一元二次方程解法综合练习PPT
合集下载
22.1一元二次方程(一)PPT课件(共24张)

(x个-1队) 各赛1
场,
由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共
场.
即
第4页,共24页。
方程① ② ③有什么(shén me)特点?
x2+2x-4=0 ① x2-75x+350=0 ②
③
(1)这些方程的两边都是整式
(2)方程中只含有一个未知数
(3)未知数的最高次数是2.
第20页,共24页。
P28 2. 7.
1.根据下列问题(wèntí)列方程,并将其化成一元二次 方程的一般形式:
(1)一个圆的面积是6.28m2 ,求半径(≈3.14)
(2)一个直角三角形的两条直角边相差3cm,面积 是9cm2 ,求较长的直角边的长。
(3)参加聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
第24页,共24页。
第21页,共24页。
P28 1
• 3. 将下列方程化为一般形式,并分别指 出它们的二次项、一次项和常数(chángshù)项 及它们的系数:
⑴ 3x2 1 6x
⑵ (x 2)(x 3) 8
⑶ (2 3 x)(2 3 x) (x 3)2
?
第22页,共24页。
1.一元二次方程的概念(gàiniàn)
(1)x3-2x2+5=0;
(2)
(3)2x(12x+11x)2=32(x+01);
(4)x2-2x=x2+1; (5)ax2+bx+c=0
第11页,共24页。
一般地,任何一个关于x的一元二次方程,经过整 理,都能化成如下形式
这种形式叫做一元二次方程的一般形式.其 中(qízhōng)ax2是二次项,a是二次项系数;bx是一次
一元二次方程复习 PPT课件 1 人教版

(1) (x10)2 3 ——直接开平方法 (2) 2x26x30 ——配方法
(3) 9x21 0x40 ——公式法 (4) 2x25x0 ——因式分解法
(1)(x10)2 3——直接开平方法
解:(x10)2 3 两边开平方
x10 3
x10 3 或 x103 x1103, x2103
分析:根据方程的解的定义, 如果m是
方程 ax2bxc0(a0)的根就有
am 2bm c0
解:因为a是方程 x23x10的根,
所以 a 2 3 a 1 0 即 a 2 1 3 a
a2 0
a2 1 0
3a 0
即a0
2 a 2 5 a 2 3 2 ( a 2 3 a 1 ) a 4 3
分析:从图中可以看出,四块小试验田的面
积与两条道路所占的面积的和等于整个矩形
田地的面积。这是本题的相等关系。关键是
如何把两条道路所占的面积表示出来。设道 路的宽为xm,则横向道路面积为32xm 2,纵 向道路面积为20xm 2 ,但两条道路的 面积和并不等于阴影
部分的面积,而是多
了一个宽为xm的小正 方形的面积。所以,
3
3
12>0
模仿上述方法解答下面问题。
求证:
(1)对于任何实数x,均有:2x24x3>0;
(2)不论x为何实数,多项式 3x2 5x1的
值总大于 2x24x7的值。
解:
(1)2x2+4x+3=2 (x+1)2+1 ∵x不论为何实数,(x+1)2总是非负数 ∴2x2+4x+3>0
(2)(3x2-5x-1) – (2x2-4x-7)
(3) 9x21 0x40 ——公式法 (4) 2x25x0 ——因式分解法
(1)(x10)2 3——直接开平方法
解:(x10)2 3 两边开平方
x10 3
x10 3 或 x103 x1103, x2103
分析:根据方程的解的定义, 如果m是
方程 ax2bxc0(a0)的根就有
am 2bm c0
解:因为a是方程 x23x10的根,
所以 a 2 3 a 1 0 即 a 2 1 3 a
a2 0
a2 1 0
3a 0
即a0
2 a 2 5 a 2 3 2 ( a 2 3 a 1 ) a 4 3
分析:从图中可以看出,四块小试验田的面
积与两条道路所占的面积的和等于整个矩形
田地的面积。这是本题的相等关系。关键是
如何把两条道路所占的面积表示出来。设道 路的宽为xm,则横向道路面积为32xm 2,纵 向道路面积为20xm 2 ,但两条道路的 面积和并不等于阴影
部分的面积,而是多
了一个宽为xm的小正 方形的面积。所以,
3
3
12>0
模仿上述方法解答下面问题。
求证:
(1)对于任何实数x,均有:2x24x3>0;
(2)不论x为何实数,多项式 3x2 5x1的
值总大于 2x24x7的值。
解:
(1)2x2+4x+3=2 (x+1)2+1 ∵x不论为何实数,(x+1)2总是非负数 ∴2x2+4x+3>0
(2)(3x2-5x-1) – (2x2-4x-7)
九年级数学《一元二次方程的解法综合及根的判别式》课件

