基于图像处理的人脸识别系统
《2024年基于OpenCV的人脸识别系统设计》范文

《基于OpenCV的人脸识别系统设计》篇一一、引言随着科技的发展,人脸识别技术已成为现代社会中不可或缺的一部分。
该技术被广泛应用于安全监控、身份验证、智能门禁等领域。
OpenCV(开源计算机视觉库)作为一种强大的计算机视觉库,为开发者提供了进行人脸识别系统的设计和实现的可能。
本文将详细介绍基于OpenCV的人脸识别系统设计,包括其设计思路、实现方法和应用前景。
二、系统设计目标本系统设计的主要目标是实现高效、准确的人脸识别功能。
通过使用OpenCV的强大功能,系统将能够实现对人脸的检测、跟踪、识别和比对。
此外,系统还应具有良好的实时性和稳定性,以满足实际应用的需求。
三、系统设计原理本系统设计主要基于OpenCV的人脸识别技术,包括人脸检测、特征提取和人脸比对三个主要步骤。
1. 人脸检测:通过OpenCV中的人脸检测算法,系统能够在图像或视频中检测出人脸。
这些算法通常基于肤色模型、形状模型或深度学习模型等。
2. 特征提取:检测到人脸后,系统将提取出人脸的特征。
这些特征通常包括面部关键点的位置、纹理特征、深度学习特征等。
OpenCV提供了多种特征提取方法,如HOG、SIFT、SURF等。
3. 人脸比对:提取出特征后,系统将进行人脸比对。
这通常通过将提取的特征与数据库中已知的特征进行比对来实现。
比对的算法可以是基于距离度量、相似度度量等。
四、系统设计实现1. 硬件环境:本系统设计的硬件环境包括计算机、摄像头等。
计算机应具备足够的计算能力以支持实时的人脸识别处理,摄像头应具备高清、稳定的图像采集能力。
2. 软件环境:本系统设计的软件环境主要基于OpenCV和Python。
OpenCV用于实现人脸识别的核心算法,Python则用于编写系统的主程序和用户界面。
3. 系统实现流程:首先,通过摄像头实时采集图像或视频;然后,使用OpenCV中的人脸检测算法检测出图像中的人脸;接着,提取出人脸的特征;最后,将提取的特征与数据库中已知的特征进行比对,实现人脸识别。
基于opencv的人脸识别毕业设计

基于opencv的人脸识别毕业设计一、引言人脸识别技术是一种通过对图像或视频中的人脸进行识别和验证的技术。
随着计算机视觉和深度学习技术的发展,人脸识别技术已被广泛应用于安防监控、人脸支付、智能门禁等领域。
本文将以基于opencv 的人脸识别技术为研究对象,设计一种高效、准确的人脸识别方案,作为毕业设计的主题。
二、背景介绍1. 人脸识别技术发展历程人脸识别技术的发展经历了传统图像处理、特征提取、模式识别等阶段,近年来,随着深度学习技术的成熟,人脸识别技术取得了突破性进展。
基于深度学习的人脸识别算法不仅能够实现高精度的人脸检测和识别,还能适应不同光照、姿态和表情下的人脸识别任务。
2. opencv在人脸识别中的应用opencv是一个开源的计算机视觉库,提供了丰富的图像处理和机器视觉算法库。
opencv的简单易用、跨评台兼容等特性,使其成为人脸识别技术开发中的重要工具。
许多经典的人脸检测、人脸识别算法都有基于opencv的实现。
三、研究内容与目标本文拟以基于opencv的人脸识别技术为研究对象,结合深度学习技术和opencv图像处理算法,设计一种高效、准确的人脸识别方案。
具体研究内容和目标如下:1. 掌握opencv图像处理和人脸识别的基本原理与算法;2. 分析深度学习在人脸识别中的应用,并结合opencv实现深度学习模型;3. 设计并实现一个基于opencv的人脸检测和识别系统;4. 评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较。
