹣mx﹣3=0.(1)求证:无论m取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求m的值及另一个根.20.知识经验我们知道,如果两个因式的积为0,那么这两个因式中至少有一个等于0;反之,如果两个因式中任何一个为0,那么它们的积也等于0.即:如果a•b=0,那么a=0,或b=0.知识迁移第5页(共13页)I解方程:(x+1)(x+2)=0.解:(x+1)(x+2)=0.∴x+1=0,或x+2=0.∴x1=1,或x2=﹣2.Ⅱ解方程:x2+6x﹣7=0.解:x2+6x﹣7=0.∴x2+2×3x+32﹣32﹣7=0.∴(x+3)2﹣16=0∴(x+3)2﹣42=0.∴(x+3+4)(x+3﹣4)=0.∴(x+7)(x﹣1)=0∴x+7=0,或x﹣1=0.∴x1=﹣7,或x2=1.理解应用(1)解方程:x2﹣10x﹣39=0.拓展应用(2)如图,有一块长宽分别为80cm,60cm的矩形硬纸板,在它的四个角上分别剪去四个相同的小正方形,然后将四周突出的部分折起来,就可以做成底面积为1500cm2的无盖的长方体盒子.求所剪去的小正方形的边长.第5页(共13页)第5页(共13页)参考答案一.选择题1.解:A、该方程中含有2个未知数,不符合一元二次方程的定义,此选项不符合题意;B、该方程中含有未知数的项的最高次数是1,不符合一元二次方程的定义,此选项不符合题意;C、该方程符合一元二次方程的定义,此选项符合题意;D、该方程中含有分式,不符合二元一次方程的定义,此选项不符合题意.故选:C.2.解:方程整理得:9x2﹣8x﹣2=0,则二次项、一次项、常数项分别为9x2,﹣8x,﹣2.故选:C.3.解:方程整理得:3x2﹣x﹣2=0,则方程的一次项系数和常数项分别是﹣1,﹣2.故选:B.4.解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1.故选:B.第5页(共13页)5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:设a2+b2=y,则原方程可化为:(y+2)y=8,解得:y1=﹣4,y2=2,∵a2+b2>0,∴a2+b2=2.故选:A.7.解:由题意可知:|m|=2,且m+2≠0,所以m=±2且m≠﹣2.所以m=2.故选:B.8.解:∵y2+y=0,∴y2+y =,则y2+y +=+,即(y +)2=1,故选:A.9.解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:m ≤,第5页(共13页)。
实际问题与一元二次方程拓展训练

实际问题与一元二次方程拓展训练1.某木器厂今年一月份生产课桌500张,因管理不善,2月份的产量减少了10%,从3月份起加强了管理,产量逐月上升,4月份的产量达到了648张,求工厂3月份和4月份的平均增长率. 工厂3月份和4月份的平均增长率为20%.2. 小明将勤工俭学挣得的100元钱,按一年定期存入“少儿银行”,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入,若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率。
这种存款的年利率为10%。
3.某农户种植花生,原来种植的花生的亩产量为200kg,出油率为50%(即每100kg花生可加工成花生油50kg),现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,其中花生出油率的增长率是亩产量的增长率的一半,求:新品种花生亩产量的增长率.新品种花生亩产量的增长率是20%.4. 某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?每件衬衫降价15元时,平均每天获利最多.5. 制造一种产品,原来每件的成本是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使第二个月的销售利润达到原来的水平,该产品的成本价平均每月应降低百分之几?该产品的成本价平均每月应降低10%.6. 巴中日报讯:今年我市粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x, 则可列方程为()B7. 某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________. 10%8. 如图,在一幅矩形地毯的四周镶有宽度相同的花边.地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽.9. 如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
一元二次方程拓展训练题及答案