第二十一章 一元二次方程
第6课时 一元二次方程的解法综合及根的判别式
1.关于x的一元二次方程ax2+bx+c=0有两个相等的实数根,
则b2-4ac满足的条件是( C )
A.b2-4ac>0
B.b2-4ac<0
C.b2-4ac=0
D.b2-4ac≥0
2.(2020沈阳改编)一元二次方程x2-2x+1=0有两个
解:x2-7x+10=0, a=1, b=-7, c=10. ∵b2-4ac=9>0,
涵涵的作业
-b±
∴x=
b2-4ac = 7±3,
2a
2
∴x1=5,x2=2,
∴当腰为 5,底为 2 时,等腰三角形的三条边为 5,5,2;当腰为 2,底
为 5 时,等腰三角形的三条边为 2,2,5.
探究应用:请解答以下问题: 已知等腰三角形 ABC 的两边是关于 x 的方程 x2-mx+m - 1=0
为腰时,
1 2
+ 1 < 3 ,∴ 1 , 1 , 3 不能构成三角形;当 3
2 2 222
2
为腰时,等腰三角形的三边为 3 , 3 , 1 ,此时周长为 3 + 3 + 1 = 7.
222
2222
答:当 m=2 时,△ABC 的周长为7.
2
(2)若△ABC 为等边三角形,则方程有两个相等的实数根,
(3)(y-1)2-2y(y-1)=0(因式分解法).
y1=1,y2=-1
6.(北京中考)关于x的方程x2-2x+2m-1=0有实数根,且m为 正整数,求m的值及此时方程的根.
解:∵关于x的方程x2-2x+2m-1=0有实数根, ∴b2-4ac=4-4(2m-1)≥0,解得m≤1,
第6课时 一元二次方程的解法综合及根的判别式
1.关于x的一元二次方程ax2+bx+c=0有两个相等的实数根,
则b2-4ac满足的条件是( C )
A.b2-4ac>0
B.b2-4ac<0
C.b2-4ac=0
D.b2-4ac≥0
2.(2020沈阳改编)一元二次方程x2-2x+1=0有两个
解:x2-7x+10=0, a=1, b=-7, c=10. ∵b2-4ac=9>0,
涵涵的作业
-b±
∴x=
b2-4ac = 7±3,
2a
2
∴x1=5,x2=2,
∴当腰为 5,底为 2 时,等腰三角形的三条边为 5,5,2;当腰为 2,底
为 5 时,等腰三角形的三条边为 2,2,5.
探究应用:请解答以下问题: 已知等腰三角形 ABC 的两边是关于 x 的方程 x2-mx+m - 1=0
为腰时,
1 2
+ 1 < 3 ,∴ 1 , 1 , 3 不能构成三角形;当 3
2 2 222
2
为腰时,等腰三角形的三边为 3 , 3 , 1 ,此时周长为 3 + 3 + 1 = 7.
222
2222
答:当 m=2 时,△ABC 的周长为7.
2
(2)若△ABC 为等边三角形,则方程有两个相等的实数根,
(3)(y-1)2-2y(y-1)=0(因式分解法).
y1=1,y2=-1
6.(北京中考)关于x的方程x2-2x+2m-1=0有实数根,且m为 正整数,求m的值及此时方程的根.
解:∵关于x的方程x2-2x+2m-1=0有实数根, ∴b2-4ac=4-4(2m-1)≥0,解得m≤1,
青岛版九上配方法(2)《一元二次方程的解法》PPT课件