四、研究方法与流程1. 研究方法本研究将采用文献调研、实验分析和系统设计等方法,通过阅读相关文献,深入了解深度学习和opencv在人脸识别中的应用;结合实际数据集,分析人脸识别算法的性能和特点;基于opencv和深度学习框架,设计实现人脸识别系统,并进行性能评估。
2. 研究流程(1)文献综述:梳理文献,了解人脸识别领域的研究现状和发展趋势;(2)数据准备:收集人脸图像数据集,用于实验分析和算法训练;(3)算法实现:基于opencv和深度学习框架,实现人脸检测和识别算法;(4)系统设计:设计一个基于opencv的人脸识别系统,包括图像预处理、特征提取和匹配识别等模块;(5)性能评估:通过实验评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较;(6)撰写毕业设计论文。
人脸识别系统解决方案

人脸识别系统解决方案引言人脸识别系统是一种基于人脸图像的生物识别技术,用于识别和验证个体的身份。
随着技术的不断发展,人脸识别系统在安全领域、消费电子产品和人机交互等方面得到了广泛应用。
本文将介绍人脸识别系统的工作原理、应用场景以及解决方案。
工作原理人脸识别系统的工作原理可以分为以下几个步骤:1.人脸检测:通过图像处理算法在图像中检测出人脸区域。
常用的人脸检测算法包括Viola-Jones算法、卷积神经网络等。
2.人脸对齐:将检测到的人脸图像进行标定、对齐,使得人脸图像具有相同的尺寸和位置。
常用的人脸对齐算法包括特征点对齐和基于模板的对齐。
3.特征提取:从对齐后的人脸图像中提取出具有辨识度的特征向量,常用的特征提取方法包括局部二值模式、主成分分析等。
4.特征匹配:将待匹配人脸的特征向量与已有的人脸特征进行比对,计算相似度得分。
常用的特征匹配算法包括欧氏距离、余弦相似度等。
5.身份验证/识别:根据特征匹配的结果判断待匹配人脸的身份,进行身份验证或识别。
应用场景人脸识别系统在以下场景中得到了广泛应用:安全领域人脸识别系统可以通过比对人脸与数据库中存储的人脸特征来实现门禁系统的身份验证。
它可以用于办公楼、住宅小区等安全区域的身份识别,提高安全性并减少人力成本。
消费电子产品手机、平板电脑和笔记本电脑等消费电子产品越来越普及,人脸识别系统可以作为一种便捷的解锁方式。
用户只需通过摄像头进行简单的人脸扫描,就可以完成设备的解锁,提高用户体验。
人机交互人脸识别系统可以应用于人机交互,通过人脸识别来识别用户的情绪、性别、年龄等信息,从而提供更加个性化的服务。
例如,人脸识别系统可以根据用户的情绪调整音乐播放的节奏和风格,提供更好的音乐体验。
解决方案搭建一个高效可靠的人脸识别系统需要考虑以下几个方面:1. 算法选择根据不同的场景和应用需求,选择合适的人脸识别算法。
常用算法包括OpenCV、Dlib、Face++等,它们提供了丰富的人脸识别功能和API接口。
人脸识别系统的原理与应用

人脸识别系统的原理与应用人脸识别技术: 人脸识别系统的原理与应用随着科技的不断发展,人脸识别技术逐渐成为我们生活中不可或缺的一部分。
本文将介绍人脸识别系统的原理和应用,并探讨其在各个领域的潜在价值。
一、人脸识别系统的原理人脸识别系统的原理基于对人脸图像的分析和比对,通过计算机算法来识别和验证一个人的身份。
其主要包括以下几个步骤:1. 图像采集:人脸识别系统首先需要获取人脸图像,常见的方法包括摄像头录制、视频监控等。
这些图像将成为后续分析的基础。
2. 图像预处理:采集到的人脸图像需要经过预处理,包括图像去噪、灰度化、尺寸标准化等。