一元二次方程1. 下列方程是一元二次方程的是 ( )A. 21503x x -+=B. 2134x x x +=C. 2110x x--= D. 2111x x =+- 2. 一元二次方程的一般形式是 ( ) A. ax 2+bx +c =0B. ax 2+bx +c (a ≠0)C. ax 2+bx +c =0(a ≠0)D. ax 2+bx +c =0(b ≠0) 3. 若px 2-3x +p 2-p =0是关于x 的一元二次方程,则 ( )A. p =1B. p >0C. p ≠0D. p 为任意实数4. 关于x 的一元二次方程(3-x )(3+x )-2a (x +1)=5a 的一次项系数为 ( )A. 8aB. -8aC. 2aD. 7a -95. 若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )A. m ≠2B. m ≠-2C. m ≠-2,或m ≠2D. m ≠-2,且m ≠26. 把方程x (x +1)=2化为一般形式为 ,二次项系数是 .7. 已知0是关于x 的方程(m +3)x 2-x +9-m 2=0的根,则m = .8. 某小区有一块等腰直角三角形状的草坪,它的面积为8m 2,求草坪的周长是多少. 设直角边长为x m ,根据题意得方程 . (不解)9. 若关于x 的方程kx 2+3x +1=0是一元二次方程,则k .10. 当m 时,方程(m -1)x 2-(2m -1)x +m =0是关于x 的一元一次方程;当m 时,上述方程才是关于x 的一元二次方程.11.已知x =1是一元二次方程ax 2+bx -40=0的一个根,且a ≠b ,求2222a b a b --的值.12. 如图所示,有一个面积为120m 2的长方形鸡场,鸡场一边靠墙(墙长18m ),另三边用竹篱笆围成,若所围篱笆的总长为32m ,求鸡场的长和宽各为多少米. (只列方程)13. 如果x2+3x+2与a(x+1)2+b(x+1)+c是同一个二次三项式的两种不同形式,你能求出a,b,c的值吗?参考答案1. A[提示:抓住一元二次方程的三个特征:①整式方程;②只含一个未知数;③未知数的最高次数是2. ]2. C3. C[提示:二次项系数不为0. ]4. C[提示:首先把方程整理为一般形式为x 2+2ax +7a -9=0,其中一次项系数为2a . 故选C. ]5. D[提示:二次项系数m 2-4≠0. ]6. x 2+x -2=0 1[提示:∵x(x +1)=2,∴x 2+x -2=0. ]7. ±3[提示:此题分两种两种考虑. 当m +3=0时,方程化为一元一次方程;当m +3≠0时,方程化为一元二次方程. ] 8. 2182x =[提示:S 等腰直角三角形=12⨯两腰乘积. ] 9. ≠0[提示:一元二次方程成立的条件为二次项系数不为0. ]10. =1 ≠1[提示:考查一元一次方程、一元二次方程成立的条件. ]11. 提示:本题综合考查一元二次方程解的概念和分式的化简及整体代入思想.解:把x =1代入一元二次方程ax 2+bx -40=0,得a +b -40=0,∴2222a b a b -=-()()2()a b a b a b +-=- 4020.22a b +== 12. 解:设平行于墙的边长为x m ,则垂直于墙的边长为322x -m ,由题意得x ·322x -=120,即x 2-32x +240=0. 13. 解:能,根据题意得x 2+3x +2=a (x +1)2+b (x +1)+c ,即x 2+3x +2=ax 2+(2a +b )x +(a +b +c ),123,2,a a b a b c =⎧⎪+=⎨⎪++=⎩,∴解得11,0.a b c =⎧⎪=⎨⎪=⎩,。
人教版-数学-九年级上册- 实际问题与一元二次方程 课后拓展训练

21.3实际问题与一元二次方程1.生产一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次的降低率为()A.8.5%B.9%C.9.5%D.10%2.一个矩形的长是宽的3倍,若宽增加3 cm,长不变,它就变成正方形,则该矩形的面积是()A. 43cm2 B.274cm2 C.9 cm2 D.27 cm23. 2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品的原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148B. 200(1-a%)2=148C. 200(1-2a%)=148D. 200(1-a2%)=1484.某工厂把500万元资金投入到新产品生产中,第一年获得了一定的利润,在不抽调资金和利润(即第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获得利润与投入生产资金的比)比第一年的利润率增长了8%,如果第二年的利润为112万元,为求第一年的利润率,可设第一年的利润率为x,那么所列方程为 .5.菱形的两条对角线长之比为2∶5,且菱形的面积为20 cm2,那么这个菱形的周长为 .6.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了10份合同,则参加商品交易会的公司有家.7.