回顾与复习
你还认识“老朋友” 吗
你还能规范解下列方程吗?
(2) x2=4.
(3) (x+2)2=5.
(4) (x-1)2=4
独立 作业
2. 解下列方程:
你还认识“老朋友” 吗
(1). (x-1)2=4 (2). 4-(x-1)2=0 (3). (x-1)2-4 =0 (4). x2 -2x-1 = 4.
九年级数学(上)第三章 一元二次方程
1.配方法(2)一元二次方程的解法
回顾与复习
平方根的意义:
旧意新释:
2
你还认识“老朋友” 吗
x2=5
ቤተ መጻሕፍቲ ባይዱ
1. 解方程 (1)
解 : 1.x 5. x 5,
x1 5
老师提示: 这里是解一元二次方程的 基本格式,要按要求去做.
x2 5
结束寄语
下课了!
• 配方法是一种重要的数学方 法——配方法,它可以帮助你 到达希望的顶点. • 一元二次方程也是刻画现实 世界的一个有效数学模型.
解这个方程,得 x1 =1
26m
x2 =60 (不合题意,舍去)
答:道路的宽应为1m.
挑战 自我
知识的升华
x2 +12x+ 25 = 0; x2 +4x =1 0; x 2 –6x =11; x2 –2x-4 = 0.
2. 解下列方程:
(1). (2). (3). (4).
你能解:(x+1)2+2(x+1) = 8 吗?
x a b
独立作业
知识的升华
1.如图,在一块长35m,宽26m矩形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,在使剩余部 分的面积为850m2,道路的宽应是多少? 解:设道路的宽为 x m,根据题意得
《一元二次方程的解法》课件PPT 苏科版

方式的结构特征,当二次项系数为1时, 常数 项是一次项系数一半的平方.
感悟新知
归纳
知1-讲
1. 当二次项系数为 1 时, 已知一次项的系数, 则常数项为一次项系数一半的平方;已知常 数项,则一次项系数为常数项的平方根的两 倍.注意有两个.
2. 当二次项系数不为1时,则先化二次项系数 为1,然后再配方.
由此可得
x 4 15,
x1 4 15, x2 4 15.
知2-练
感悟新知
(2) 移项,得 2x2-3x=-1.
二次项系数化为1,得 x2 3 x 1 .
配方,得
x2
3 2
x
3 4
2
2
1 2
322
4
.
x
3 4
2
=
1 16
.
由此可得
x3 1, 44
x1
1,
x2
1 2
知2-练
知2-练
(2)2x2+1=3x;
分析:(1) 方程的二次项系数为1,直接运用配方法.
(2) 先把方程化成2x2-3x+1=0.它的二次项系数
为2,为了便于配方,需将二次项系数化为1,
为此方程的两边都除以2.
感悟新知
解: (1) 移项,得 x2-8x=-1.
配方,得 x2-8x+42=-1+42, (x-4)2=15.
感悟新知
1 填空:
(1)x2+10x+_2_5__=(x+__5__)2;
知1-练
(2)x2-12x+_3_6__=(x-__6__)2;
(3)x2+5x+____=(x+____)2; 2
(4)x2- 3 x+____=(x-____)2.
2 将代数式a2+4a-5变形,结果正确的是( D )
感悟新知
归纳
知1-讲
1. 当二次项系数为 1 时, 已知一次项的系数, 则常数项为一次项系数一半的平方;已知常 数项,则一次项系数为常数项的平方根的两 倍.注意有两个.
2. 当二次项系数不为1时,则先化二次项系数 为1,然后再配方.
由此可得
x 4 15,
x1 4 15, x2 4 15.
知2-练
感悟新知
(2) 移项,得 2x2-3x=-1.
二次项系数化为1,得 x2 3 x 1 .
配方,得
x2
3 2
x
3 4
2
2
1 2
322
4
.
x
3 4
2
=
1 16
.
由此可得
x3 1, 44
x1
1,
x2
1 2
知2-练
知2-练
(2)2x2+1=3x;
分析:(1) 方程的二次项系数为1,直接运用配方法.
(2) 先把方程化成2x2-3x+1=0.它的二次项系数
为2,为了便于配方,需将二次项系数化为1,
为此方程的两边都除以2.
感悟新知
解: (1) 移项,得 x2-8x=-1.
配方,得 x2-8x+42=-1+42, (x-4)2=15.
感悟新知
1 填空:
(1)x2+10x+_2_5__=(x+__5__)2;
知1-练
(2)x2-12x+_3_6__=(x-__6__)2;
(3)x2+5x+____=(x+____)2; 2
(4)x2- 3 x+____=(x-____)2.
2 将代数式a2+4a-5变形,结果正确的是( D )
2 解一元二次方程 公式法PPT课件(人教版)