这些步骤旨在减少图像中的干扰信息,提高后续处理的准确性。
3. 人脸检测与定位:通过算法对预处理后的图像进行人脸检测与定位,确定人脸的位置和边界框。
常用的方法包括Haar特征分类器、卷积神经网络等。
4. 特征提取与编码:通过提取人脸图像中的特征点或特征描述符,将其转化为计算机可处理的数据。
常见的方法有主成分分析、局部二值模式等。
5. 特征匹配与比对:将提取到的特征与事先存储的人脸模板进行比对,通过计算相似度来判断是否匹配。
匹配算法常用的有欧氏距离、余弦距离等。
二、人脸识别技术的应用人脸识别技术在现实生活中有着广泛的应用,以下是几个重要领域的案例:1. 安全领域:人脸识别技术可以应用于安防系统中,通过与数据库中的人脸模板比对,实现门禁、闸机等设备的自动识别和进出控制。
此外,人脸识别还可以应用于公共场所的监控系统,帮助识别可疑人员和犯罪嫌疑人。
2. 营销领域:利用人脸识别技术可以对顾客进行性别、年龄、情绪等属性的识别,从而为商家提供更精准的个性化营销服务。
例如,在广告牌、商场等场所中展示与用户属性相关的广告内容,提高广告的效果和转化率。
3. 教育领域:人脸识别技术可以应用于学校的考勤系统,实现学生的自动签到签退,提高考勤的准确性和效率。
此外,在学生的机器学习过程中,人脸识别技术也可以用于情感识别和学习行为分析,帮助教师更好地理解学生,并进行个性化的教学。
数字图像处理在人脸识别中的应用

数字图像处理在人脸识别中的应用随着人们对科技的追求以及生活水平的提高,人脸识别技术已经越来越普及。
无论是在社会领域还是在个人生活方面,人脸识别技术在保障人民安全、提高用户体验等方面有非常广泛的应用。
而数字图像处理技术正是构建人脸识别系统的核心技术,因此深入研究数字图像处理在人脸识别中的应用具有重要的意义。
数字图像处理技术是指通过计算机对数字图像进行操作和处理的技术。
这种技术通常包含了图像采集、预处理、特征提取以及分类识别等几个步骤。
而当它与人脸识别技术结合时,数字图像处理技术将起到至关重要的作用。
在数字图像处理技术中,最为重要的一步是特征提取。
特征提取的目的是通过不同方式提取出图像中的特征信息,以便于人脸识别算法能够准确地识别不同人脸的特征。
数字图像处理技术中较为常见的人脸特征提取方式包括基于颜色、形态和纹理等几个方面。
其中,基于颜色的人脸识别方式是基于人脸的颜色特征进行识别,比如通过提取人脸区域的颜色直方图,以提高人脸识别的准确度。
除了基于颜色的人脸识别方式之外,基于形态和纹理的人脸识别方式也很重要。
基于形态的人脸识别方式是通过提取人脸的特征形态信息,如轮廓、脸型、面积等来进行识别。
而基于纹理的人脸识别方式是基于人脸纹理特征进行识别,比如通过提取人脸的纹理特征来提高人脸识别的准确率。
这些特征的提取和分类,离不开数字图像处理的强大支持。
在实际的人脸识别应用中,数字图像处理技术的作用更凸显。
人脸检测是人脸识别系统的第一步。
通过技术手段提取图像中有关的人脸数据,挑选其中的特定点,限定面部的形状,并进行相关的计算处理。
这对于后续的人脸识别来说,非常重要。
其次,从确定的关键点坐标中确定人脸位置,以更精细的方式分割出该部分人脸。
接下来,对人脸图像进行预处理,移除噪声和图像背景等无关信息,提高图像质量的同时保护人脸的完整性和特征性。
当人脸图像预处理后,我们需要从中提取有用的特征信息。
人脸识别应用中,数字图像处理技术最为重要的一部分就是特征提取。
人脸识别系统原理

人脸识别系统原理
人脸识别系统是一种通过计算机技术对人脸图像进行识别和验证的技术。
它可以应用于安防监控、门禁系统、手机解锁等领域,具有很高的实用价值。
那么,人脸识别系统的原理是什么呢?