一个凸多边形它共有14条对角线,则这个多边形为边形.8.有一人患了流感,经过两轮传染后共有49人患了流感,则每轮传染中平均1人传染了人.9.已知线段AB的长为2,点C是线段AB上一点,且AC2=BC·AB,则线段AC的长为 .10.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克),现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12,求新品种花生亩产量的增长率.参考答案1.D2.B3.B4.500(1+x)(x+8%)=1126.57.78.6110.解:设新品种花生亩产量的增长率为x.根据题意,得200(1+x)·5%·1(1)1322x+=,整理,得x2+3x-0.64=0,解得x1=-3.2,x2=0.2由于增长率不能是负数,所以x=-3.2不符合题意,故舍去.所以x=0.2=20%.答:新品种花生亩产量的增长率为20%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.1 一元二次方程
1. 下列方程是一元二次方程的是 ( ) A. 2135032
x x -+= B. 2134x x x += C. 21
10x x --=
D. 2111x x =+- 2. 一元二次方程的一般形式是 ( )
A. ax 2+bx +c =0
B. ax 2+bx +c (a ≠0)
C. ax 2+bx +c =0(a ≠0)
D. ax 2+bx +c =0(b ≠0) 3. 若px 2-3x +p 2-p =0是关于x 的一元二次方程,则 ( )
A. p =1
B. p >0
C. p ≠0
D. p 为任意实
数
4. 关于x 的一元二次方程(3-x )(3+x )-2a (x +1)=5a 的一次项系数为 ( )
A. 8a
B. -8a
C. 2a
D. 7a -9 5. 若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )
A. m ≠2
B. m ≠-2
C. m ≠-2,或m ≠2
D. m ≠-2,且m ≠2
6. 把方程x (x +1)=2化为一般形式为 ,二次项系数是 .
7. 已知0是关于x 的方程(m +3)x 2-x +9-m 2=0的根,则m = .
8. 某小区有一块等腰直角三角形状的草坪,它的面积为8m 2,求草坪的周长是多少. 设直角边长为x m ,根据题意得方程 . (不解)
9. 若关于x 的方程kx 2+3x +1=0是一元二次方程,则k .
10. 当m 时,方程(m -1)x 2-(2m -1)x +m =0是关于x 的一元一次方程;当m 时,上述方程才是关于x 的一元二次方程.
11.已知x =1是一元二次方程ax
2+bx -40=0的一个根,且a ≠b ,求2222a b a b
--的值.
12. 如图所示,有一个面积为120m 2的长方形鸡场,鸡场一边靠墙(墙长18m ),另三边用竹篱笆围成,若所围篱笆的总长为32m ,求鸡场的长和宽各为多少米. (只列方程)
13. 如果x 2+3x +2与a (x +1)2+b (x +1)+c 是同一个二次三项式的两种不同形式,你能求出a ,b ,c 的值吗?
参考答案
1. A[提示:抓住一元二次方程的三个特征:①整式方程;②只含一个未知数;③未知数的最高次数是
2. ]
2. C
3. C[提示:二次项系数不为0. ]
4. C[提示:首先把方程整理为一般形式为x 2+2ax +7a -9=0,其中一次项系数为2a . 故选C. ]
5. D[提示:二次项系数m 2-4≠0. ]
6. x 2+x -2=0 1[提示:∵x(x +1)=2,∴x 2+x -2=0. ]
7. ±3[提示:此题分两种两种考虑. 当m +3=0时,方程化为一元一次方程;当m +3≠0时,方程化为一元二次方程. ] 8. 2182x =[提示:S 等腰直角三角形=12
⨯两腰乘积. ] 9. ≠0[提示:一元二次方程成立的条件为二次项系数不为0. ]
10. =1 ≠1[提示:考查一元一次方程、一元二次方程成立的条件. ]
11. 提示:本题综合考查一元二次方程解的概念和分式的化简及整体代入思想. 解:把x =1代入一元二次方程ax 2+bx -40=0,得a +b -40=0,∴2222a b a b -=-()()2()
a b a b a b +-=- 4020.22
a b +== 12. 解:设平行于墙的边长为x m ,则垂直于墙的边长为
322
x -m ,由题意得x ·322x -=120,即x 2-32x +240=0. 13. 解:能,根据题意得x 2+3x +2=a (x +1)2+b (x +1)+c ,即x 2+3x +
2=ax2+(2a+b)x+(a+b+c),
1
23,
2, a
a b
a b c
=
⎧
⎪
+=
⎨
⎪++=⎩
,
∴解得
1
1,
0. a
b
c
=
⎧
⎪
=
⎨
⎪=
⎩
,。