12.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数 根,则b 的值是__2__.
13.关于x 的方程(a+1)x2-4x-1=0有实数根,则a满足的条件是 _a_≥_-__5_____.
14.用公式法解下列方程: (1)x(2x-4)=5-8x;
解:原方程整理为 2x2+4x-5=0,∴b2-4ac=16+4×2×5= 56,∴x=-24×±256,即 x1=-2+2 14,x2=-2-2 14
练习1:对一元二次方程x2-2x=1,b2-4ac=__8__. 2.式子____b_2_-__4_a_c___叫做一元二次方程ax2+bx+c=0根的判别 式,常用Δ表示,Δ>0⇔ax2+bx+c=0(a≠0)有 __有__两__个__不__等__的__实__数__根_______;Δ=0⇔ax2+bx+c=0(a≠0)有 __两__个__相__等__的__实__数__根___;Δ<0⇔ax2+bx+c=0(a≠0)____无__实__数__根__. 练习2:(202X·长沙)若关于x的一元二次方程x2-4x-m=0有两个 不相等的实数根,则实数m的取值范围是_____m_>__-__4____.
8.一元二次方程x2-x-6=0中,b2-4ac=__2_5___,可得x1= __3__,x2=__-__2__.
(91.)x用2-公3x式-法2=解0下;列方解程::x1=3+2 17,x2=3-2 17 (2)8x2-8x+1=0;
解:x1=2+4 2,x2=2-4 2
(3)2x2-2x=5. 解:x1=1+2 11,x2=1-2 11
知识点1:根的判别式 1.(202X·邵阳)一元二次方程2x2-3x+1=0的根的情况是( B ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 2.(202X·丽水)下列一元二次方程没有实数根的是( B ) A.x2+2x+1=0 B.x2+x+2=0 C.x2-1=0 D.x2-2x-1=0
一元二次方程的解法—公式法ppt课件

k≠0
k≠0
归纳 当一元二次方程二次项系数是字母时,一定要注意二次项 系数不为 0,再根据“Δ”求字母的取值范围.
【变式题】删除限制条件“二次”
若关于 x 的方程 kx2 − 2x −1 = 0 有实数根,则 k 的取值范围是
( A)
A. k≥ −1
B. k≥ −1且 k≠0
C. k < 1
D. k < 1 且 k≠0
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.2 公式法
学习目标
1. 了解求根公式的推导过程;(难点) 2. 掌握用公式法解一元二次方程;(重点) 3. 会用判别式判断一元二次方程的根的情况.
知识回顾
用配方法解一元二次方程的步骤有哪些?
一“化”:将方程化为一般形式,且把二次项系数化为1; 二“移”:将常数项移到方程的右边; 三“配”:方程方左程边两配边成同完时全加平上方一的次形项式系;数一半的平方,将
练一练
不解方程,判断下列方程的根的情况.
(1)3x2+x-1=0;
(2)2x2+6=3x;
方法归纳
判断一元二次方程根的情况的方法:
将方程整理 为一般形式 ax2+bx+c=0
Δ= b2 − 4ac > 0 Δ= b2 − 4ac = 0 Δ= b2 − 4ac < 0
有两个不等的实数根 有两个相等的实数根 没有实数根
Δ= b2-4ac = (− )2-4×2×1 = 0. 方程有两个相等的实数根
x1 = x2
(3) 5x2-3x = x + 1; 解:方程化为 5x2-4x-1 = 0.
±-
a = 5,b = -4,c = -1. Δ= b2-4ac = (-4)2-4×5×(-1) = 36>0.