首先,人脸识别系统的原理是基于人脸特征的提取和匹配。
在人脸识别系统中,首先需要对人脸图像进行采集和处理,提取出人脸的特征信息。
这些特征信息可以包括人脸的轮廓、眼睛、鼻子、嘴巴等部位的位置和形状特征。
然后,通过对提取出的人脸特征进行匹配比对,来实现对人脸的识别和验证。
其次,人脸识别系统的原理是基于模式识别和机器学习算法。
在人脸识别系统中,需要使用模式识别和机器学习算法对提取出的人脸特征进行分析和处理,以实现对人脸图像的识别和验证。
这些算法可以包括人工神经网络、支持向量机、主成分分析等,通过对大量的人脸图像数据进行训练和学习,使得人脸识别系统能够不断提高对人脸图像的识别准确率和鲁棒性。
另外,人脸识别系统的原理还涉及到图像处理和计算机视觉技术。
在人脸识别系统中,需要对人脸图像进行预处理,包括去除噪
声、对图像进行归一化处理等,以提高人脸识别系统对人脸图像的
鲁棒性和可靠性。
同时,还需要借助计算机视觉技术对人脸图像进
行特征提取和分析,以实现对人脸的识别和验证。
总的来说,人脸识别系统的原理是基于人脸特征的提取和匹配,结合模式识别和机器学习算法,借助图像处理和计算机视觉技术,
实现对人脸图像的识别和验证。
随着人工智能和计算机技术的不断
发展,人脸识别系统的原理也在不断完善和提升,将为我们的生活
带来更多的便利和安全保障。
《2024年基于OpenCV的人脸识别系统设计》范文

《基于OpenCV的人脸识别系统设计》篇一一、引言随着科技的快速发展,人脸识别技术已经成为现代计算机视觉领域的一个重要研究方向。
人脸识别系统能够自动识别和验证人的身份,广泛应用于安全监控、门禁系统、支付验证等众多领域。
本文将详细介绍基于OpenCV的人脸识别系统的设计。
二、系统需求分析1. 功能需求:人脸检测、人脸特征提取、人脸识别比对等。
2. 性能需求:高识别率、实时响应、系统稳定。
3. 环境需求:操作系统兼容性强,设备要求合理。
三、系统设计概述基于OpenCV的人脸识别系统主要包括预处理、特征提取和匹配三个部分。
通过图像处理和机器学习技术,实现人脸检测和识别的功能。
四、系统架构设计1. 数据预处理模块:主要完成图像的输入、格式转换、尺寸调整等操作,以满足后续处理的需球。
同时对图像进行去噪和锐化处理,提高识别的准确性。
2. 人脸检测模块:利用OpenCV中的人脸检测算法(如Haar 级联分类器或深度学习模型)进行人脸检测,确定图像中的人脸位置。
3. 特征提取模块:通过OpenCV的深度学习模型(如OpenCV DNN模块中的卷积神经网络)提取人脸特征,如面部关键点信息等。
4. 人脸比对模块:将提取的特征与数据库中已有人脸特征进行比对,找出相似度最高的匹配结果。
根据设定的阈值,判断是否为同一人。
五、关键技术实现1. 人脸检测算法:采用OpenCV中的人脸检测算法,如Haar 级联分类器或深度学习模型,实现对图像中人脸的快速定位。
2. 特征提取算法:利用OpenCV的深度学习模型(如OpenCV DNN模块中的卷积神经网络)进行特征提取,包括面部关键点信息等。
3. 人脸比对算法:采用相似度算法(如欧氏距离、余弦相似度等)进行人脸比对,找出相似度最高的匹配结果。
六、系统实现与测试1. 系统实现:根据设计架构,逐步实现各模块功能。
采用C++编程语言,利用OpenCV库进行开发。
2. 系统测试:对系统进行严格的测试,包括功能性测试、性能测试和稳定性测试等。
基于C语言的人脸识别系统

基于C语言的人脸识别系统人脸识别技术是一种通过计算机对人脸图像进行特征提取和匹配,从而实现对人脸进行身份鉴别和认证的技术。
在现代社会中得到了广泛的应用,如门禁系统、手机解锁等多个领域。
本文将介绍基于C语言开发的人脸识别系统的原理和实现方法。
一、人脸识别系统的原理人脸识别系统的原理主要包括图像获取、人脸检测、特征提取和识别匹配四个主要步骤。
1. 图像获取图像获取是指通过摄像头或者其他设备获取到待识别的人脸图像。
在C语言中,可以通过调用图像处理库的相关函数来实现图像的读取和显示。
2. 人脸检测人脸检测是指通过算法对图像进行处理,找出其中的人脸区域。
常用的人脸检测算法包括Haar特征检测、卷积神经网络等。
3. 特征提取特征提取是指从人脸图像中提取出表征该人脸的特征信息。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)等。
4. 识别匹配识别匹配是指将提取到的特征信息与存储的人脸数据库中的特征信息进行比对,找出最匹配的结果。
匹配算法常用的有欧氏距离、余弦相似度等。
二、基于C语言的人脸识别系统的实现方法1. 图像处理库的选择在C语言中,可以使用开源的图像处理库OpenCV来实现人脸识别系统。
OpenCV是一个跨平台的计算机视觉库,提供了许多用于图像处理的函数和工具。
2. 数据集的收集为了训练人脸识别系统,首先需要收集一定数量的人脸图像数据集。
可以通过调用摄像头,让用户自行拍摄不同角度、不同表情的人脸图像。
3. 数据预处理收集到的人脸图像需要进行预处理,包括图像裁剪、尺寸调整、灰度化等操作,以便后续的人脸检测和特征提取。
4. 人脸检测与特征提取调用OpenCV库中的相关函数,对预处理后的人脸图像进行人脸检测和特征提取操作。
根据选定的算法,提取出人脸图像的特征信息,并存储起来供后续的识别匹配使用。
5. 识别匹配对于待识别的人脸图像,同样进行与第四步相同的人脸检测和特征提取操作。
然后将提取到的特征信息与存储的人脸数据库中的信息进行匹配,找出最相似的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·II·
东北大学硕士学位论文
ABSTRACT
Face Recognition System Base on Image Processing
ABSTRACT
Nowadays,face—recognition,which is one ofthe most challenging programs in the field ofcomputerized image Pattern mcognhion and processing as well as mechanical vision, plays a important role in such areas.It is found an increasingly wide utilization in the fields such as:human-identification,financial security system,and medal—identification This article mainly investigates image Pattern recognition theories and digital image processing techniques,and then realizes face-recognition system.Pattem recognition serves as crucial theoretical basis and a key link in image processing.To classify and recognize certain information automatically with computer rather than by human,image recognition removes physical disparity in each information.as well aS sorts mad
忙
=(¨x 2…,X。)7
、● L,●、J
模式识别问题就是根据x的几个特征来判别模式肖属于q,∞,。。。类中的 哪一类。
1.4模式识别系统组成
一个典型的模式识别系统如图3.1所示,由数据获取、预处理、特征提取、分 类决策及分类器设计五部分组成。一般分为上下两部分。上半部分完成未知类别 模式的分类:下半部分属于设计分类器的训练过程,利用样品进行训练,确定分 模式的分类;下半部分属于设计分类器的训练过程,利用样品进行训练,确定分
本文主要对图像模式识别理论和数字圈像处理技术进行了研究,并且对人脸 识别系统进行了实现。模式识别是图像处理的重要理论基础和环节,图像识别的 目的在于用计算机自动处理某些信息系统,以代替人去完成分类及系统辨识的任 务。图像识别将各种信息中与它们各不相同的物理内容去除掉,根据它们的共性 进行分类。具体包换分类器的设计,模板匹配分类器,基于概率统计的Bayes分类 器,图像的分割与特征提取和聚类分析等内容。在此基础上对基于最小错误率的 Bayes复合算法进行了研究,提出了一种新的轮廓一~区域人脸识别的复合算法。
人脸识别技术(Face Recognition Technology)是机器视觉和模式识别领域最 富有挑战性的课题之一,同时也具有较为广泛的应用意义,在诸如证件检验、银 行系统、军队安全、安全检查方面都具有相当大的应用前景。这方面的研究最早 始于二十世纪七十年代初期,由于当时计算机技术发展水平等因素的限制”“l,此 项研究并没有受到广泛的重视,甚至一度处于相对停滞状态。进入二十世纪九十 年代以来,计算机人脸识别的研究重新成为人们所关注的热点,在心理学、“神 经网络”、“工程学”、“图像处理及分析”、“数字图像处理”、“计算机视 觉”等方面发表了大量的关于人脸识别的论文,仅从1995年3iU2001年之间,EI检 索到的相关文献就多达数千篇。由于人脸表情丰富,并且受光照、成像角度及成 像距离等因素的影响,还涉及模式识别和神经网络等学科,同时也和对人脸的认 识程度密切相关,这诸多因素使得人脸识别成为一项极富挑战性的研究课题。
analyses information baSed on general character.Recognition specifically includes:
classifier design·一such as formwork template matching classifier,Bayes classifier based
本文对人脸识别系统进行了实现,对一张含有真人脸与假人脸共有的图像进 行了处理,采用肤色图像模型,再经过膨胀、腐蚀等处理,对人脸区域进行定位。 通过对人的眼睛的亮度进行匹配比较,去掉假眼睛的区域,得到眼睛的中心点。 再对嘴巴进行定位,得出嘴巴的中心点,最后把人眼和嘴巴用三角形表示,熬个 人脸用椭圆近似,成功地识别出人脸准确位置。
oferrors.
To process a photograph with genuine and artificial faces together,the study applies skin—colored Pattern and then process through expansion and corrosion,and finally, locates the region offaces.Compared with matching the chrominance and the luminance ofeyes,the computerremoves the region ofartificial eyes,finds the focus of the genuine eyes.We locate the focus ofmouth as the same way.The study successfully recognizes the region of genuine face,encircling the face with ellipse as well as eyes and mouth with triangle,
东北大学硕士学位论文
第一章引言
如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。总之,耍让
计算机象人一样方便准确地识别大量的人脸尚需不同学科研究领域的科学家共咧
做出不懈的努力。
1.3模式识别的基本概念
模式识别研究的内容是利用计算机对客观物体进行分类,在错误概率最小的 条件下,使识别的结果尽量与客观物体相符合。
东北大学 硕士学位论文 基于图像处理的人脸识别系统 姓名:周丹 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:王建辉
20050701
东北大学硕士学位论文
基于图像处理的人脸识别系统
摘
要
摘要
人脸是当前计算机图像模式识别与处理的重要内容。是模式识别和机器礼堂 领域里最高有挑战性的课题之一。在人的身份鉴定、金融、保安系统和资料鉴定 等领域具有广泛的应用。
Key words:paRem recogniticer image processing face recognition feature
extraction
独创性声明
本人声明所呈交的学位论文是在导师的指导下完成的。论文中取 得的研究成果除加以标注和致谢的地方外,不包含其他人己经发表或 撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。 与我一同工作的同志对本研究所做的任何贡献均己在论文中作了明确 的说明并表示谢意。
x榧
G 一一
X2
’,X月
、● ● ●Lr ●0 ● ,
模式识别问题就是根据x的几个特征来判别模式工属于q,国:,...,∞。类中的 哪一类。
1.4模式识别系统组成
一个典型的模式识别系统如图3.1所示,由数据获取、预处理、特征提取、分 类决策及分类器设计五部分组成。一般分为上下两部分。上半部分完成未知类别 模式的分类;下半部分属于设计分类器的训练过程,利用样品进行训练,确定分
日 期:加0 5.g
另外,如作者和导师不同意网上交流,请在下方签名;否则视为 同意。
学位论文作者签名: 签字日期:
导师签名: 签字日期:
东北大学硕士学位论文
第一章 引言
第一章引言
1.1 人脸识别的意义和发展现状
随着安全入口控制和金融贸易方面应用需要的快速增长,生物统计识别技术 得到了新的重视。目前,微电子和视觉系统方面取得的新进展,使该领域中高性 能自动识别技术的实现代价降低到了可以接受的程度11-41。而入脸识别是所有的生 物识别方法中应用最广泛的技术之一,最近几年章引言
如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。总之,要让
计算机象人一样方便准确地识别大量的人脸尚需不同学科研究领域的科学家共同 做出不懈的努力。
1.3模式识别的基本概念
模式识别研究的内容是利用计算机对客观物体进行分类,在错误概率最小的 条件下,使识别的结果尽量与客观物体相符合。
人类在日常的社交活动中经常需要“认人”,这主要是通过识别人身上最独
特、最重要的特征——人脸,人类识别人脸的能力非常强,是目前所有用计算机
实现的自动人脸识别系统所无法比拟的。
1.2人脸图像模式识别的研究特点
人脸识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识 别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容110-131。如 今,虽然在这方面的研究已取得了一些可喜的成果,但是FRT在实用应用中仍面临 着很严峻的问题.因为人脸五官的分布是非常相似的,而且入脸本身又是一个柔性 物体,表情、姿态或发型、化妆的千变万化都给正确识别带来了相当大的麻烦。
在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代 表,而“模式”则是某一事物的具体体现,如数字0,l,2,3,4,5,6,7,8, 9是模式类.而用户任意手写的一个数字或任意一个印刷数字则足“模式”,是数 字的具体化。